华师在线复变函数作业答案
- 格式:doc
- 大小:405.50 KB
- 文档页数:21
2011/2012学年(一)学期月考试卷《复变函数》试卷参考答案专业 电子信息工程 年级2010班级 姓名 学号一、填空题(每小题3分,共15分): 1、设),2)(32(i i z +--=则arg z =8arctan -π2、设C 为正向圆周2ξ=,3sin()() C f z d z πζζζ=-⎰,其中2z <,则1'()f =i 32π3、积分||711cos z zdz z =+=-⎰ .12i π 解:11cos zz+-在圆周7z =内部有三个孤立奇点1230,2,2z z z ππ===-2422211111111cos ()1(1)2!4!2!4!zz z z z z z zz z z ϕ++++==⋅=⋅---++-+因为212!4!z -+ 为复平面内的收敛幂级数,和函数()z ϕ是解析的,并且在0z =处不等于零,所以1()z ϕ在0z =处解析,可以展开为0z =处的泰勒级数。
又因为它是偶函数,泰勒级数中必不含z 的奇次幂项,所以可以写成24242c z c z +++ ,故242422221122(2)1cos z z c z c z c c z z z z z ++=⋅+++=++++- ,1Re [,0]21coszs z+=- 24222211111(2)(2)1(2)1cos 1cos(2)(2)1[1]2!4!2!4!1112(2)1(2)(2)(2)(2)z zz z z z z z z z z z z z z z ππππππππϕππϕπ++++===⋅---------++-++++-=⋅=⋅----令2u z π=-,得211211cos ()z u z u u πϕ+++=⋅-。
类似前面的讨论可得1Re [,2]21cos z s z π+=-。
同理可得1Re [,2]21cos zs zπ+-=- 故||712(222)121cos z zdz i i z ππ=+=++=-⎰4、若解析函数iv u z f +=)(的实部22y x u -=, 那么)(z f = c ic z ,2+为实常数.5、在01z <<内,函数1(2)(1)z z z -+的罗朗展式是101(1)112362n n n n z z ∞+=⎛⎫--+- ⎪⎝⎭∑二、选择题(每小题3分,共15分):1、设)(z f 在点a 解析,点b 是)(z f 的奇点中离点a 最近的奇点,于是,使∑∞=-=0)()(n n n a z c z f 成立的收敛圆的半径等于(C ). (A) 1++b a (B) 1+-a b(C) b a - (D) b a +2、若点a 为)(z f 的可去奇点,则Res((),)f z a =(C ). (A) 21 (B) 21- (C) 0 (D) i3、设1:1=z c 为负向, 3:2=z c 为正向, 则⎰+=212sin c c c dz zx= ( B ) (A) i π2-(B) 0 (C) i π2(D)i π44、幂级数()!()!n n z n n+=∞∑120的收敛半径为( D ) (A) 0 (B) 1 (C) 2 (D) +∞5、若,sin 1)(z z z f =则0,Re [(),]k s f z k π≠=( C ) (A) πk 1 (B) 0 (C) πk k 1)1(-(D)k )1(-三、计算题(15分)(1)计算函数12)2)(1()(--+=z z z z f 在孤立奇点处的留数. 解:1()(2)zf z z z +=-的孤立奇点有两个120,2z z ==,它们都是一级极点。
A.1 复数与复变函数(第一章)1.1 复数1.选择题 (1) Re()iz =( B )(A )Re()iz - (B )Im()z - (C )Im()z (D )Im()iz (2) 下列对任意复数z 均成立的等式为( A )(A )22zz= (B )()22zz=(C )()22arg arg z z = (D )()22Re Re z z =(3) 复数2z =所属区域为( B )(A )01z << (B )0arg 2z π≤≤ (C )12z << (D )11z i>- (4) 设复数z 满足:arg(2)3z π+=,且5a r g (2)6z π-=,则z =(A )(A )1- (B )i(C )12- (D )12i +2. 将下例函数化为三角表达式和指数表达式 (1) i +1 解 因 2|1|=+i ,ππk i Arg 24)1(+=+,0,1,2,k =±±所以,1cos 2sin 244i k i k ππππ⎫⎛⎫⎛⎫+=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎭24i k ππ⎛⎫+ ⎪⎝⎭=(2) i解 cos 2sin 222i k i k ππππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22k e ππ+=,0,1,2,k =±±(3) 21i -解 241cos 2sin 2244k i k i k ππππππ--⎫⎛⎫⎛⎫=-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 0,1,2,k =±±3. 证明:当1z<时,()2Im 12z z -+<.证 因()()222Im 1Im 12z z x iy x y i xy -+=-++-+=22y xy y xy +≤+,又因1y z ≤=<,且22221x y x y z ⋅≤+=<,所以,()2Im 12z z -+<4. 填空题(1) 设8214z i i i =-+,则复数z x iy =+的形式为 13i -复数z 的模为辐角主值为 arctan3-(2) 设121i z i-=+,则其实部为12-虚部为32-共轭复数为1322i-+(3) 设复数5z i =-,则其三角形式5cos sin 22i i ππ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭指数形式 25i eπ⎛⎫- ⎪⎝⎭(4) 当z 满足12z i =+条件时,21zz +是实数. (5) 设811i z i -⎛⎫= ⎪+⎝⎭,则663322z z +-的值为___1__5.选择题(1) 设12z i =+,则3Im z =( A )(A )-2 (B )1 (C )8 (D )14(2) 设)2z i =-,则100501z z ++的值为( A ) (A )i - (B )i (C )1 (D )-16.计算下例各题的值(1) 8(1)i -+解8833(1)cos 2sin 244i k i k ππππ⎤⎫⎛⎫⎛⎫-+=+++⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎭⎦()()()42cos 616sin 616k i k ππππ=+++16=(2) 13(1)i + 解132244(1)sin )33k k i i ππππ+++=+,0,1,2k =解()()16cos 2sin 2k i k ππππ=+++⎡⎤⎣⎦=22cos sin 66k k i ππππ++⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 0,1,,6k =(4) 10(1)-解10(1)-102cos 2sin 233k i k ππππ-⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=1010102cos sin 33i ππ-⎛--⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=()1121--+1.2 复变函数7. 选择题 (1) 12(1)-=( D )(A )无定义 (B )-1 (C )cos()2k ππ+(D )sin()2i k ππ+(2) 方程()2Re 1z =所代表的曲线为( C )(A )圆周 (B )椭圆 (C )双曲线 (D )抛物线 (3) 下例正确的是( D )(A )()Ln z 在1z =-处无定义 (B )(1)0Ln -= (C )(1)Ln -的虚部等于π (D )(1)Ln -的实部等于0(4) 若z e 为纯虚数,则z 有( C )(A )Re()0z = (B )Im()z k π=(C )Im()2z k ππ=+ (D )Im()2z π=(5) 下例中为单值函数的为( A )(A )rg a z (B )rg A z (C(D )求z 的值 (1) 23iz e π-= 8.解 2223333cos sin 33i ii i z e e ee i ππππ⎛⎫-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2312e ⎛=- ⎝⎭(2) 211z e -=解 因211z e -=,有211z Ln -=,所以,()11ln 112z iArg =++=()()1122i k π+ 0,1,2,k =±±(3)(1)z Ln =解(1)z Ln =()ln 11iArg =+ln 223i k ππ⎛⎫=+-+ ⎪⎝⎭0,1,2,k =±±(4) ln(1)z i =-解 ln(1)z i =-()1ln 1arg 1ln 224i i i i π⎛⎫=-+-=+- ⎪⎝⎭9. 选择题 (1) 设函数1z e i =-则Im z =( C )(A )4π- (B )4π (C )24k ππ- (D)24k ππ+(2) 设0y >,则sin()iy 的模为( D )(A )2y ye e i -- (B )2y ye e i -- (C )2y ye e -- (D )2y ye e --(3) 设{}01D z z =<<,则D 为( B )(A )无界区域 (B )复连通域(C )单连通域 (D )闭区域(4) 下例正确的是( D )(A )z e 为单调函数. (B )z e 为有界函数.(C )z e 为多值函数. (D )z e 为周期函数.10. 判断正误(1) 因为12(1)i i +<+,所以12(1)i i +<+. ( × )(2)sin ,cos z z为有界函数. ( × )(3)2()2Ln z Lnz=.( × )(4) {}Re()D z z z=≤所表示的为整个复平面.( √ )11. 计算下例各值(1) (1)i i + 解()1ln22124(1)i i k iLn i ii eeππ⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭+==12ln 242k i eππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=,0,1,2,k =±±(2)解))l n 11221i A r g i k eπ+===,0,1,2,k =±±(3) 32(1)-解 (3233ln2212322(1i k Ln eeππ⎛⎫⎛⎫++ ⎪- ⎪⎝⎭⎝⎭-==()()3l n 232i k ee ππ+=⋅=±12. 计算下例各值(1) cos(2)i -解 ()(2)(2)12121cos(2)22i i i i i ie e i e e ---+--+-==+ 11cos 2sin 222e e e e i --+-=⋅+⋅(2) sin i解1s i n 22i i i i e e e e i ii ⋅-⋅---==(3) ()tan 2Arc i解()()221211t a n 2l n 22122323ii i i A r c i L n L n i k i ππ+-⎡⎤=-=-=-++⎢⎥-⎣⎦1ln322i k π⎛⎫=++ ⎪⎝⎭0,1,2,k =±±。
