自动化专业英语考试翻译中英对照
- 格式:doc
- 大小:12.50 KB
- 文档页数:1
第二部分 控制理论第1章1.1控制系统的引入人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程。在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实。控制系统工程队我们取得的成就贡献巨大。回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船、气垫船、高速铁路自动控制系统,现代铁路控制系统。以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统。对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科。控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识。计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展。通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置。开环控制系统开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统,图2.1单容液位控制系统我们的控制目标是保持容器的液位h 在水流出流量V 1变化的情况下保持在一定可接受的范围内,可以通过调节入口流量V 2实现。这个系统不是精确的系统,本系统无法精确地检测输出流量V 2,输入流量V 1以及容器液位高度。图2.2描述了这个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系,图2.2液位控制系统框图这种信号流之间的物理关系的描述称为框图。箭头用来描述输入进入系统,以及输出流出系统。这个控制系统没有反馈连接,这种反馈缺失用术语描述为开环。图2.3描述场效应管控制的直流电机控制切断轮恒速运转。一旦有木料接触到切断轮的表面,将对驱动转矩产生一个干扰转矩,在假定控制信号保持恒定的情况下,导致切割轮的转速下降。干扰的加入位于电机与负载之间,如图2.4所示。图2.3 晶闸管控制直流电机图2.4 带有干扰情况下晶闸管控制直流电机干扰转矩,以及其他的输入,对开环系统的控制的精确性产生严重的影响,这种系统由于不存在反馈,所以根本就不可自动的修正输出。闭环控制系统闭环控制系统源自于输入端的来自于输出端的输出信号的精确复制。偏差检测器源于输入与输出信号之间偏差。闭环控制系统一直对输出信号起控制作用直到输出与输入的偏差信号为零。在闭环控制系统中,输出与输入的任何偏差都能被自动的进行修正。通过适当的设计,系统将能克服任何干扰以及原件情况的变化对系统所产生的影响。图2.5单容液位自动控制系统图2.6 闭环控制系统框图图2.5阐述了图2.1所描述的单容液位控制系统的另一种形式。这个系统可变化的情况下,保持液位h在与期望的精确地误差范围内。如果以在输出流量V1液位不是设定值,将产生一个偏差电压。这个电压经过放大加到控制输入流量V2的电机上,通过改变输入流量修正液位,该系统的系统框图如图2.6所示。由于存在反馈,这种系统被称为闭环系统。图2.4所示的晶闸管控制直流电机系统的另一种形式即:自动调速系统如图2.7所示。反馈系统可以在干扰转矩存在的情况下使电机的转速保持相对不变。该系统的反馈部分由将转速转换为电压信号的转速计充当。为了输出期望转速与实际转速的偏差信号,差动放大器产生用于改变直流电机励磁电流的偏差信号来修正到期望的输出转速。图2.7 晶闸管控制直流电动机的自动控制系统反馈控制用于控制位置、转速以及加速度即自动驾驶在民用以及军事工业中是很常见的。反馈控制系统有他的优点,同样也具有一些列的缺点,应为反馈的存在,会使系统存在震荡,通过适当的设计,可以实现在系统稳定的前提下利用这些优点。1.2拉普拉斯变换与传递函数拉普拉斯变换拉普拉斯变换对解决一般的描述系统的方程有帮助。通常将变量的拉普拉斯变换形式写成其大写形式,如:y(t)的拉普拉斯变换形式为Y(s)。在这些符号中,微分方程中的t代表时域而拉氏变换中的s代表复数域。对此,有如下定义:式中,L{ }表示拉普拉斯变换,我们用如下形式表示拉普拉斯反变换:需要注意的是:虽然y(t)表示实数方程,但其拉普拉斯变换Y(S)表示的是关于复变函数s的复数方程。整个过程的完成需要大量的复数运算,单我们不关心进行拉普拉斯反变换所进行的运算。相反,在对于系统框图的动态描述中,我们将简单的用到一些关于某些不同方程拉普拉斯变换的结论。拉普拉斯变换是线性运算所以非常适合于描述线性运动系统。拉普拉斯变换的微分性质如下:式中,y(i)(0)表示i阶微分的初始条件,拉普拉斯变换的积分性质表示如下:拉普拉斯变换还有另外一条使用的性质,这条性质被称作终值定理:规定了二者的极限值。利用拉普拉斯变换求解方程当线性系统的的物理关系使用微积分方程描述之后,系统的动态特性的分析可以通过解方程以及与初始条件结合而得出。下例所示的为拉普拉斯变换在求解线性微分方程的应用。这种按步骤从原始方程消除时间以及时间的微分的最终结果是得出一个关于s的代数方程。这个方程然后再用来变换为关于时间的方程。最后一步包含了利用拉普拉斯反变换直接解决问题。例:考虑如下线性微分方程:设初始条件为:对式(2.7)两边同时进行拉普拉斯变换可得如下方程:带入初始条件并求解Y可得如下方程:如果对式(2.9)进行部分分式展开,可得如下方程:式(2.10)的拉普拉斯反变换为:该结果包含两个部分:1表示稳态性能,-4e-3t+5-2t表示瞬态性能,检验稳态性能,根据式(2.7)所示的终值定理:传递函数的概念为了便于分析与设计,控制系统通常用一组微分方程来描述。框图是用来直观地描述方程的内部关系的一种图。每一个原件都是用其自身的传递函数来描述的,传递函数定义为模块的输出与输入的比。在用传递函数描述模块时,假设模块已处于稳态以及零初始条件。图2.8线性系统框图考虑图 2.8所示的框图,对于该系统而言,唯一的假设就是系统的输入与输出之间服从线性关系。并且该系统为定常系统,可用如下形式表示:在零初始条件下,式(2.13)对应的拉普拉斯变换可写为:比C(S)/R(S)称为模块的传递函数,并且完全的描述了系统的特性。令模块的传递函数表示为G(S),可得:设系统处于零初始状态,则输出的拉普拉斯变换为:基本线性反馈系统如图2.9所示G(s)和H(s)分别表示系统前向通道与反馈通道的传递函数,他们分别构成了串联装置与反馈环。整个系统的传递函数C(s)/R(s)为:图2.9一般单闭环反馈系统框图第2章2.1控制系统的性能指标工业系统与装置的设计都需要满足一定的性能要求,或者使系统具有一些特定的性能。这些性能指标必须绝对严格,这对于何时能对手头的工作实现足够好的设计非常有用,出于在更多的复杂、不同、昂贵的系统设计中取得结果几乎不变的较好的质量。自动控制系统不容马虎。数量反馈的系统的控制行为包括稳态和暂态响应,这两类相应通常用于描述反馈控制系统的性能指标。反馈系统的稳态性能通常描述为系统的稳定性和精确性。稳定性在买描述系统的性能指标之中时极其重要的一部分。系统必须是稳定的,即使系统受控制信号,闭环内任何部位的其他输入,供电系统变化以及反馈参数变化等情况的影响的时候。稳态精度是反馈控制系统的另外一个重要的性能。设计者通常会尽力设计使系统对期望的输入具有最小的偏差。理论上,对于控制系统,理想的情况是在位置,速度,加速度以及无差的高阶导数变化的情况下维持系统稳定的输出。这种性能是不实际并且不可实现的。所幸,对于实际的系统而言,其对精确度的要求没有这么严格。系统的稳态性能的判断可以根据终值定理完成,该定理的拉普拉斯变换形式已由式(2.6)给出。我们接下来考虑单位反馈系统,如图2.10所示,稳态误差E(s)对于输入R(s)的关系如下式:图2.10 单位反馈系统稳态误差表达式如下:输入R(s)可以是多种标准信号中的一种,闭环系统的稳态误差可以被认为是开环系统的传递函数的形式。控制工程常见的输入是位置,速度和加速度。阶跃,斜坡和抛物线输入分别是这些物理量的简单的数学表达式。在确定系统的稳态误差时,设系统具有如下标准形式:式中:S N=位于复平面原点处的重极点K=表达式的增益在动态相应情况下,规定出有意义的变量特性是比较困难的,因为模型在动态过程中的相对权重取决于输入,在动态过程中很难判断。通常使用的性能指标的设置为:将系统置于阶跃相应下。通过说明三个延迟时间,超调量,调整时间,系统的相应被限制在了图 2.11所示的阴影边界之中。可以说明包含了这些阶跃响应限制条件系统在任何输入的情况下的动态响应都是可接受的。动态性能指标的定义如下图所示:图2.11 单位阶跃响应性能指标1.延迟时间:定义响应从0到稳态值的50%所需要的时间称为延时时间,如图2.11所示。2.超调量:阶跃响应的峰值定义为M pt,达到峰值的时间称为T p,则,超调量百分数定义如下:式中:Css稳态值或终值c(t)3.调整时间:定义为输出均匀的达到位于稳态输出值的两侧或一侧的均匀的范围之内所经历的时间,特别的,此处的范围可指定为:±5%、±2%或者±1%,分别对应的调整时间。同样,约束条件可以从系统的频率响应得出。大的带宽意味着系统可以跟随迅速变化的输入(信号包含了其傅里叶变换形式中的高频部分),频率响应中大的谐振峰值意味着动态响应中的欠阻的正弦曲线。因此,闭环系统频率响应的带宽B和谐振峰值的高度Mp能够大概对应地指示系统的性能指标中的延迟时间和超调量。这些参数的性能指标限制区域内闭环系统频率响应的量级如图2.12所示。闭环系统的带宽并不能方便的反应性能指标,响应频率ωr通常仅仅应用于频率响应的领域。一个可选择的用于限制频域动态响应的方法是规定最小的增益裕量与相角裕量,这种方法仅仅适用于开环系统。图2.12 闭环频率响应指标以下是三组备选的关于动态响应性能指标的常用设置:1.闭环阶跃响应:延迟时间(或上升时间),超调量,调整时间。2.闭环频率响应:谐振峰值,带宽或谢振频率。3.开环频率响应:增益裕量,相角裕量。2.2 二阶系统由频域观点可知,系统需要考虑闭环系统传递函数分母中s的最高次,时域中,需要考虑描述系统动态特性的被控参数的最高阶导数。描述系统时,系统的阶数事非常重要的参数。二阶系统对于控制工程而言非常重要。这种形式的系统描述了许多控制程序的动态特性,如伺服系统,空间驾驶控制,化工过程,生物工程,飞机控制系统,轮船控制等。值得关注的是很多控制系统的设计都是基于二级系统进行分析的。虽然常见的控制系统都是高阶的,但是这些系统可以近似成二阶系统,在合理的精确度范围之内对系统进行近似以实现准备的设计目标。更加精确的解决方案可以通过二阶系统的性能上延伸来实现。我们以直流电机通过变速箱拖动负载的系统为例来研究。这种系统很常见,用一个共同的拉普拉斯变换的数学描述形式描述了机械与电子理论的结合。该系统的原理图如图 2.13所示。在该装置中,系统的设定值通过电位器的形式产生。电位器的角位置θd 通过电位器的传递函数Kp(单位:伏/弧度)产生一个成比例的双极性电压。这个电压与另外一个电位器测量的负载达到的位置进行比较。电位计与相加点的系统框图如图2.14所示。由于电动机需要的电压比从求和点直接获得的电压大,所以偏差电压一般情况下都通过一个放大器接到电动机上。放大器可看做一个在大多数情来看待,传递函数如图2.14所示。放大器输出电压驱动电动况下可调节的增益Ka机。应当知道的是电动机之所以旋转是由于两个磁场相互作用的结果,两个磁场一个是静止的而另外一个是旋转的,电机的调速通过控制这两个磁场其中一个的强度来实现。静止磁场的产生可以通过给励磁线圈通电流来实现,对于小型电机,可以通过使用永久磁铁来产生静止磁场。旋转磁场可以通过为电枢线圈通电流产生。根据基尔霍夫定律以及牛顿第二定律,可得电动机的传递函数如下:为电机转矩系数,单位式中:R为励磁绕组的电阻;L为励磁绕组的电感;Km是:N2/A;J为电机轴的转动惯量;c为总阻尼,包括电机轴的。图2.13 电机位置负载图2.14 位置控制系统框图引入图2.14右侧,则闭环传递函数可写为:将电位器的KP从该式可以看出关于系统的输入与输出之间关系的微分方程是二阶的;因此位置控制系统是二阶的。二阶系统的标准形式如下:表示无阻尼自然振荡角频率。系统可以通过这些量描述。式中:ζ表示阻尼比,ωn随后的系统分析将使用一些广义上的符号,系统框图如图2.25所示,通过回顾电机控制,位置控制系统将不断地以物理为基础得出结论。图2.15 广义闭环传递函数阶跃响应我们假设系统处于零初始状态,并且输入为单位阶跃。那么R(s)=1/s,输出的拉普拉斯变换可以写成:若系统为欠阻尼,即ζ<1,那么,阻尼自然振荡角频率定义为:接着输出结果为:进行反变换后:式中:同理,可以得出过阻尼(ζ>1)情况下的结果:理解阻尼时的结果(ζ=1):图2.16所示为在ω=1rad/s情况下,不同阻尼比ζ时的输出,识别ζ<1时n的情况很重要,如下图:图2.16 二阶系统阶跃响应1.在ωd时,系统震荡2.系统由于指数-ζωn而衰减震荡,超调量取决于ζ的值3. .4.5.。
自动化专业英语原文和翻译Automation in the field of engineering has revolutionized industries and processes, increasing efficiency and productivity. As a result, there is a growing demand for professionals with expertise in automation, particularly in the field of engineering. In this text, we will explore the importance of automation in the engineering industry and provide a translation of the text in English.1. Introduction to Automation in Engineering:Automation refers to the use of technology and machinery to perform tasks with minimal human intervention. In the field of engineering, automation plays a crucial role in streamlining processes, reducing errors, and improving overall productivity. With advancements in technology, automation has become an integral part of various industries, including manufacturing, transportation, and energy.2. Benefits of Automation in Engineering:2.1 Increased Efficiency: Automation eliminates the need for manual labor, allowing tasks to be completed at a faster rate with greater precision. This results in increased efficiency and reduced production time.2.2 Improved Safety: By automating hazardous or repetitive tasks, the risk of human error and workplace accidents is significantly reduced. Automation ensures a safer working environment for engineers and other personnel.2.3 Cost Savings: Although the initial investment in automation technology can be significant, it often leads to long-term cost savings. Automation reduces labor costs, minimizes material waste, and optimizes energy consumption, resulting in improved profitability for companies.2.4 Quality Control: Automation systems can consistently perform tasks with high accuracy and precision, leading to improved quality control. This is particularlyimportant in industries where product quality is critical, such as automotive manufacturing or pharmaceutical production.2.5 Increased Productivity: By automating repetitive and time-consuming tasks, engineers can focus on more complex and creative aspects of their work. This leads to increased productivity and allows for innovation and problem-solving.3. Automation in Different Engineering Fields:3.1 Manufacturing Engineering: Automation has transformed the manufacturing industry by enabling the use of robots and computer-controlled systems. These systems can perform tasks such as assembly, welding, and packaging, resulting in increased production rates and improved product consistency.3.2 Civil Engineering: Automation plays a significant role in civil engineering through the use of computer-aided design (CAD) software and building information modeling (BIM) systems. These tools help in the design, analysis, and construction of structures, improving accuracy and reducing project timelines.3.3 Electrical Engineering: Automation is essential in electrical engineering for tasks such as power distribution, control systems, and industrial automation. Automation systems ensure efficient power generation, distribution, and management, leading to improved energy utilization and reduced downtime.3.4 Chemical Engineering: Automation is widely used in chemical engineering for process control and optimization. Automated systems monitor and control variables such as temperature, pressure, and flow rate, ensuring safe and efficient operation of chemical processes.4. Future Trends in Automation:4.1 Artificial Intelligence (AI): AI is revolutionizing automation by enabling machines to learn, adapt, and make decisions. AI-powered automation systems can analyze large amounts of data, identify patterns, and optimize processes, leading to increased efficiency and improved decision-making.4.2 Internet of Things (IoT): IoT allows for the seamless integration of various devices and systems, enabling real-time data exchange and remote monitoring. In the engineering field, IoT can be used to monitor equipment performance, predict maintenance needs, and optimize resource utilization.4.3 Robotics: Robotics is a rapidly evolving field that combines automation with advanced mechanical systems. Robots can perform complex tasks with precision and efficiency, making them valuable assets in industries such as manufacturing, healthcare, and logistics.4.4 Sustainable Automation: With a growing focus on sustainability, automation is being used to optimize energy consumption, reduce waste, and minimize environmental impact. Sustainable automation aims to balance productivity with environmental stewardship, creating a more sustainable future.5. Conclusion:Automation has become an indispensable part of the engineering industry, revolutionizing processes and improving overall efficiency. The benefits of automation, such as increased productivity, improved safety, and cost savings, make it an essential aspect of modern engineering practices. As technology continues to advance, the future of automation in engineering looks promising, with trends such as AI, IoT, and robotics driving further innovation. Embracing automation will be crucial for professionals in the field, ensuring they stay relevant and competitive in an increasingly automated world.。
An automatic controller compares the actual value of the plant output withthe desired value,determines the deviation,and produces a control signalwhich manner in or to small value. The zero reduce which will the deviation tothe automatic controller produces the control signal is called the controlaction.自动控制器把对象的实际输出与期望值进行比较,确定偏差,并产生一个使误差为零或微小值的控制信号。
自动控制器产生控制信号的方式叫做控制作用。
Here we shall present the basic control actions commonly used in industrialautomatic controllers. First we shall introduce the principle of operationof automatic controllers and the methods for generating various controlsignals,such as the use of the derivative and integral of the error signal.Next we shall discuss the effects of particular control modes onthe systemperformance. Then we shall give a brief discussion of methods for reducingthe effects of external disturbances on the system performance. Finally,weshall introduce fluid amplifiers,present basic principles of fluidics,anddiscuss applications of fluidic devices.这里我们会介绍常用工业自动控制器的基本控制操作。
自动化专业英语中英对照第一篇:自动化专业英语中英对照自动化专业英语中英文对照 retarding torque 制动转矩inductive component 感性(无功)分量 abscissa axis 横坐标induction generator 感应发电机synchronous generator 同步发电机automatic station 无人值守电站hydropower station 水电站process of self – excitation 自励过程auxiliary motor 辅助电动机technical specifications 技术条件voltage across the terminals 端电压steady – state condition 瞬态暂态reactive in respect to 相对….呈感性active in respect to 相对….呈阻性synchronous condenser 同步进相(调相)机coincide in phase with 与….同相synchronous reactance 同步电抗algebraic 代数的algorithmic 算法的biphase 双相的bilateral circuit 双向电路bimotored 双马达的corridor 通路shunt displacement current 旁路位移电流leakage 泄漏lightning shielding 避雷harmonic 谐波的insulator string 绝缘子串neutral 中性的zero sequence current 零序电流sinusoidal 正弦的square平方corona 电晕,放电bypass 旁路voltmeter 电压表ammeter 电流表micrometer 千分尺thermometer 温度计watt-hour meter 电度表wattmeter 电力表private line 专用线路diameter 直径centimeter 厘米restriking 电弧再触发magnitude 振幅oscillation 振荡auxiliary 辅助的protective gap 保护性间隙放电receptacle 插座lightning arrester 避雷装置bushing 套管trigger 起动装置stress 应力deterioration 损坏,磨损spark gap 火花放电隙traveling-wave 行波wye-connected 星形连接enclosure 设备外壳live conductor 带电导体fuse 熔断器structural 结构上的out-of-step 不同步的resynchronize 再同步synchroscops 同步指示器automatic oscillograph 自动示波器nominally 标称sampling 采样potential transformer 电压互感器fraction 分数switchyard 户外配电装置hazard 危险bushing 高压套contact 触点energize 励磁trip coil 跳闸线圈over-current relay 过电流继电器armature 衔铁pickup current 始动电流release current 释放电流solenoid relay 螺管式继电器induction-disc relay 感应圆盘式继电器cast-aluminum rotor 铸铝转子bronze 青铜horsepower 马力random-wound 散绕insulation 绝缘ac motor 交流环电动机end ring 端环alloy 合金inverse time relay 反时限继电器hydraulic 液力的dashpot 阻尼器pneumatic 气动的permanent magnet 永磁体electrical stressing 电气应力mechanical stressing 机械应力deviation 偏差third harmonic voltage 三次谐波电压induction machine 感应式电机horseshoe magnet 马蹄形磁铁magnetic field 磁场eddy current 涡流right-hand rule 右手定则left-hand rule 左手定则slip 转差率induction motor 感应电动机rotating magnetic field 旋转磁场winding 绕组stator 定子rotor 转子induced current 感生电流time-phase 时间相位exciting voltage 励磁电压solt 槽lamination 叠片laminated core 叠片铁芯short-circuiting ring 短路环squirrel cage 鼠笼rotor core 转子铁芯coil winding 线圈绕组form-wound 模绕performance characteristic 工作特性frequency 频率revolutions per minute 转/分motoring 电动机驱动generating 发电per-unit value 标么值breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机revolutions per second 转/秒number of poles 极数speed-torque curve 转速力矩特性曲线plugging 反向制动synchronous speed 同步转速percentage 百分数locked-rotor torque 锁定转子转矩full-load torque 满载转矩prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral 线与中性点间的staor winding 定子绕组leakage reactance 漏磁电抗no-load 空载full load 满载Polyphase 多相(的)iron-loss 铁损complex impedance 复数阻抗rotor resistance 转子电阻leakage flux 漏磁通locked-rotor 锁定转子chopper circuit 斩波电路separately excited 他励的compounded 复励dc motor 直流电动机de machine 直流电机speed regulation 速度调节shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的waveguide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅regeneration 再生, 后反馈放大coaxial 共轴的,同轴的high-performance 高性能的carrier 载波mature 成熟的Single SideBand(SSB)单边带coupling capacitor 结合电容propagate 传导传播modulator 调制器demodulator 解调器line trap 限波器shunt 分路器Amplitude Modulation(AM 调幅Frequency Shift Keying(FSK)移频键控tuner 调谐器attenuate 衰减incident 入射的two-way configuration 二线制generator voltage 发电机电压dc generator 直流发电机polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数transient response 瞬态响应solid state 固体buck 补偿operational calculus 算符演算gain 增益pole 极点feedback signal 反馈信号dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器excitation system 励磁系统field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统reactive power 无功功率feedback loop 反馈回路automatic Voltage regulator(AVR)自动电压调整器reference Voltage 基准电压magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制block diagram 方框图linear zone 线性区potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器air-gap flux 气隙磁通saturation effect 饱和效应saturation curve 饱和曲线flux linkage 磁链per unit value 标么值shunt field 并励磁场magnetic circuit 磁路load-saturation curve 负载饱和曲线air-gap line 气隙磁化线polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备electric energy 电能primary cell 原生电池energy converter 电能转换器conductor 导体heating appliance 电热器direct-current 直流time invariant 时不变的self-inductor 自感mutual-inductor 互感the dielectric 电介质storage battery 蓄电池e.m.f = electromotive fore 电动势unidirectional current 单方向性电流circuit diagram 电路图load characteristic 负载特性terminal voltage 端电压external characteristic 外特性conductance 电导volt-ampere characteristics 伏安特性carbon-filament lamp 碳丝灯泡ideal source 理想电源internal resistance 内阻active(passive)circuit elements 有(无)源电路元件leakage current 漏电流circuit branch 支路P.D.= potential drop 电压降potential distribution 电位分布r.m.s values = root mean square values 均方根值effective values 有效值steady direct current 恒稳直流电sinusoidal time function 正弦时间函数complex number 复数Cartesian coordinates 笛卡儿坐标系modulus 模real part 实部imaginary part 虚部displacement current 位移电流trigonometric transformations 瞬时值epoch angle 初相角phase displacement 相位差signal amplifier 小信号放大器mid-frequency band 中频带bipolar junction transistor(BJT)双极性晶体管field effect transistor(FET)场效应管electrode 电极电焊条polarity 极性gain 增益isolation 隔离分离绝缘隔振emitter 发射管放射器发射极collector 集电极base 基极self-bias resistor 自偏置电阻triangular symbol 三角符号phase reversal 反相infinite voltage gain 无穷大电压增益feedback component 反馈元件differentiation 微分integration 积分下限impedance 阻抗fidelity 保真度summing circuit 总和线路反馈系统中的比较环节Oscillation 振荡inverse 倒数admittance 导纳transformer 变压器turns ratio 变比匝比ampere-turns 安匝(数)mutual flux 交互(主)磁通vector equation 向(相)量方程power frequency 工频capacitance effect 电容效应induction machine 感应电机shunt excited 并励series excited 串励separately excited 他励self excited 自励field winding 磁场绕组励磁绕组speed-torque characteristic 速度转矩特性dynamic-state operation 动态运行salient poles 凸极excited by 励磁field coils 励磁线圈air-gap flux distribution 气隙磁通分布direct axis 直轴armature coil 电枢线圈rotating commutator 旋转(整流子)换向器commutator-brush combination 换向器-电刷总线mechanical rectifier 机械式整流器armature m.m.f.wave 电枢磁势波Geometrical position 几何位置magnetic torque 电磁转矩spatial waveform 空间波形sinusoidal – density wave 正弦磁密度external armature circuit 电枢外电路instantaneous electricpower 瞬时电功率instantaneous mechanical power 瞬时机械功率effects of saturation 饱和效应reluctance 磁阻power amplifier 功率放大器compound generator 复励发电机rheostat 变阻器self – excitation process 自励过程commutation condition 换向状况cumulatively compounded motor 积复励电动机operating condition 运行状态equivalent T – circuit T型等值电路rotor(stator)winding 转子(定子绕组)winding loss 绕组(铜)损耗prime motor 原动机active component 有功分量reactive component 无功分量electromagnetic torque 电磁转矩第二篇:自动化专业英语1)the parameterization of the0controller0isC=X+MQ/Y-NQ。