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
第一章思考:已知 1212rg()rg rg A z z A z A z =+是否可推出,当12z z z ==时,2rg 2rg A z A z = 成立;左:221rg rg 2A z a z k π=+ , 整数10,1,2,k =±± 其中,随着点z 在z 平面上的位置不同,2rg a z 有如下 三种不同的情况:1.arg 22z ππ-<≤时,2rg 2rg a z a z =; 2.arg 2z ππ<≤时,2rg 2rg 2a z a z π=-;3.arg 2z ππ-<≤-时,2rg 2rg 2a z a z π=+; 下面仅以 arg 22z ππ-<≤情况为例,进行讨论(仿此,可对其它两种情况进行讨论):左:21rg 2rg 2A z a z k π=+ , 整数10,1,2,k =±± 右:22rg 2(rg 2)A z a z k π=+ 整数20,1,2,k =±± 如果满足左=右,则应存在:122k k =显然,当1k 给定为奇数时,122k k =不成立,找不到与1k 对应的2k ;所以,不能推出2rg 2rg A z A z = ; 当然,更不能推出rg rg n A z nA z = ;例如:z i =,21z =-,21rg rg(1)2,A z A k ππ=-=+222rg 2rg 2(2)42A z A i k k ππππ==+=+, 显然,当1k 为奇数时,122k k =不成立,于是2rg 2rg A z A z ≠;练习:当1z =-时,验证2rg 2rg A z A z ≠1z =-,21z =,221rg(1)rg(1)2A a k π-=-+=111[2rg(1)2]2(22)22a k k k ππππππ=--+=-+=2222rg(1)2[rg(1)2]2(2)2(12)A a k k k ππππ-=-+=+=+ 显然,当1k 为偶数时,1212k k =+不成立,于是2rg 2rg A z A z ≠;练习:证明当n 为负整数时,(cos sin )cos sin n i n i n θθθθ+=+仍然成立;证:当n 为负整数时,取m 为正整数,且n m =-; 1(cos sin )(cos sin )(cos sin )n m m i i i θθθθθθ-+=+=+ cos 0sin 0cos(0)sin(0)cos sin i m i m m i m θθθθ+==-+-+这时,分子、分母两个复数的模都为1,利用两复数之商的辐角关系,cos()sin()cos sin m i m n i n θθθθ=-+-=+ ;证法二:用复数的指数式证当n 为负整数时,取m 为正整数,且n m =-;i z re θ=;m m m i z r e θ=;n n n i z r e θ---=;左端转到右端,右端转到左端,得到n n i n r e z θ= ,即:当n 为负整数时,n n n i z r e θ=仍然成立;内点的集合称为开集,开集不包含边界点;连通的开集称为区域,区域不包含边界点,闭域包含边界点;圆心在原点的单位圆可以用两个参数方程表示为: cos x t =,sin y t =,t ππ-<≤;或者用一个复数形式的方程表示为:cos sin z t i t =+⋅,t ππ-<≤;无洞的区域称为单连通域,有洞的区域称为多连通域;复变函数的定义复变数w 是复变数z 的函数,简称w 是复变函数, 记作 ()w f z =;如果对定义域内的每一个复变数z ,有唯一确定的复变数w 与之对应,称()w f z =是单值函数,如:w z =;如果一个复变数z ,对应着两个或两个以上的w 值,称()w f z =是多值函数,如:w =;练习:判断以下函数是单值函数还是多值函数;1.w z = ;2.arg w z = , (0z ≠) ;3.rg w A z = ,(0z ≠) ;映射的概念:映射也称为复变函数的几何解释; 在研究一元、二元函数性质时,()y f x =与(,)z f x y =的几何图形给了我们很多直观的帮助, 对于复变函数,因为 z x i y =+⋅ ,给定z 值,,x y 便唯一确定; 因为 ()w f z = ,给定z 值,w 便有确定的值; 如果把()w f z =写成实、虚部的形式,则(,)(,)w u x y i v x y =+⋅ ,w 一旦确定,从而 ,u v 也有确定的值;在几何上,取两张复平面:w 平面和z 平面,从而避免涉及到 x y u --、x y v --两个三维空间,w 平面:w u i v =+⋅ ;z 平面:z x i y =+⋅ ;(在个别情况下,也可将两张复平面重叠成一张平面), 这样,就把复变函数()w f z =理解为:从定义域中的点z 到值域中的点w 的映射,w 称为z 的像,z 称为w 的原像;练习: 按照映射2w z =,将z 平面的以下曲线, 分别映射到w 平面上;1. 222x y -= ;2. 222x y -=- ;3. 1x y ⋅=± ;4. 1x = ; 22u x y =- (1)2v xy = (2)由(1)得:22y x u =- (3)由(2)得:2224v x y =⋅ (4)当把x 作为参数时,设法由(3)、(4)消去y , 将(3)代入(4),得到:2224()v x x u =- (5)把(5)中的x 看作参数,表明u 与v 之间呈抛物线关系,例如 1x =时,24(1)v u =- ;5. 1y = ;22u x y =- (1)2v xy = (2)由(1)得:22x y u =+ (3)由(2)得:2224v x y =⋅ (4)当把y 作为参数时,设法由(3)、(4)消去x , 将(3)代入(4),得到: 2224()v y y u =+ (5)把(5)中的y 看作参数,表明u 与v 之间呈抛物线关系,例如 1y =时,24(1)v u =+ ;练习:在映射2w z =下,求z 平面上以下图形的像:1. 由 2,04r πθ=≤≤ 所围成的区域;2. 圆弧:2,02r πθ=≤≤; 3. 倾角3πθ=的直线,且0z ≠;。
华中师范大学 2005 –2006学年第二学期期末考试试卷(B 卷)参考答案课程名称 复变函数 课程编号 83410010任课教师 陈世荣 郑高峰 代晋军一、单项选择题:(共6题,每题3分)1. 设,1 , 10=<z z 记 zz z z l 001--=,则以下判断正确的是 [ C ] .(A) .1>l (B) .1<l (C) .1=l (D) l 的值无法确定. 2. 函数 2)(z z f =+1 在 0=z 处是[ B ].(A) 不可导的. (B) 可导但不解析. (C ) 解析的. (D) 可导且解析.3. 设)(z f 在单连通区域D 内解析且恒不为0, L 为D 内一条简单闭曲线, 则必有 [ D ].(A) .0)](Im[ =⎰dz z f L(B) .0)](Re[ =⎰dz z f L(C) .0)( =⎰dz z f L(D).0 )(1=⎰dz L z f4 . 设),2 ,1( 2)1(n =++-=n in ni n α,则 =+∞→n αn lim [ B ]. (A) 0. (B) 1. (C) i . (D) 不存在.5. 设 a z =为解析函数)(z f 的m 阶零点,则=⎪⎪⎭⎫⎝⎛'a f f ,Res [ A ].(A) m . (B) m -. (C) .1-m(D) ).1(--m6. 设函数)( ),(z g z f 分别以a z =为极点和本性奇点,则a z =为函数)()(z f z g 的[ B ].(A) 可去奇点. (B) 本性奇点. (C) 极点. (D) 无法确定a z =的奇点类别. 二、填空题: (共4题,每题 3分)1.设 ii w +=1,则)Im(w = ().,2Z k e k ∈+-ππ 2.复平面上取正实轴作割线,取定多值函数 )01( <<-ααz 在割线上沿取正实值的一个单值 解析分支,则该分支在 i z =处的值为2ie απ3.设⎰=-++=22,172 )(ςςςςςd z z f 这里2≠z ,则 =+')1(i f )114(2i +-π4.幂级数∑+∞=012n n n z 的收敛半径为 =R 1 .三、计算题: (共50分)1. 设)3)(1(1)(--=z z z f .(1)求)(z f 在1<z 内的泰勒展式. (8分)(2)求)(z f 在圆环31<<z 内的洛朗展式. (7分) (3)求)(z f 在圆环3>z 内的洛朗展式. (5分)解:).1131(21)(---=z z z f ---------------------------------------------------(3分) (1) 当1<z 时.3112121361]11)1(31[21)(0100nn n n n nn zz z z z z f ∑∑∑∞+=+∞+=∞+=⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛-=-+--=------(8分)(2) 当21<<z 时=)(z f .121321])1(1)1(31[2101113∑∑+∞=+∞=+--=----n n n n n zzz z z -----------------------------(15分)(3) 当3>z 时.1321]1131[21])1(1)1(1[21)(210013∑∑∑∞+=-∞+=∞+=-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=---=n n n nn nn zz z z z z z z z z f ---------(20分) ■2. 利用留数定理计算实积分.(1) ⎰+-=πθθ0 2 cos 21a a d I ,其中 .1>a (15 分) 解: ⎰-+-=ππθθ 2 cos 21 21a a d I ,令θi e z =,-------------------------(3分)则()121cos -+=z z θ,],[,ππθθ-∈=iz dz d ----(6分).11 ,))((1Re 22 ))((21)1(21211111122-=--=⎪⎪⎭⎫ ⎝⎛---=---=++-=---=-=⎰⎰a a a a a a z a z s ai i a z a z dz ai a z a az dz i I z z πππ-----------(11分) -----------------------------------------(15分)(2) dx x a x I ⎰∞++=02222)( (0>a ) (15 分)解:令,)()(2222z a z z f +=取如图积分路径R L 有: ----------------------(2分) ()⎰⎰⎰Γ-=++=RRai f s i dz z f x a dxx dz z f L RR ,Re 2)()()(2222π-------------------(6分)而)(,0)()(2222+∞→→-≤⎰ΓR R a R R dz z f Rπ--------------------------(9分) a ai z azi ai z z i f s aiz ai z 41)(2)(),(Re 322=+='⎥⎦⎤⎢⎣⎡+=== ----------------------(12分)令+∞→R 得到aai i dx x a x I 441221)(212222ππ=⋅⋅=+=⎰∞+∞-。
1、参考答案:D 2、参考答案:C 3、参考答案:B 4、参考答案:D 5、参考答案:C 6、参考答案:A 7、参考答案:B 8、参考答案:D 9、参考答案:D 10、参考答案:D 11、参考答案:C 12、参考答案:B 13、参考答案:A 14、参考答案:D 15、参考答案:B 16、参考答案:D 17、参考答案:B 18、参考答案:A 19、参考答案:A 20、参考答案:C填空题21、参考答案有一个奇点22、参考答案23、参考答案按段光滑曲线24、参考答案25、参考答案26、参考答案127、参考答案实部与虚部都是连续函数28、参考答案解析29、参考答案30、参考答案退化连续点集31、参考答案32、参考答案处处可导33、参考答案某个去心领域内34、参考答案35、参考答案36、参考答案无穷远点37、参考答案38、参考答案39、参考答案40、参考答案内闭一致收敛41、参考答案42、参考答案43、参考答案可去奇点44、参考答案聚点45、参考答案46、参考答案47、参考答案48、参考答案聚点49、参考答案条件收敛50、参考答案1、参考答案:C 2、参考答案:B 3、参考答案:A 4、参考答案:A 5、参考答案:B 6、参考答案:D 7、参考答案:D 8、参考答案:D 9、参考答案:C 10、参考答案:A 11、参考答案:C 12、参考答案:C 13、参考答案:A 14、参考答案:B 15、参考答案:B 16、参考答案:D 17、参考答案:D 18、参考答案:D 19、参考答案:D 20、参考答案:B 填空题21、参考答案聚点22、参考答案23、参考答案24、参考答案1 25、参考答案解析26、参考答案27、参考答案28、参考答案一致连续29、参考答案单连通区域30、参考答案无穷远点31、参考答案32、参考答案内闭一致收敛33、参考答案处处可导34、参考答案35、参考答案36、参考答案能达到它的最大最小值37、参考答案38、参考答案39、参考答案实部与虚部都是连续函数40、参考答案连续点集41、参考答案42、参考答案43、参考答案有一个聚点44、参考答案可去奇点45、参考答案46、参考答案有一个奇点47、参考答案48、参考答案149、参考答案绝对收敛50、参考答案1、参考答案:A2、参考答案:C 3、参考答案:C 4、参考答案:C 5、参考答案:C 6、参考答案:B 7、参考答案:B 8、参考答案:D 9、参考答案:A 10、参考答案:D 11、参考答案:D 12、参考答案:A 13、参考答案:C 14、参考答案:D 15、参考答案:B16、参考答案:D 17、参考答案:C 18、参考答案:C 19、参考答案:B 20、参考答案:A填空题21、参考答案内闭一致收敛22、参考答案二连通区域23、参考答案聚点24、参考答案无穷远点25、参考答案26、参考答案绝对收敛27、参考答案单连通区域28、参考答案有一个聚点29、参考答案可去奇点30、参考答案131、参考答案32、参考答案33、参考答案1 34、参考答案连续35、参考答案绝对收敛参考答案37、参考答案单连通区域38、参考答案39、参考答案恒等40、答案参考答案1 42、参考答案切线43、参考答案44、参考答案45、参考答案条件收敛46、参考答案47、参考答案某个去心领域内48、参考答案有一个奇点49、参考答案50、参考答案边界点1、参考答案:C 2、参考答案:B 3、参考答案:C 4、参考答案:B 5、参考答案:D 6、参考答案:A 7、参考答案:D 8、参考答案:A 9、参考答案:D 10、参考答案:C 11、参考答案:C 12、参考答案:C 13、参考答案:B 14、参考答案:D 15、参考答案:C 16、参考答案:C 17、参考答案:D 18、参考答案:C 19、参考答案:B 20、参考答案:C 填空题21、参考答案22、参考答案聚点23、参考答案绝对收敛24、参考答案25、参考答案退化连续点集26、参考答案27、参考答案28、参考答案29、参考答案30、(2 分)参考答案31、参考答案32、参考答案切线33、参考答案34、参考答案有一个聚点35、参考答案36、参考答案解析37、参考答案38、参考答案39、参考答案某个去心领域内40、参考答案连续点集41、参考答案恒等42、参考答案解析43、参考答案能达到它的最大最小值44、参考答案45、参考答案46、参考答案47、参考答案单连通区域48、参考答案绝对收敛49、参考答案50、参考答案按段光滑曲线。
《复变函数》综合测试题及答案一、选择题(单选题)1、(容易)复数z i =的幅角主值为( ) (A )3π (B )3π- (C )6π- (D )6π2、(中等)复数1cos sin ,0z i θθθπ=-+≤≤的模为( ) (A )2sin2θ (B )2sin2θ- (C )22cos θ- (D )2cos 2θ-3、(容易)设z =,则z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=4、(中等)若ω是方程310z -=的一个非零复数根,则21ωω++=( )(A )0 (B )i (C )2ω (D )ω-5、(容易)函数()f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 6、(容易)满足11z z -=+的点z 所组成的点集为( )(A )Im 0z = (B )Re 0z = (C )Im 0z > (D )Re 0z > 7、(容易)函数()f z u iv =+在区域D 内解析的充要条件是( )(A ),,,u u v vx y x y∂∂∂∂∂∂∂∂都在D 内连续 (B )在D 内,u v u v x y y x∂∂∂∂==-∂∂∂∂ (C ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内存在,且,u v u v x y y x ∂∂∂∂==-∂∂∂∂ (D ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内连续,且,u v u v x y y x∂∂∂∂==-∂∂∂∂ 8、(容易)1(0)()nz a dz z a ρρ-=>-⎰的值为( ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π9、(容易)1zz e dz z==⎰( ) (A )0 (B )2π(C )2i π (D )(2)(0,1,2,)k i k π+=L 10、(容易)()f z 在复平面上解析且有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )z (D )()nz n N ∈ 11、(容易)复级数1n n z ∞=∑收敛的必要条件是( )(A )对一切n ,0n z = (B )存在一列自然数{}k n ,使得0kn z =(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=12、(容易)幂级数11n n n z n∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 13、(容易)0z =为()sin f z z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )3阶零点 14、(容易)设1()1zf z e =-,则0z =是()f z 的( ) (A )1阶极点 (B )2阶极点 (C )可去奇点 (D )本性奇点 15、(容易)0z ≠∞是函数()f z 的可去奇点,则0Re (,)s f z =( ) (A )0()f z (B )0 (C )2π (D )2i π 16、(容易)若复数22z i =-,则z 的幅角主值为( ) (A )2π (B )2π- (C )4π(D )4π-17、(中等)复数1cos sin (0)z i θθθπ=++≤≤的模为( ) (A )2cos2θ (B )2cos2θ- (C )22cos θ+ (D )2sin 2θ+18、(容易)设z =,则z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=19、(中等)若12ω=-,则23ωωω++=( )(A )0 (B )ω (C )2ω (D )ω-20、(中等)函数()Re f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 21、(容易)下列哪些点集是区域(B ) (A )Im 0z = (B )1Re 2z >(C )12z i ++≤ (D )Re 0z ≥ 22、(中等)若()f z u iv =+,且在区域D 内满足,u v u v x y y x∂∂∂∂==-∂∂∂∂,则( ) (A )()f z 在D 内解析 (B )()f z 在D 内不解析 (C )()f z 在D 内可微 (D )()f z 在D 内不一定可微23、(容易)113z dz z =-⎰的值为( ) (A )2i π (B )0 (C )1 (D )1- 24、(容易)1sin z zdz z==⎰( ) (A )0 (B )i π (C )2i π (D )2i π-25、(中等)若区域D 内解析函数()f z u iv =+满足00uxu y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,则()f z 在区域D 内为( )(A )0 (B )常数 (C )不一定为常数 (D )0v = 26、若复级数1n n z ∞=∑收敛,则( )(A )对一切n ,0n z ≠ (B )存在一列自然数{}k