自动化专业英语原文和翻译Automation in the field of engineering has revolutionized industries by streamlining processes, increasing efficiency, and reducing human error. As a result, it has become imperative for professionals in the automation industry to possess a strong command of English, particularly in terms of technical vocabulary and terminology. In this text, we will provide a comprehensive overview of the importance of English in the field of automation, along with a sample original text and its translation.Importance of English in Automation:English proficiency is crucial for professionals in the automation industry due to the following reasons:1. Global Collaboration: With the rise of multinational corporations and global supply chains, professionals in automation often collaborate with colleagues and clients from different countries. English serves as a common language of communication, enabling effective collaboration and knowledge sharing.2. Technical Documentation: Automation professionals frequently work with technical documents, such as user manuals, equipment specifications, and engineering drawings. These documents are often written in English, and a strong command of the language is necessary to understand and interpret them accurately.3. Research and Development: English is the predominant language in scientific research and development. Automation professionals need to stay updated with the latest advancements in the field, which are often published in English-language journals and research papers.4. International Conferences and Presentations: Professionals in automation often attend conferences and present their research or projects. English fluency is essential for effective communication and knowledge dissemination in such international forums.Sample Original Text:Title: The Role of Programmable Logic Controllers in Industrial AutomationIntroduction:Industrial automation has witnessed significant advancements in recent years, with programmable logic controllers (PLCs) emerging as a key technology. PLCs are computer-based control systems that automate various industrial processes. This article aims to explore the role of PLCs in industrial automation, their applications, and the benefits they offer.Applications of PLCs:PLCs find extensive applications in various industries, including manufacturing, automotive, oil and gas, and food processing. They are used to control and monitor processes such as assembly lines, robotic systems, material handling, and quality control. PLCs offer flexibility, scalability, and reliability, making them an integral part of modern industrial automation.Advantages of PLCs:1. Increased Efficiency: PLCs enable automation of repetitive tasks, leading to improved efficiency and reduced human error. They can perform complex calculations and logic operations at high speeds, resulting in faster and more accurate process control.2. Flexibility and Adaptability: PLCs can be easily programmed and reprogrammed to accommodate changes in production requirements. This flexibility allows for quick adjustments, minimizing downtime and maximizing productivity.3. Remote Monitoring and Control: PLCs can be connected to a network, enabling remote monitoring and control of industrial processes. This feature allows operators to access real-time data, diagnose issues, and make necessary adjustments from a centralized location.4. Cost Savings: By automating processes, PLCs help reduce labor costs, minimize material wastage, and optimize energy consumption. The long-term cost savingsassociated with PLC implementation make them a cost-effective solution for industrial automation.Conclusion:Programmable logic controllers play a vital role in industrial automation, offering numerous advantages such as increased efficiency, flexibility, remote monitoring, and cost savings. As the field of automation continues to evolve, proficiency in English becomes increasingly important for professionals to stay updated with the latest developments and effectively communicate their ideas and findings.Translation (Sample):标题:可编程逻辑控制器在工业自动化中的作用简介:近年来,工业自动化领域取得了重大发展,可编程逻辑控制器(PLC)成为关键技术。
PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语原文和翻译Automation in the field of engineering has revolutionized various industries, making processes more efficient and reducing human error. As a result, there is a growing demand for professionals who are well-versed in automation technologies and can communicate effectively in English. In this text, we will provide a standard format for an original English text and its translation in the field of automation.Original English Text:Title: Automation in Manufacturing ProcessesIntroduction:Automation has become an integral part of manufacturing processes, with the aim of improving productivity, reducing costs, and ensuring consistent quality. This article explores the various aspects of automation in manufacturing and its impact on the industry.1. Definition of Automation:Automation refers to the use of technology and control systems to operate and control machinery and processes without human intervention. It involves the use of sensors, actuators, and computer systems to perform tasks that were previously carried out by humans.2. Benefits of Automation in Manufacturing:- Increased productivity: Automation allows for faster and more efficient production processes, leading to higher output and reduced lead times.- Cost reduction: By automating repetitive tasks, companies can reduce labor costs and minimize the risk of human error.- Improved quality control: Automation ensures consistent product quality by eliminating variations caused by human factors.- Enhanced safety: Dangerous tasks can be automated, reducing the risk of accidents and injuries in the workplace.3. Types of Automation in Manufacturing:a. Fixed Automation:Fixed automation involves the use of specialized machinery designed for a specific task or product. It is suitable for high-volume production with little or no variation in product design.b. Programmable Automation:Programmable automation utilizes computer-controlled systems that can be easily reprogrammed to perform different tasks or produce various products. It is suitable for medium-volume production with some level of product variation.c. Flexible Automation:Flexible automation combines the advantages of fixed and programmable automation. It involves the use of computer-controlled systems that can be reprogrammed to handle a wide range of products and tasks. It is suitable for low-volume production with high product variation.4. Challenges in Implementing Automation:While automation offers numerous benefits, its implementation can pose challenges. Some common challenges include:- High initial investment: Automation systems can be expensive to implement, requiring significant capital investment.- Workforce transition: Automation may lead to job displacement, requiring companies to provide retraining opportunities for affected employees.- Technical complexity: Implementing automation systems requires specialized knowledge and expertise, which may not be readily available.- Integration with existing systems: Integrating automation systems with existing machinery and processes can be complex and time-consuming.Conclusion:Automation has transformed manufacturing processes, offering increased productivity, cost reduction, improved quality control, and enhanced safety. Understanding the different types of automation and the challenges involved in its implementation is crucial for professionals in the field. As the demand for automation specialists continues to grow, proficiency in English communication is essential for effective collaboration and knowledge sharing in the global industry.Translation (Chinese):标题:制造过程中的自动化介绍:自动化已成为制造过程的重要组成部分,旨在提高生产效率,降低成本,并确保一致的质量。
自动化专业英语原文和翻译引言概述:自动化是现代工程技术领域中的重要学科,它涉及到自动控制系统、机器人技术、传感器技术等多个领域。
在自动化专业中,学习和掌握英语是必不可少的,因为英语是国际通用语言,也是自动化领域中的重要交流工具。
本文将介绍一些常见的自动化专业英语原文和翻译,以帮助学习者更好地理解和运用这些术语。
一、自动化概念及应用1.1 自动化定义英文原文:Automation refers to the use of technology to control and operate processes or systems without human intervention.翻译:自动化是指利用技术来控制和操作过程或系统,无需人为干预。
1.2 自动化应用领域英文原文:Automation is widely applied in manufacturing, transportation, healthcare, and many other industries.翻译:自动化广泛应用于制造业、交通运输、医疗保健等许多行业。