n ,使得0kn z ≠(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=27、(容易)幂级数11!nn z n ∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 28、(中等)0z =为()1cos f z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )2阶零点29、(容易)设函数()f z 在00z z <-<+∞内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )非孤立奇点 (B )极点 (C )本性奇点 (D )解析点 30、(容易)变换az bw cz d+=+(a ,b ,c ,d 为复常数)为分式线性变换的条件是( ) (A )0ad bc -≠ (B )0ad bc -= (C )a bc d= (D )a b c d ===31、(容易)复数1z =的幅角主值为( )(A )6π (B )6π- (C )3π(D )3π-32、(中等)若ω是方程310z -=的一个非零复数根,则345ωωω++=( )(A )0 (B )i (C )2ω (D )ω-33、(容易)下列等式正确的是( )(A )z z z ⋅= (B )2z z z ⋅= (C )2Im z z i z += (D )2Re z z z -= 34、(中等)下列哪些函数在复平面上解析( ) (A )sin z (B )z (C )2z (D )Re z 35、(中等)满足11z z ->+的点z 所组成的点集为( ) (A )Im 0z < (B )Re 0z < (C )Im 0z > (D )Re 0z >36、(容易)使函数()f z u iv =+在区域D 内解析的柯西—黎曼条件是( ) (A )在D 内,u v u v x y y x ∂∂∂∂==∂∂∂∂ (B )在D 内,u v u vx y y x ∂∂∂∂==-∂∂∂∂ (C )在D 内,u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (D )在D 内,u v u v x y y x∂∂∂∂=-=-∂∂∂∂ 37、(中等)设()f z 在区域D 内解析,且0{}U z z z D δ=-<⊂,在U 上()0f z =,则在D 内 ( )(A )()f z 不恒为零 (B )()f z 为不为零的常数 (C )()f z 只有惟一的零点 (D )()0f z ≡38、(容易)1()nCdz z a -⎰(其中C 为包围点a 任意围线)的值为( )(A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 39、(容易)21zz e dz z==⎰( )(A )0 (B )2π(C )2i π (D )i π 40、(中等)()f z 在复平面上解析且Re ()f z 有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )ze (D )ln z41、(中等)在1z <内解析,在区间(1,1)-上具有展式0n n x ∞=∑的函数只能是( )(A )1(1)1z z <+ (B )ln(1)(1)z z -< (C )1(1)1z z <- (D )1(1)1z z<-42、(中等)幂级数21121n n z n -∞=-∑的收敛半径为( )(A )+∞ (B )1 (C )0 (D )2 43、(容易)若1()cosf z z i=+,则z i =-是()f z 的( ) (A )可去奇点 (B )非孤立奇点 (C )极点 (D )本性奇点 44、(中等)若()()g z f z z a=-,且()g z 在点a 解析,()0g a ≠,则Re (,)s f a =( ) (A )()g a (B )2()ig a π (C )0 (D )()g a '45、(中等)变换(01)1z aw a a z-=<<-⋅把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w > 46、(容易)arg(34)i -+=( )(A )3arctan4π-(B )3arctan 4π+ (C )4arctan 3π- (D )4arctan 3π+ 47、(中等)若ω是方程31z =的一个非零复数根,则下列哪些也是此方程的根( )(A )ω (B )ω- (C )2ω- (D )i48、(中等)下列等式不正确的是( )(A )2z z z ⋅= (B )1212arg arg arg z z z z ⋅=+(10z ≠,20z ≠) (C )1212rg rg rg A z z A z A z ⋅=+(10z ≠,20z ≠) (D )arg arg (0)z z z =-≠ 49、(容易)下列哪些函数在复平面上不解析( ) (A )sin z (B )cos z (C )chz (D )ze -50、(容易)设{Im 2,Re 3}E z z z =<<,则E 一定是( )(A )无界区域 (B )有界单连通区域 (C )多连通区域 (D )闭区域 51、(容易)使函数()f z u iv =+在区域D 内解析的充要条件是( ) (A )u ,v 在D 内具有一阶连续的偏导数(B )u ,v 在D 内可微,且在D 内满足柯西—黎曼条件(C )u ,v 在D 内具有一阶偏导数,且在D 内满足柯西—黎曼条件 (D )u ,v 在D 内在D 内满足柯西—黎曼条件52、(容易)设()f z 在复平面上解析,且C 为不通过原点的围线,则()Cf z dz z=⎰( ) (A )2(0)i f π⋅ (B )(0)f (C )0 (D )0或2(0)i f π⋅53、(中等)11cos z dz z==⎰( ) (A )0 (B )1 (C )2i π (D )i π54、(容易)若()f z 在区域D 内满足 ()0f z '=,则()f z 在区域D 内必为( ) (A )0 (B )z (C )常数 (D )ze55、(中等)()f z 在复平面上解析且Im ()f z 有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )ze (D )ln z56、(中等)在复平面上解析,在区间[0,1]上等于sin x 的函数只能是( ) (A )sin()2z π+ (B )sin()z π+(C )sin iz (D )sin z57、(容易)若幂级数1nn n a z ∞=∑的收敛半径0R >,则在闭圆()z r R ≤<上1nn n a z ∞=∑( )(A )不绝对收敛 (B )一致收敛且绝对收敛 (C )绝对收敛但不一致收敛 (D )一致收敛但不绝对收敛 58、(中等)0z =为21cos ()zf z z-=的( ) (A )本性奇点 (B )非孤立奇点 (C )二阶极点 (D )可去奇点59、(容易)函数1()z e f z z-=在0z =处的留数为( )(A )0 (B )2i π (C )1 (D )i π 60、(容易)变换z iw z i-=+把上半平面Im 0z >保形映射成( )(A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w >61、(容易)若复数1z i =-,则z 的幅角主值为( )(A )4π-(B )4π(C )34π- (D )34π 62、(中等)若21z =-,则z 等于( ) (A )i - (B )i ± (C )i (D )1±63、(容易)下列点集是区域的是( )(A )1{Im }2z z = (B ){1}z z = (C )1{Im }2z z > (D )2{1}z z = 64、(容易)设()f z x yi =-(,x y R ∈),则( )(A )()f z 在z 平面上解析 (B )()f z 在0z =可导 (C )()f z 在z 平面上处处可导 (D )()f z 在z 平面上连续 65、(中等)设()f z u iv =+,且在区域D 内满足柯西—黎曼条件,则( ) (A )()f z 在D 内不一定解析 (B )()f z 在D 内解析 (C )()f z 在D 内可导 (D )()f z 在D 内一定不可导 66、(容易)下列哪些函数在z 平面上解析( ) (A )z (B )cos z (C )z (D )ze 67、(容易)11cos z dz z==⎰( ) (A )1 (B )2i π (C )0 (D )1- 68、(容易)1zz e dz z==⎰( ) (A )0 (B )1 (C )12iπ (D )2i π 69、(中等)若()f z 在区域D 内解析,且Re ()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )Re z (C )z (D )sin z 70、(容易)若()sin f z z =,则下列结论不成立的是( )(A )()f z 为解析函数 (B )()f z 有界 (C )()f z 为周期函数 (D )()f z 有零点71、(中等)复级数0n n i ∞=∑( )(A )一定收敛 (B )等于11i- (C )一定发散 (D )以上结论都不对 72、(容易)设幂级数为00()n n n a z z ∞=-∑,则( )(A )00()nn n a z z ∞=-∑仅在点0z 收敛 (B )00()n n n a z z ∞=-∑在全平面上收敛(C )00()nn n a z z ∞=-∑在点0z 不收敛 (D )00()n n n a z z ∞=-∑在点0z 收敛73、(容易)幂级数11n n n n z ∞=+⋅∑的收敛半径为( )(A )0 (B )+∞ (C )1 (D )2 74、(容易)幂级数1n n z ∞=∑在1z <内的和函数为( )(A )11z - (B )1z z - (C )11z + (D )1zz+ 75、(中等)()1cos f z z =-以0z =为( )(A )一阶零点 (B )一阶极点 (C )二阶零点 (D )二阶极点76、(容易)设()f z 在00z z R <-<内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )零点 (B )可去奇点 (C )非孤立奇点 (D )极点 77、(中等)若21cos ()zf z z-=,则0z =必为()f z 的 ( ) (A )可去奇点 (B )零点 (C )本性奇点 (D )二阶极点 78、(中等)若∞是函数()f z 的可去奇点,则Re (,)s f ∞=( )(A )0 (B )不一定为0 (C )不存在 (D )以上结论都不对 79、(容易)若1()zf z e =,则Re (,0)s f = ( )(A )∞ (B )0 (C )1 (D )以上答案都不对 80、(中等)映射322w z z =+在点z i =处的伸缩率为 ( )(A (B ) (C )25 (D )581、(容易)若复数1z i =-+,则z 的幅角主值为( )(A )23π (B )23π- (C )6π- (D )6π 82、(中等)若31z =且Im 0z >,则z 等于( )(A )1 (B )122i -+ (C )122+ (D )122--83、(容易)下列点集不是区域的是( )(A ){Im 0}z z > (B ){Re 0}z z < (C ){1}z z i ≤+ (D ){1}z z > 84、(中等)设()f z i z =⋅,则( )(A )()f z 在z 平面上处处不连续 (B )()f z 在z 平面上解析 (C )()f z 为整函数 (D )()f z 在z 平面上处处不解析85、(容易)设()f z u iv =+,则使得()f z 在区域D 内解析的柯西—黎曼条件是( )(A ),u v u v x y y x ∂∂∂∂==-∂∂∂∂ (B ),u v u vx y y x ∂∂∂∂=-=∂∂∂∂ (C ),u v u v x y y x ∂∂∂∂=-=-∂∂∂∂ (D ),u v u v x y y x∂∂∂∂==∂∂∂∂ 86、(容易)在z 平面上处处不解析的函数是( ) (A )z (B )Im z (C )cos z (D )sin ze87、(容易)13z zdz z ==-⎰( ) (A )2i π- (B )2i π (C )0 (D )1 88、(中等)21sin z z dz z==⎰( ) (A )2i π (B )1 (C )i π- (D )089、(中等)若()f z 在区域D 内解析,且()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )0 (C )z (D )ze 90、(容易)若()zf z e =,则下列结论不成立的是( )(A )()f z 为整函数 (B )()f z 非周期函数 (C )()f z 无零点 (D )()f z 无界 91、(容易)幂级数0!nn n z ∞=⋅∑的收敛半径为( )(A )+∞ (B )1(C )0 (D )以上结论都不对92、(容易)设幂级数为0nn n a z ∞=∑的收敛半径0R >,则此幂级数的和函数( )(A )在z R <内不连续 (B )在z R <内不解析 (C )在z R <内不能逐项求导 (D )在z R <内可逐项积分93、(中等)在1z <内解析,且在区间(1,1)-上具有展式0(1)n n n x ∞=-⋅∑的函数只能为( )(A )11z + (B )11z - (C )211z + (D )211z- 94、(容易)若1()cos f z z i=+,则z i =-为()f z 的( )(A )极点 (B )本性奇点 (C )可去奇点 (D )非孤立奇点 95、(中等)2()(1)z zf z e =-以0z =为( ) (A )可去奇点 (B )本性奇点 (C )一阶极点 (D )二阶极点 96、(容易)若()()z f z z aϕ=-,且()z ϕ在点a 解析,则Re (,)s f a =( )(A )0 (B )()a ϕ' (C )2()i a πϕ'⋅ (D )()a ϕ97、(容易)22()1iz e f z z =+在z i =的留数为 ( )(A )2i i e --(B )0 (C )12i e -- (D )112e -- 98、(容易)ln(1)z +在0z =处的幂级数展开式为( )(A )1n n z n ∞=∑ (B )11(1)n n n z n ∞-=-∑ (C )1(1)n n n z n ∞=-∑ (D )0!n n z n ∞=∑99、(中等)变换1i z iw ei zθ-=+⋅(θ为实常数)把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )下半平面Im 0z < (C )1w < (D )1w > 100、(中等)变换i z iw ez iθ-=+(θ为实常数)把上半平面Im 0z >保形映射成( ) (A )左半平面Re 0z < (B )右半平面Re 0z > (C )上半平面Im 0z >(D )1z <二、多项选择题(每题至少有两个或两个以上的正确答案)1、(较难)若122ω=--是方程31z =的根,则下列哪些值不为21ωω++的值( ) (A )0 (B )i (C )i - (D )2ω 2、(较难)复数1cos sin z i θθ=-+(0θπ<<)的模为 ( ) (A )2sin2θ (B(C )2(1cos )θ- (D )2sin2θ-3、(较难)下列点集哪些是区域 ( ) (A )Im Re(1)z i >+ (B )0arg 4z π<≤(C )1Im 2z << (D )Im 3z =4、(较难)若()Re f z z =,则下列结论正确的是( )(A )()f z 在z 平面上连续 (B )()f z 在z 平面上处处不解析 (C )()f z 在z 平面上解析 (D )()f z 仅在0z =处解析 5、(较难)若1()1f z z=+,则下列结论正确的是 ( ) (A )Re (,0)1s f = (B )2Re (,0)1s f = (C )2Re (,0)2s f = (D )Re (,0)0s z f ⋅=6、(较难)若ω不是方程31z =的虚数根,则下列哪些值也一定不是此方程的根( ) (A )ω (B )3ω (C )1- (D )ω-7、(较难)复数z =的指数表示形式为 ( ) (A )4i z eπ-⋅= (B )4i z e π⋅= (C )(2)4i k z eππ-⋅+= (k Z ∈)(D )(2)4i k z eππ⋅+= (k Z ∈)8、(较难)设{1Im 1,1Re 1}E z z z =-<<-<<,则E 一定不能是 ( ) (A )有界单连通区域 (B )有界闭区域 (C )无界区域 (D )区域 9、(较难)下列哪些函数在全平面上不解析( )(A )sin z (B )z (C )Re z (D )2z 10、(较难)若1()sinf z z=,则0z =为()f z 的( ) (A )本性奇点 (B )孤立奇点 (C )可去奇点 (D )极点三、填空题(将正确的答案填在横线上)1、(中等)复数(3)(2)(3)(2)i i z i i +-=-+的模z = 。
习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i + (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值: (1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,那时0,1,2,3k =,对应的4), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根,那么a bi -也是它的一个根.证明:方程两端取共轭,注意到系数皆为实数,而且根据复数的乘法运算规则,()n n z z =,由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根,则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕. (5)若1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a b ab-<-,结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式,其中n 为正整数,a 为复数. 解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜,为此,需要取n z 与a 同向且1n z =,即n z 应为a 的单元化向量,由此,n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线,那么用向量暗示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Arg z z --应为0或π的整数倍,至此获得:123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而,复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==,因而暗示直线y x =(2)cos ,sin x a t y b t ==,因而暗示椭圆22221x y a b+= (3)1,x t y t==,因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=,其中a 为复常数,c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==,并注意到222x y z zz +==,由此 022z z z z zz A B c i+-+++=, 整理,得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=,则2A Bi a -=,由此获得 0zz az az c +++=,结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先,arg z 在原点无界说,因而不连续.对00x <,由arg z 的界说不难看出,当z 由实轴上方趋于0x 时,arg z π→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =,其方程可暗示为1z yi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++,消去参数y ,得2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=,其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集,并做图: 解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而暗示圆心为0z ,半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴.(5)arg()4z i π-=,幅角为一常数,因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通.