1.3 自动化优势英文原文:Automation offers advantages such as increased productivity, improved efficiency, and enhanced safety.翻译:自动化提供了增加生产力、提高效率和增强安全性等优势。
二、自动控制系统2.1 自动控制系统定义英文原文:An automatic control system is a set of devices that manage and regulate the behavior of a system or process automatically.翻译:自动控制系统是一组设备,能够自动管理和调节系统或过程的行为。
2.2 自动控制系统组成英文原文:An automatic control system consists of sensors, actuators, controllers, and communication networks.翻译:自动控制系统由传感器、执行器、控制器和通信网络组成。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation has become an integral part of various industries, including engineering. In this document, we will discuss the importance of automation in the field of engineering and its impact on productivity, efficiency, and safety. We will also provide a brief overview of the key terms and concepts related to automation in English, followed by their translations in Chinese.1. Importance of Automation in Engineering:Automation plays a crucial role in enhancing productivity and efficiency in the field of engineering. It involves the use of advanced technologies and systems to control and monitor various processes, reducing human intervention and minimizing errors. By automating repetitive tasks, engineers can focus on more complex and critical aspects of their work, resulting in improved overall performance.2. Key Terms and Concepts:2.1 Robotics:Robotics refers to the design, development, and application of robots in various industries. Robots are programmable machines that can perform tasks autonomously or with minimal human intervention. They are widely used in manufacturing, assembly lines, and hazardous environments.2.2 Control Systems:Control systems are a set of devices or software that manage and regulate the behavior of other devices or systems. They ensure that processes operate within desired parameters by monitoring and adjusting variables such as temperature, pressure, andspeed. Control systems are essential for maintaining stability and optimizing performance in engineering applications.2.3 Programmable Logic Controllers (PLCs):PLCs are specialized computers used to control and automate industrial processes. They receive input signals from sensors, process the data, and generate output signals to control actuators. PLCs are widely used in manufacturing, power plants, and transportation systems.2.4 Human-Machine Interface (HMI):HMI refers to the interface between humans and machines, allowing users to interact with automation systems. It includes displays, touchscreens, and control panels that provide real-time information and enable operators to monitor and control processes effectively.3. Benefits of Automation in Engineering:3.1 Increased Productivity:Automation reduces manual labor and speeds up processes, leading to increased productivity. With the help of robots and automated systems, tasks can be completed faster and more accurately, resulting in higher output and reduced production time.3.2 Improved Efficiency:Automation eliminates human errors and inconsistencies, ensuring consistent and precise results. It also optimizes resource utilization and reduces waste, leading to improved efficiency in engineering processes.3.3 Enhanced Safety:By automating hazardous or physically demanding tasks, automation improves safety in engineering environments. Robots and automated systems can handle dangerous materials or operate in extreme conditions, reducing the risk of accidents and injuries to human workers.3.4 Cost Savings:Although the initial investment in automation may be significant, it often leads to long-term cost savings. Automation reduces labor costs, minimizes material waste, and improves energy efficiency, resulting in overall cost reduction for engineering projects.4. Conclusion:Automation has revolutionized the field of engineering, providing numerous benefits such as increased productivity, improved efficiency, enhanced safety, and cost savings. Understanding the key terms and concepts related to automation is essential for professionals in the field. By embracing automation, engineers can unlock their full potential and drive innovation in various industries.自动化在工程领域的重要性介绍:自动化已成为包括工程在内的各个行业中不可或者缺的一部份。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including the field of engineering. This article aims to provide a detailed overview of automation in engineering, its significance, and its impact on various sectors. Additionally, it will discuss the importance of English proficiency in the automation industry, providing an original English text along with its translation.1. The Significance of Automation in Engineering:Automation refers to the use of technology and machines to perform tasks with minimal human intervention. In the field of engineering, automation has revolutionized processes, increasing efficiency, accuracy, and productivity. It has enabled engineers to focus on more complex and creative tasks, leaving repetitive and mundane tasks to automated systems.2. Automation in Various Engineering Sectors:2.1 Manufacturing Industry:Automation has transformed the manufacturing industry by introducing advanced robotics and computer-controlled systems. Assembly lines and production processes are now automated, resulting in faster production, reduced errors, and improved quality control. This has led to increased productivity and cost-effectiveness.2.2 Construction Industry:Automation has also made significant strides in the construction industry. Robotic systems can now perform tasks such as bricklaying, concrete pouring, and welding, reducing the need for manual labor. This not only enhances safety but also accelerates project completion, resulting in cost savings and improved efficiency.2.3 Energy Sector:Automation has revolutionized the energy sector, particularly in power generation and distribution. Automated systems monitor and control energy production, ensuring optimal performance and minimizing downtime. Additionally, smart grids enable efficient energy distribution and consumption, contributing to sustainability and reducing environmental impact.2.4 Transportation and Logistics:Automation has greatly impacted the transportation and logistics sector. Automated systems such as conveyor belts, robotic arms, and autonomous vehicles streamline operations, reducing manual labor and human error. This leads to faster and more efficient transportation of goods, improving supply chain management.3. English Proficiency in the Automation Industry:English proficiency is crucial in the automation industry due to its global nature. Engineers and professionals in this field need to communicate and collaborate with colleagues, clients, and suppliers from different countries. Effective communication ensures the successful implementation and operation of automated systems.Original English Text:"The integration of automation in engineering has revolutionized industries worldwide. From manufacturing to construction, automation has enhanced efficiency, accuracy, and productivity. With the advent of advanced robotics and computer-controlled systems, engineers can now focus on more complex tasks while leaving repetitive tasks to automated systems. Moreover, automation has significantly impacted the energy sector, transportation, and logistics, leading to cost savings and improved sustainability. English proficiency is essential in this industry as it enables effective communication and collaboration with international stakeholders."Translation:"工程领域中自动化的融合已经在全球范围内引起了革命性的变化。
自动化专业英语原文和翻译Automation in the field of engineering has revolutionized various industries by streamlining processes, improving efficiency, and reducing human error. As a result, there is a growing demand for professionals with expertise in both automation and English language skills. In this text, we will provide a standard format for an original English text and its translation in the field of automation.Original English Text:Title: Automation in Manufacturing ProcessesIntroduction:Automation in manufacturing processes refers to the use of technology and machinery to perform tasks with minimal human intervention. It involves the integration of various systems, such as robotics, control systems, and computer-aided manufacturing, to optimize production efficiency and quality. This article explores the benefits and challenges of automation in manufacturing processes.Benefits of Automation in Manufacturing Processes:1. Increased Productivity: Automation enables faster production cycles, leading to increased productivity and output. With automated systems, tasks can be executed at a higher speed and with greater precision, resulting in reduced production time and improved overall efficiency.2. Improved Quality Control: Automation minimizes human error and ensures consistent product quality. By utilizing sensors and advanced monitoring systems, automated processes can detect defects or deviations from the