(1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通(2)arg (02)z αβαβπ<<<<<,极点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,而且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离年夜,因此原不等式暗示2与3 连线的垂直平分线即x =2.5左边部份除失落x =2后的点构成的集合,是一无界,多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=,化为实方程为 2244115x y -=,再注意到z 到2与z 到-2的距离之差年夜于1,因而不等式暗示的应为上述双曲线左边一支的左侧部份,是一无界单连通区域.(5)141z z -<+,代入z x iy =+,化为实不等式,得 所以暗示圆心为17(,0)15-半径为815的圆周外部,是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点,并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此获得:(1)5(1)z -处处解析,54[(1)]5(1)z z '-=-(2)32z iz +处处解析,32(2)32z iz z i '+=+(3)211z +的奇点为210z +=,即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导,何处解析,并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此,函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此,函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线,构不成区域,因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续,因而 ,u v 处处可微,而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此,函数处处可导,处处解析,且导数为(4)2211()x iy f z x iy x yz +===-+,2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠,故此,,u v 处处不满足柯西—黎曼方程,因而函数处处不成导,处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =,由(2)得3, 3n m l =-=-,因而,最终有4.证明:若()f z 解析,则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知,左端22=+222222()()x x x x uu vv uu vv uu vv uv vu u v ++++-=+=+ 2()f z '==右端,证毕.5.证明:若()f z u iv =+在区域D 内解析,且满足下列条件之一,则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u =(5)231u v += 证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-,因其解析,故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1) 而由()f z 的解析性,又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知,0x y x y u u v v ===≡,因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡,那么由柯西—黎曼方程得0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关,因而 2v c ≡,从而12()f z c ic ≡+为常数.(3)由已知,2220()f z u v c =+≡为常数,等式两端分别对,x y 求偏导数,得220220x x y y uu vv uu vv +=+=----------------------------(1) 因()f z 解析,所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2),得 0x y x y u u v v ===≡,说明 ,u v 皆与,x y 无关,因而为常数,从而()f z 也为常数.(4)同理,2v u =两端分别对,x y 求偏导数,得再联立柯西—黎曼方程, x y y x u v u v ==-,仍有(5)同前面一样,231u v +=两端分别对,x y 求偏导数,得考虑到柯西—黎曼方程, x y y x u v u v ==-,仍有0x y x y u u v v ===≡,证毕.6.计算下列各值(若是对数还需求出主值)(1)2i e π- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i e i i πππ-=-+-=- (2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+, k 为任意整数,主值为:1()2ln i i π-=- (3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++4ln5(arctan 2)3k i ππ=+-+, k 为任意整数 主值为:4ln(34)ln5(arctan )3i i π-+=+- (4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k i iLn i i e e e ππππ++--++===24(cosln sin k e i ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====,当k 分别取0,1,2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+ 7.求2z e 和2z Arge解:2222z x y xyi e e -+=,因此根据指数函数的界说,有2z e 22x y e -=, 222z Arge xy k π=+,(k 为任意整数)8.设i zre θ=,求Re[(1)]Ln z - 解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+,因此9.解下列方程: (1)1z e =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i = 解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系,应有(3)由三角函数公式(同实三角函数一样),方程可变形为因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数 (4)由双曲函数的界说得 2z ze e shz i --==,解得 2()210z z e ie --=,即z e i =,所以(2)2z Lni k i ππ==+ ,k 为任意整数 10.证明罗比塔法则:若()f z 及()g z 在0z 点解析,且000()()0, ()0f z g z g z '==≠,则000()()lim ()()z z f z f z g z g z →'=',并由此求极限 00sin 1lim ; lim z z z z e z z→→- 证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f z g z '=', 由此,00sin cos lim lim 11z z z z z →→== 11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz = 解:记i z re θ=,则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++,其中的,k m 为任意整数.显然,左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++,而右端却取不到这一值),因此两端不相等. (2)左端221]ln (2)22m i Ln re r m k i θπθππ+==+++ 右端11[ln (2)]ln ()222r n i r n i θθππ=++=++ 其中,k n 为任意整数,而 0,1m =不难看出,对左端任意的k ,右端n 取2k 或21k +时与其对应;反之,对右端任意的n ,当2n l =为偶数时,左端可取,0k l m ==于其对应,而当21n l =+为奇数时,左端可取2,1k l m ==于其对应.综上所述,左右两个集合中的元素相互对应,即二者相等.12.证明sin sin , cos cos z z z z ==证明:首先有 (cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== ,因此sin 2i z i ze e z i--==,第一式子证毕. 同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin y y z e ≤≤)证明:首先,sin 222iz iziz iz y y y e e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次,由复数的三角不等式又有 sin 2222iz izy yy y iz iz e e e e e e e e z i --------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥,因此接着上面的证明,有sin 2y y e e z y --≥≥,左端不等式获得证明.14.设z R ≤,证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式,有sin 2222iz iz y y iz iz y y e e e e e e e e z ch y i ----+-++=≤===, 由已知,y z R ≤≤,再主要到0x ≥时chx 单调增加,因此有sin z ch y chR ≤≤,同理,cos 2222iz iz y yiz iz y y e e e e e e e e z ch y chR ----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z + 试求流动的速度及流线和等势线方程.解:只需注意,若记()(,)(,)f z x y i x y ϕψ=+,则流场的流速为()v f z '=,流线为1(,)x y c ψ≡,等势线为2(,)x y c ϕ≡,因此,有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡,等势线为 222(1)x y c -+≡(2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡,等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z z v f z z z --'===++, 流线为 122222(1)4xy c x y x y≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底1.计算积分2()cx y ix dz -+⎰,其中c 为从原点到1i +的直线段 解:积分曲线的方程为, x t y t ==,即z x iy t ti =+=+,:01t →,代入原积分表达式中,得2.计算积分z ce dz ⎰,其中c 为(1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→, 从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→,代入积分表达式中,得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+,:01t →, 代入积分表达式中,得1100()(1)(cos sin )z t ti tc e dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰, 对上述积分应用分步积分法,得3.积分2()cx iy dz +⎰,其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+,:01t →, 代入原积分表达式中,得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中,得4.计算积分cz dz ⎰,其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =,代入,得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→,代入,得5.估计积分212cdz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上,z =1,因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界,则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤,则由积分估计式得122n n M M R R Rππ-==, 因1n >,因此上式两端令R →+∞取极限,由夹比定理,得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线c 皆为1z =.(1)2(2)c dz z +⎰ (2)224cdz z z ++⎰ (3)22cdz z +⎰(4)cos c dz z ⎰ (5)z cze dz ⎰ 解:各积分的被积函数的奇点为:(1)2z =-,(2)2(1)30z ++=即1z =-±,(3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析,无奇点不难看出,上述奇点的模皆年夜于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0.8.计算下列积分:(1)240i z e dz π⎰ (2)2sin i i zdz ππ-⎰ (3)10sin z zdz ⎰解:以上积分皆与路径无关,因此用求原函数的方法:(1)42202400111()(1)222i i i z z e dz e e e i πππ==-=-⎰ (2)21cos2sin 2sin []224i i i ii i z z z zdz dz ππππππ----==-⎰⎰ (3)11110000sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算 22c dz z a-⎰,其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±,根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外,则在c 内被积函数解析,因而由柯西基本定理(2)a 在c 内,a -在c 外,则1z a+在c 内解析,因而由柯西积分 公式:22112z a c cdz z a dz i i z a z a a z a ππ=+===-+-⎰⎰(3)同理,当a -在c 内,a 在c 外时,(4)a ±皆在c 内此时,在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得: 注:此题若分解221111()2a z a z a z a=--+-,则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰,由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i ,故此同上题一样:(3)2232(1)(4)z dz z z =++⎰ 在积分曲线内被积函数有两个奇点i ±,围绕,i i -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(4)4221z z dz z -=-⎰,在积分曲线内被积函数只有一个奇点1,故此(5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±,围绕1,1-分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(6)22, (1)nn z z dz n z =-⎰为正整数,由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰,其中c 为 (1)12z = (2)112z -= (3)2z = 解:(1)由柯西积分公式(2)同理,由高阶导数公式(3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e =-, 其中,12,c c 为2z =内分别围绕0,1且相互外离的小闭合曲线. 12. 积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰ 解:首先,由柯西基本定理,1102z dz z ==+⎰,因为被积函数的奇点在积分曲线外.其次,令(cos sin )z r i θθ=+,代入上述积分中,得 考察上述积分的被积函数的虚部,便获得2012cos 054cos d πθθθ+==+⎰,再由cos θ的周期性,得 即012cos 054cos d πθθθ+=+⎰,证毕. 13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上 ()()f z g z =,证明在c 内也有()()f z g z =. 证明:由柯西积分公式,对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知,在积分曲线c 上,()()f z g z =,故此有 再由0z 的任意性知,在c 内恒有()()f z g z =,证毕. 14. 设()f z 在单连通区域D 内解析,且()11f z -<,证明 (1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c ,皆有()0()c f z dz f z '=⎰证明:(1)显然,因为若在某点处()0,f z =则由已知 011-<,矛盾! (也可直接证明:()1()11f z f z -<-<,因此1()11f z -<-<,即0()2f z <<,说明()0f z ≠)(3)既然()0f z ≠,再注意到()f z 解析,()f z '也解析,因此由函数的解析性法则知()()f z f z '也在区域D 内解析,这样,根据柯西基本定理,对D 内任一简单闭曲线c ,皆有()0()cf z dz f z '=⎰,证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数,因此只需求出其共轭调和函数(,)v x y ,则(,)v x y c =即是所要求的曲线族.为此,由柯西—黎曼方程 2x y v u y =-=-,因此(2)2()v y dx xy g y =-=-+⎰,再由 2y x v u x ==-知,()0g y '≡,即0()g y c =为常数,因此02v xy c =-+,从而所求的正交曲线族为xy c ≡(注:实际上,本题的谜底也可观察出,因极易想到222()2f z z y x xyi =-=--解析)16.设sin px v e y =,求p 的值使得v 为调和函数.解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数,即在某区域内上述等式成立,必需210p -=,即1p =±.17.已知22255u v x y xy x y +=-+--,试确定解析函数 解:首先,等式两端分别对,x y 求偏导数,得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2) 再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u ,得这样,对x u 积分,得25(),u x x c y =-+再代入y u 中,得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--,因此200()5f z u iv z z c c i =+=-+-,其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+,对y 积分,得212()2v xy y c x =++,再由x y v u =-得2()2y c x x y '+=-+,因此201(), ()2c x x c x x c '=-=-+,所以22011222v xy y x c =+-+,因()1f i =-,说明0,1x y ==时1v =,由此求出012c =,至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题,除上题采纳的方法外,也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++,所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得,12c =,故此(3)arctan , (0)yv x x=>同上题一样,()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值,0c 为任意实常数. (4)(cos sin )x u e x y y y =-,(0)0f =(sin sin cos )x x y v u e x y y y y =-=++,对x 积分,得再由y x v u =得()0c x '=,所以0()c x c =为常数,由(0)0f =知,0x y ==时0v =,由此确定出00c =,至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++, 整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析,且()1f z ≤,证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式,得1112122z ds πππ=≤==⎰,证毕. 20.