desired specifications, allowing for immediate corrective actions. This leads to higher product quality and customer satisfaction.3. Cost Reduction: Automation helps to reduce labor costs and minimize the risk of human-related errors. By replacing manual labor with automated systems, manufacturerscan optimize resource allocation and reduce the need for extensive workforce. Moreover, automation reduces the likelihood of costly rework or product recalls due to human mistakes.4. Enhanced Safety: Automation in manufacturing processes eliminates or reduces the need for manual handling of hazardous materials or exposure to dangerous environments. This significantly improves workplace safety and reduces the occurrence of accidents or injuries.Challenges of Automation in Manufacturing Processes:1. Initial Investment: Implementing automation in manufacturing processes requiresa significant initial investment in technology, equipment, and training. Manufacturers need to carefully evaluate the cost-benefit analysis and long-term return on investment before adopting automation solutions.2. Workforce Adaptation: Automation may lead to a shift in job requirements and the need for a more skilled workforce. Some manual tasks may be replaced by automated systems, requiring workers to upskill or transition to new roles that involve operating and maintaining automated equipment.3. Technical Complexity: Automation systems often involve complex integration of various technologies, such as robotics, artificial intelligence, and data analytics. Manufacturers need to ensure they have the technical expertise and resources to implement and manage these systems effectively.4. Potential Job Displacement: The introduction of automation in manufacturing processes may result in job displacement for certain roles that can be fully automated. This can lead to concerns about unemployment and the need for retraining or reskilling programs to support affected workers.Translation (Chinese):标题:创造过程中的自动化介绍:创造过程中的自动化是指利用技术和机械设备在最小人为干预下执行任务。
第二部分控制理论第1章1.1控制系统的引入人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程。
在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实。
控制系统工程队我们取得的成就贡献巨大。
回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船、气垫船、高速铁路自动控制系统,现代铁路控制系统。
以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统。
对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科。
控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识。
计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展。
通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置。
开环控制系统开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统,图2.1单容液位控制系统我们的控制目标是保持容器的液位h在水流出流量V1变化的情况下保持在一定可接受的范围内,可以通过调节入口流量V2实现。
这个系统不是精确的系统,本系统无法精确地检测输出流量V2,输入流量V1以及容器液位高度。
图2.2描述了这个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系,图2.2液位控制系统框图这种信号流之间的物理关系的描述称为框图。
箭头用来描述输入进入系统,以及输出流出系统。
这个控制系统没有反馈连接,这种反馈缺失用术语描述为开环。
图2.3描述场效应管控制的直流电机控制切断轮恒速运转。
一旦有木料接触到切断轮的表面,将对驱动转矩产生一个干扰转矩,在假定控制信号保持恒定的情况下,导致切割轮的转速下降。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in the field of engineering, revolutionizing the way tasks are performed and increasing efficiency. This article aims to discuss the significance of automation in engineering, its benefits, and its impact on various industries. Furthermore, it provides an English original text and its translation in Chinese related to automation in the engineering profession.Benefits of Automation in Engineering:1. Increased Efficiency: Automation reduces the need for manual labor, thereby enhancing productivity and efficiency. Tasks that previously required significant time and effort can now be completed quickly and accurately through automated processes.2. Improved Safety: Automation eliminates the need for human intervention in hazardous environments, reducing the risk of accidents and injuries. Robots and machines can perform tasks that are dangerous for humans, ensuring a safer working environment.3. Cost Reduction: By automating repetitive tasks, companies can minimize labor costs and allocate resources more effectively. Automation also reduces the chances of errors, resulting in cost savings associated with rework or product recalls.4. Enhanced Accuracy and Precision: Automation ensures consistent and precise results, eliminating human errors that may occur due to fatigue or lack of concentration. This is particularly crucial in industries where precision is vital, such as manufacturing and quality control.5. Increased Productivity: Automation allows engineers to focus on complex tasks that require human expertise, while routine and repetitive tasks are handled by machines.This leads to increased productivity and enables engineers to utilize their skills and knowledge more effectively.Impact of Automation in Various Industries:1. Manufacturing Industry: Automation has revolutionized the manufacturing sector by streamlining production processes and improving efficiency. Robots and automated assembly lines have significantly increased production rates and reduced costs.2. Automotive Industry: Automation has transformed the automotive industry, enabling the production of high-quality vehicles with minimal errors. Automated systems are used in various stages, including assembly, painting, and quality control.3. Aerospace Industry: Automation plays a crucial role in the aerospace industry, where precision and safety are paramount. Automated systems are used in aircraft manufacturing, maintenance, and even space exploration.4. Healthcare Industry: Automation has improved patient care and medical procedures in the healthcare industry. Automated devices are used for diagnostics, surgery, and monitoring, leading to more accurate and efficient treatments.5. Energy Sector: Automation has revolutionized the energy sector, particularly in power generation and distribution. Automated systems are used in power plants, renewable energy facilities, and smart grids, ensuring efficient energy management.English Original Text:Automation has become an integral part of the engineering profession, transforming various industries and revolutionizing the way tasks are performed. The benefits of automation in engineering are manifold. Firstly, it significantly increases efficiency by reducing the need for manual labor. Tasks that were once time-consuming and labor-intensive can now be completed quickly and accurately through automated processes. Secondly, automation improves safety by eliminating the need for human intervention in hazardous environments. Robots and machines can perform tasks that are dangerous for humans, ensuring a safer working environment. Additionally, automation leads to costreduction by minimizing labor costs and reducing the chances of errors, which can be costly to rectify. Moreover, automation enhances accuracy and precision, eliminating human errors that may occur due to fatigue or lack of concentration. This is particularly crucial in industries where precision is vital, such as manufacturing and quality control. Lastly, automation increases productivity by allowing engineers to focus on complex tasks that require human expertise, while routine and repetitive tasks are handled by machines.Translation in Chinese:自动化已成为工程专业的重要组成部分,改变了各行各业的工作方式,实现了任务的革命性变革。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including engineering. It involves the use of technology and machinery to perform tasks with minimal human intervention. In this document, we will discuss the importance of automation in the field of engineering and its impact on various aspects of the industry. Additionally, we will provide an original English text followed by its translation in Chinese, focusing on the terminology used in the field of automation.Importance of Automation in Engineering:Automation has revolutionized the engineering industry by improving efficiency, accuracy, and productivity. It allows engineers to streamline processes and reduce the risk of errors. With the help of automation, engineers can focus on more complex tasks that require critical thinking and problem-solving skills.Automation in Manufacturing:In the manufacturing sector, automation has significantly transformed the production process. Machines and robots are used to perform repetitive tasks with precision and speed. This not only reduces human error but also increases the overall production capacity. Automation in manufacturing has led to improved quality control, reduced costs, and faster time-to-market for products.Automation in Design and Analysis:Automation has also made a significant impact on the design and analysis phase of engineering projects. Computer-aided design (CAD) software allows engineers to create and modify designs with ease. It enables them to visualize and simulate the performance of their designs, leading to better decision-making. Furthermore, automation in analysis,such as finite element analysis (FEA), helps engineers predict the behavior of structures and systems under different conditions, ensuring safety and reliability.Automation in Construction:The construction industry has also embraced automation to enhance efficiency and safety. Robotic systems are used for tasks such as bricklaying, concrete pouring, and welding. These systems can work continuously without fatigue and perform tasks with precision, reducing the risk of accidents. Additionally, automation in construction allows for better project management, improved resource utilization, and faster completion times.Automation in Maintenance and Monitoring:Automation has revolutionized the field of maintenance and monitoring in engineering. Sensors and monitoring systems are used to collect real-time data on the performance of machines and structures. This data is then analyzed using automation techniques to detect anomalies and predict failures. By implementing proactive maintenance strategies based on automation, engineers can prevent costly breakdowns, minimize downtime, and optimize the lifespan of assets.Automation Terminology - English and Chinese Translation:Original English Text:1. Programmable Logic Controller (PLC): A digital computer used for automation of electromechanical processes.2. Human-Machine Interface (HMI): A graphical user interface that allows operators to interact with automation systems.3. Supervisory Control and Data Acquisition (SCADA): A system used for remote monitoring and control of industrial processes.4. Distributed Control System (DCS): A control system used to manage and control complex processes in various industries.5. Internet of Things (IoT): The network of physical devices, vehicles, and other objects embedded with sensors, software, and connectivity.Chinese Translation:1. 可编程逻辑控制器(PLC):用于电机电子过程自动化的数字计算机。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in various industries, including engineering. As a result, proficiency in both English and technical knowledge is essential for professionals in the field of automation. This article will provide an original text and its translation in English, focusing on the importance of automation in engineering.Original Text:自动化是一种通过使用计算机技术和控制系统来实现自动操作和控制的技术。
在工程领域,自动化被广泛应用于诸如创造、能源、交通、通信等各个方面。
自动化技术的发展使得工程师能够更高效地完成任务,提高生产效率,并减少了人为错误的发生。
自动化系统可以用于监控和控制各种设备和过程,从而实现自动化生产线、智能交通系统和智能家居等应用。
自动化在工程领域的应用非常广泛。
例如,在创造业中,自动化系统可以用于自动装配和生产线控制,从而提高产品质量和生产效率。
在能源领域,自动化系统可以用于监控和控制发电厂的运行,实现能源的高效利用。
在交通领域,自动化技术可以应用于智能交通信号灯控制和车辆导航系统,提高交通效率和安全性。
在通信领域,自动化系统可以用于网络管理和故障诊断,确保通信网络的稳定运行。
自动化专业英语翻译:Automation is a technology that enables automatic operations and control through the use of computer technology and control systems. In the field of engineering, automation finds extensive applications in various sectors such as manufacturing, energy, transportation, and communication. The development of automation technology allows engineers to efficiently complete tasks, enhance productivity, and reduce human errors. Automation systems can be used for monitoring and controlling various devices andprocesses, enabling applications such as automated production lines, intelligent transportation systems, and smart homes.Automation finds wide-ranging applications in the field of engineering. For instance, in the manufacturing industry, automation systems can be employed for automated assembly and production line control, thereby improving product quality and productivity. In the energy sector, automation systems can be utilized for monitoring and controlling the operation of power plants, facilitating efficient utilization of energy resources. In the transportation domain, automation technology can be applied to intelligent traffic signal control and vehicle navigation systems, enhancing traffic efficiency and safety. In the communication field, automation systems can be used for network management and fault diagnosis, ensuring stable operation of communication networks.Conclusion:The integration of automation in the field of engineering has revolutionized various industries, enabling efficient and reliable operations. Proficiency in both technical knowledge and English language skills is essential for professionals in the automation field to effectively communicate and implement automation solutions. By harnessing the potential of automation, engineers can optimize processes, improve productivity, and contribute to the advancement of the engineering industry.。
中英文对照外文翻译Automation of professional developmentAutomation in the history of professional development, "industrial automation" professional and "control" professional development of the two main line, "industrial automation" professional from the first "industrial enterprises electrified" professional.In the 1950s, the New China was just founded, the 100-waste question, study the Soviet Union established system of higher education, Subdivision professional. Corresponding to the country in the construction of industrial automation and defense, military construction in automatic control, successively set up the "electrification of industrial enterprises" professional and "control" professional (at that time in many schools, "Control" professional secrecy is professional) . After several former professional name of evolution (see below), and gradually develop into a "biased towards applications, biased towards strong," Automation, and the latter to maintain professional name of "control" basically unchanged (in the early days also known as the "automatic learning And remote learning, "" Automatic Control System "professional), and gradually develop into a" biased towards theory, biased towards weak, "the automation professional, and come together in 1995, merged into aunified" automatic "professional . In 1998, according to the Ministry of Education announced the latest professional undergraduate colleges and universities directory, adjusted, the merger of the new "automated" professional include not only the original "automatic" professional (including "industrial automation" professional and "control" professional ), Also increased the "hydraulic transmission and control of" professional (part), "electrical technology" professional (part) and "aircraft guidance and control of" professional (part).Clearly, one of China's automation professional history of the development of China's higher education actually is a new development of the cause of a microcosm of the history, but also the history of New China industrial development of a miniature. Below "industrial automation" professional development of the main line of this example, a detailed review of its development process in the many professional name change (in real terms in the professional content changes) and its industrial building at the time of the close relationship.First a brief look at the world and China's professional division history. We know that now use the professional division is largely from the 19th century to the beginning of the second half of the first half of the 20th century stereotypes of the engineering, is basically industry (products) for the objects to the division, they have been the image of people Known as the "industry professionals" or "trade associations." At present the international education system in two categories, with Britain and the United States as the representative of the education system not yet out of "industry professionals" system, but has taken the "generalist" the road of education and the former Soviet Union for Europe (close to the Soviet Union) as the representative The education system, at the beginning of theimplementation of "professionals" education, professional-very small, although reforms repeatedly, but to the current "industry professionals" are still very obvious characteristics.In the 1950s, just after the founding of New China, a comprehensive study and the Soviet Union and sub-professional very small; Since reform and opening up, only to Britain and the United States to gradually as the representative of the education system to move closer, and gradually reduce the professional, the implementation of "generalist" education through a number of professional Restructuring and merger (the total number of professionals from the maximum of 1,343 kinds of gradually reducing the current 249 kinds), although not out of "industry professionals" and "Mei Ming," but many of the colleges and universities, mostly only one of a Professional, rather than the past more than a professional.Before that, China's first professional automation from the National University in 1952 when the first major readjustment of the establishment of professional - electrified professional industrial enterprises. At that time, the Soviet Union assistance to the construction of China's 156 large industrial enterprises, automation of much-needed electrical engineering and technical personnel, and such professional and technical personnel training, and then was very consistent with China's industrial construction. By the 1960s, professional name changed to "industrial electric and automation," the late 1970s when to resume enrollment "Electric Industrial Automation" professional. This is not only professional name changes, but has its profound meaning, it reflects China's industries from "electrified" step by step to the "automatic" into the real history and that part of the development trend of China's automation professional reflects how urgent countries Urgent for the country'seconomic construction services that period of history and development of real direction.1993, after four years of the third revision of the undergraduate professional directories, the State Education Commission issued a call "system integrity, more scientific and reasonable, the harmonization of norms," the "ordinary professional directory of undergraduate colleges and universities." "Electric Industrial Automation" and "production process automation" merger of the two professional electrician to set up a kind of "industrial automation" professional, by the then Ministry of Industry Machinery centralized management colleges and universities to set up industrial automation teaching guide at the Commission, responsible for the "Industrial Automation "professional teaching and guiding work at the same time," Control "was attributable to the professional category of electronic information, the then Ministry of Industry of electronic centralized management control to set up colleges and universities teaching guide at the Commission, responsible for the" control " Professional teaching guide our work. After the professional adjustment, further defined the "industrial automation" professional and "control" professional "- both strong and weak, hardware and software into consideration and control theory and practical system integration, and the movement control, process control and other targets of control "The common characteristics with the training objectives, but also the basic set of" industrial automation "biased towards strong, professional, biased towards applications," Control "professional biased towards weak, biased towards the theory of professional characteristics and pattern of division of labor. 1995, the State Education Commission promulgated the "(University) undergraduate engineering leading professional directory", the electrical category "industrialautomation" professional and the original electronic information such as "control" of professional electronic information into a new category of "automatic" professional . As this is the leading professional directory, are not enforced, coupled with general "industrial automation" strong or weak, both professional "into" a weak professional category of electronic information is not conducive to professional development and thus many Schools remain "industrial automation" professional and "control" the situation of professional co-exist. Since 1996 more, again commissioned by the Ministry of National Education Ministry of Industry and electronic machinery industries of other parts of the establishment of the new session (second session) centralized management guidance at the University Teaching Commission, making the leading professionals have not been effective Implemented.1998, to meet the country's economic construction of Kuan Koujing personnel training needs, further consolidation of professional and international "generalist" education track by the Ministry of Education announced a fourth revision of the latest "Universities Undergraduate Catalog." So far in the use of the directory, the total number of professionals from the third amendments to the 504 kinds of substantially reduced to 249 species, the original directory is strong, professional electrician and a weak professional category such as electronics and information into categories Electric power, the unity of Information, a former electrician at the same time kind of "industrial automation" professional and the type of electronic information "control" professional formal merger, together with the "hydraulic transmission and control of" professional (part) , "Electric technology" professional (part) and "aircraft guidance and controlof" professional (part), the composition of the new (enforcement) are electrical information such as "automatic" professional. According to statistics, so far the country has more than 200 colleges and universities set up this kind of "automatic" professional. If the name of automation as part of their professional expertise (such as "electrical engineering and automation," "mechanical design and manufacturing automation," "agricultural mechanization and automation" and other professionals) included Automation has undoubtedly is the largest in China A professional.Of the characteristics of China's automation professional:Recalling China's professional history of the development of automation, combined with the corresponding period of the construction of China's national economy to the demand for automation and automated the development of the cause, it is not difficult to sum up following professional characteristics:(1) China's automation professional is not only a relatively long history (since 1952 have been more than 50 years), and from the first day of the establishment of professional automation, has been a professional one of the countries in urgent need, therefore the number of students has also been The largest and most employers welcome the allocation of the professional one.(2) China's automation is accompanied by a professional from the electrification of China's industrial automation step by step to the development of stable development, professional direction and the main content from the first prominent electrified "the electrification of industrial enterprises" step by step for the development of both the electric and automation " Industrial electric and automation ", highlighting the electrical automation" Electric Industrial Automation "and prominent automation" industrial automation ", then the merger of professional education reform in1995 and" control "of professional content into a broader" automated " Professional. From which we can see that China's automation professional Although the initial study in the Soviet education system established under the general environment, but in their development and the Soviet Union or the United States and Britain did not copy the mode, but with China's national conditions (to meet national needs for The main goal) from the innovation and development of "cross-industry professionals," features the professional.自动化专业的发展自动化专业的发展历史中,有“工业自动化”专业与“自动控制”专业两条发展主线,其中“工业自动化”专业最早源于“工业企业电气化”专业。
P2U1A The World of Control 生词与短语regulate v. 调整abound v. 大量存在aerodynamic adj。
空气动力学的power boost 功率助推装置damp v。
阻尼,减幅,衰减yaw n. 偏航altitude n. 海拔attitude n。
姿态intuition n。
直觉trail—and—error n. 试凑法dynamic response 动态响应disturbance n。
扰动parameter n. 参数modification n。
修正,修改transfer function 传递函数domain n。
域,领域advent n. 出现state variable 状态变量matrix algebra 矩阵代数approach n. 途径,方法;研究proponent n。
提倡者detractor n。
批评者tutorial adj. 指导性的subsequent adj。
后序的open-loop n. 开环closed—loop n. 闭环discrete adj. 离散的differential equation 微分方程difference equation 差分方程interval n. 间隔sampled—data n. 采样数据nonlinear adj. 非线性的time—invariant adj. 时不变的coefficient n. 系数stationary adj. 静态的lumped parameter 集中参数distributed parameter 分散参数spatial adj。
空间的spring n。
弹簧lead n. 导线resistance n. 阻抗uniform adj. 一致的elastic adj。
有弹性的ordinary differential equation 常微分方程partial differential equation 偏微分方程deterministic adj. 确定的stochastic adj. 随机的predictable adj。
自动化专业英语原文和翻译Automation in the Field of EngineeringIntroduction:Automation plays a crucial role in the field of engineering, enabling efficient and accurate processes across various industries. This article will explore the significance of automation in engineering and discuss its applications, benefits, and challenges. Additionally, an English original text and its translation in the field of automation will be provided.I. Importance of Automation in Engineering:Automation is the process of using technology to perform tasks with minimal human intervention. In engineering, automation has revolutionized industries by enhancing productivity, precision, and safety. It has become an integral part of manufacturing, transportation, energy, and many other sectors. By automating repetitive and mundane tasks, engineers can focus on more complex and creative aspects of their work, leading to innovation and advancements.II. Applications of Automation in Engineering:1. Manufacturing Industry:Automation has transformed the manufacturing industry by streamlining production processes. Robotic arms and machines are used to assemble products, reducing errors and increasing efficiency. Automated systems can also monitor and control various parameters such as temperature, pressure, and quality, ensuring consistent and high-quality output.2. Transportation Industry:Automation has significantly impacted the transportation sector, particularly in the development of autonomous vehicles. Self-driving cars, trucks, and drones are beingtested and implemented, offering safer and more efficient transportation options. Automation in logistics and supply chain management has also improved delivery accuracy and speed.3. Energy Sector:Automation has revolutionized the energy sector by optimizing power generation, distribution, and consumption. Smart grids and automated control systems allow for efficient monitoring and management of energy resources. This leads to reduced energy wastage, cost savings, and a more sustainable approach to energy production.4. Construction Industry:Automation in the construction industry has improved safety, precision, and productivity. Robotic systems can be used for tasks such as bricklaying, welding, and concrete pouring. Drones equipped with cameras and sensors enable site inspections, progress monitoring, and surveying, reducing human effort and time.III. Benefits of Automation in Engineering:1. Increased Productivity:Automation speeds up processes, reduces errors, and increases output, leading to higher productivity. With automation, engineers can accomplish tasks in a shorter time frame, allowing for more projects to be completed.2. Improved Accuracy:Automated systems perform tasks with precision and consistency, minimizing human errors. This is particularly important in industries where precision is crucial, such as aerospace and medical device manufacturing.3. Enhanced Safety:Automation eliminates the need for humans to perform hazardous or repetitive tasks, reducing the risk of accidents and injuries. Robots and automated systems can handle dangerous materials, work in extreme conditions, and operate in confined spaces.4. Cost Savings:Although the initial investment in automation can be significant, it often results in long-term cost savings. Automated systems reduce labor costs, minimize material wastage, and optimize energy consumption, leading to improved profitability.IV. Challenges in Implementing Automation:1. Cost and Complexity:Implementing automation can be costly, especially for small and medium-sized enterprises. The integration of automated systems may require significant investments in technology, infrastructure, and employee training.2. Workforce Adaptability:Automation may lead to job displacement or require upskilling of the existing workforce. It is crucial to provide training and support to employees to ensure a smooth transition and maximize the benefits of automation.3. Cybersecurity Risks:Automation relies heavily on interconnected systems and data exchange, making them vulnerable to cyber threats. Robust cybersecurity measures must be implemented to protect automated systems from unauthorized access and potential disruptions.V. English Original Text and Translation - Automation in Engineering:English Original Text:Automation has revolutionized the field of engineering, enabling efficient and accurate processes across various industries. By automating repetitive tasks, engineers can focus on more complex aspects of their work, leading to innovation and advancements. Automation has found applications in manufacturing, transportation, energy, and construction industries, among others. It has increased productivity, improved accuracy, enhanced safety, and resulted in cost savings. However, implementing automation can be challenging due to its cost, complexity, and the need forworkforce adaptability. Robust cybersecurity measures are also essential to protect automated systems.Translation:自动化已经在工程领域引起了革命性的变化,为各个行业实现了高效准确的工艺流程。
自动化专业英语原文和翻译英文原文:Automation in the field of engineering has brought about significant advancements and revolutionized various industries. With the help of cutting-edge technology and innovative solutions, automation has become an integral part of many processes, increasing efficiency and productivity.In the field of automation engineering, professionals are responsible for designing, developing, and implementing automated systems and machinery. These systems are designed to perform tasks with minimal human intervention, reducing the risk of errors and improving overall performance.Automation engineering involves the use of various tools and technologies such as programmable logic controllers (PLCs), robotics, and computer-aided design (CAD) software. These tools enable engineers to design and control complex systems, ensuring smooth operations and optimal performance.One of the key benefits of automation in engineering is the ability to streamline processes and reduce manual labor. By automating repetitive tasks, engineers can focus on more complex and critical aspects of their work, leading to increased productivity and higher quality output.Moreover, automation plays a crucial role in enhancing safety in various industries. By replacing human workers with automated systems, the risk of accidents and injuries can be significantly reduced. Automated systems are designed to follow strict safety protocols and can perform tasks in hazardous environments that may be dangerous for humans.In addition to improving efficiency and safety, automation also offers cost-saving benefits. Although the initial investment in automation technology may be high, the long-term savings in labor costs and increased productivity outweigh the initial expenses.Automation can also lead to reduced material wastage and improved resource management.Automation engineering professionals play a vital role in the design and implementation of automated systems. They are responsible for conducting thorough analysis, developing system requirements, and ensuring seamless integration of automation technology into existing processes. They also provide technical support and troubleshooting expertise to address any issues that may arise.In conclusion, automation in the field of engineering has revolutionized various industries by increasing efficiency, productivity, and safety. Automation engineering professionals play a crucial role in designing and implementing automated systems, utilizing cutting-edge technology and innovative solutions. With the continuous advancements in automation technology, the future of engineering looks promising, with even greater possibilities for improved performance and streamlined processes.中文翻译:自动化在工程领域带来了重大的进步,并对各行各业进行了革命性的改变。
自动化专业英语原文和翻译英文原文:Automation is the technology by which a process or procedure is performed with minimal human assistance. Automation or automatic control is the use of various control systems for operating equipment such as machinery, processes in factories, boilers, and heat treating ovens, switching on telephone networks, steering, and stabilization of ships, aircraft, and other applications and vehicles with minimal or reduced human intervention. Some processes have been completely automated.自动化是一种通过最少的人力辅助来执行过程或程序的技术。
自动化或自动控制是使用各种控制系统来操作设备,例如机械、工厂中的工艺流程、锅炉和热处理炉、电话网络的开关、船舶、飞机和其他应用和车辆的控制和稳定,从而实现最小化或减少人类干预。
一些过程已经完全自动化。
Automation plays a crucial role in various industries and sectors, including manufacturing, transportation, healthcare, and many others. It involves the use of advanced technologies and control systems to streamline processes, improve efficiency, and reduce human error.In the manufacturing industry, automation is used extensively to carry out repetitive tasks, such as assembly line operations. This not only speeds up production but also ensures consistent quality and reduces the risk of accidents. Robots and robotic systems are commonly employed in manufacturing plants to handle tasks that are dangerous or require high precision.在制造业中,自动化被广泛应用于执行重复性任务,例如流水线操作。
姓名:刘晶学号: 121404010115 专业班级:自动化1201
《专业英语》大作业
1. 步进电机是直流电机中唯一的按由某一角度构成固定步数(步距角)来旋转的。
表一中举例说明了一个基本步进电机,它包括一个转子和一个定子。
这种情况下,其转子是永磁体,且其定子由永磁铁构成(磁极)。
转子将运动以使得自身与激励磁场匹配。
如果场磁体绕圆周依次被激发出来,转子就会被驱动来做完整的圆周运动。
步进电机在控制应用上尤其有用因为控制器可以再不需要位置传感器的条件下知道电机转轴的具体位置。
这是通过对它距已知的相对位置的步进数来进行简单记数得到。
步距大小则是由定转子的极对数来决定,并且不存在累计误差。
2. 两相电机的特殊情况是交流伺服电机。
这是一种高转差率,高转矩的电机,专门为控制系统而设计,且它具有比例线性的转矩——速度曲线(如表2)。
如你所看到的,当其速度为零时获得最大转矩。
电机运行时,其速度与负载转矩成反比;换句话说:负载越小,电机运行的越快。
这与直流电机的表现很类似。
表3展示了交流伺服电机的示意图。
两个线圈被称为主线圈与控制线圈。
主线圈与通常为120v的交流电源相连接。
控制线圈由电子电路驱动,这个电路造成了控制线圈的相位或超前或滞后于主线圈,而且它还设定了能决定速度的控制线圈电压的大小。
3. 光学转速器,一个简单的设备,它可以依据转轴每分钟所转圈数来确定转轴的速度。
如4中所示,一个鲜明的条纹置于转轴上,一个光感应器放在合适的位置以使得条纹每经过光感应器一次便输出一个脉冲。
这个波形的周期与转轴每分钟所转过的圈数成反比例而且它(周期)还可以用计数器电路测量得到,类似于光电编码器所描述的一样。
要注意这个系统不能感知位置与方向。
然而如果用两个光感应器,方向便可以通过相位来确定,类似于增量式光电轴编码器。
4. 数字电子技术不牵涉到放大或者信号滤波(像模拟电路那样),而是在一些既定的脉冲产生的时候反而去考虑对这些脉冲记数以及后续电路的触发问题。
脉冲就是独立数字信号由零跳变到最大值,再跳变为零值,这样(与前一状态)相反地交替下去就是一个连续的脉冲序列。
脉冲事件的产生是根据探测或是输入数字信号脉冲的上升沿(此时脉冲由零电位跳变到正相最大电压值),这也是较为常见的情况,或交替地,探测脉冲的下降沿(此时脉冲由正相最大电压值跳变到零电位)。