若()f z 在闭圆盘0z z R -≤上解析,且()f z M ≤,试证明柯西不等式 ()0!()n n n f z M R≤,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式,得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界,无妨设()f z M ≤,那么由柯西不等式,对任意0z 都有0()Mf z R'≤,又因()f z 处处解析,因此R 可任意年夜,这样,令R →+∞,得0()0f z '≤,从而0()0f z '=,即 0()0f z '=,再由0z 的任意性知()0f z '≡,因而()f z 为常数,证毕.习题四谜底1. 考察下列数列是否收敛,如果收敛,求出其极限. (1)1n n z i n=+解:因为lim n n i →∞不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.(2)(1)2n n iz -=+解:1sin )22i i θθ+=+,其中1arctan 2θ=,则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=,所以()lim cos sin 0nn n i n θθ→∞-= 由界说4.1知,数列{}n z 收敛,极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=,1lim 0n n →∞=,所以21lim 0n i n enπ-→∞= 由界说4.1知,数列{}n z 收敛,极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+,则()cos 2sin 2n n z z n i n zθθ==+,因为lim cos 2n n θ→∞,lim sin 2n n θ→∞都不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =,由正项级数的比值判别法知该级数收敛,故级数1!nn i n ∞=∑收敛,且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n nππ∞∞∞====+∑∑∑,因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数,根据交错级数的莱布尼兹审敛法知该级数收敛,同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛,故级数2ln nn i n ∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑,因为211n n ∞=-∑发散,故级数21ln n n∞=∑发散,从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑,因级数102nn n e ∞+=∑发散,故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()35!nn n i n ∞∞==+=∑由正项正项级数比值判别法知该级数收敛,故级数()035!nn i n ∞=+∑收敛,且为绝对收敛.3. 试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n n n n z n ∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n en++→∞→∞→∞+=⋅==++,故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==,故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =,则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nn n c n c ++→∞→∞+==-,故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <,即22z <,从而幂级数221212n n n n z ∞-=-∑的收敛域为z <收敛半径为R .4. 设级数0n n α∞=∑收敛,而0nn α∞=∑发散,证明0n n n z α∞=∑的收敛半径为1.证明:在点1z =处,0nn n n n z αα∞∞===∑∑,因为0n n α∞=∑收敛,所以0n n n z α∞=∑收敛,故由阿贝尔定理知,1z <时,0n n n z α∞=∑收敛,且为绝对收敛,即nnn z α∞=∑收敛.1z >时,0nn n n n z αα∞∞==>∑∑,因为0n n α∞=∑发散,根据正项级数的比力准则可知,0nn n z α∞=∑发散,从而0n n n z α∞=∑的收敛半径为1,由定理4.6,0n n n z α∞=∑的收敛半径也为1.5. 如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时,由阿贝尔定理,0n n n c z ∞=∑绝对收敛.0z z =时,00nnn n n n c z c z ∞∞===∑∑,由已知条件知,00n n n c z ∞=∑收敛,即nnn cz ∞=∑收敛,亦即0n n n c z ∞=∑绝对收敛.6. 将下列函数展开为z 的幂级数,并指出其收敛区域.(1)221(1)z +解:由于函数221(1)z +的奇点为z i =±,因此它在1z <内处处解析,可以在此圆内展开成z 的幂级数.根据例4.2的结果,可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导,即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠--解:①a b =时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =,因此它在z a <内处处解析,可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a-++++<. ②a b ≠时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析,可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z 解:由于函数sin z e z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式,并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++,022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-,所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n nn n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅---------------=100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑. 展开式成立的区域:3(1)113z i i--<-,即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z =,'''22tan 2sec (2tan 1)z z z =+,……,'24tan sec 24z z ππ===,''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……,故有 因为tan z 的奇点为,2z k k Z ππ=+∈,所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+-解:2221112()(1)(2)5211z z z z z z =--+--++, 222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞-解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9. 将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±,所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈,所以对,0R R ∀<<+∞,0z R <<内都有()f z 的奇点,即()f z 以0z =为环心的处处解析的圆环域不存在,所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级. (1)221(1)z z z -+ 解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++-由性质5.2知,0z =是函数的1级极点,z i =±均是函数的2级极点. (2)3sin zz解:函数的孤立奇点是0z =,因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+,由极点界说知,0z =是函数的2级极点.(3)ln(1)z z+ 解:函数的孤立奇点是0z =,因0ln(1)lim1z z z→+=,由性质 5.1知,0z =是函数可去奇点. (4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =,即0z =时,因4223(1)2!!n zz z z e z n +-=++++ 所以0z =是2(1)z z e -的3级零点,由性质5.5知,它是21(1)z z e -的3级极点②2z k i π=,0k ≠时,令2()(1)z g z z e =-,'2()2(1)z z g z z e z e =-+,因(2)0g k i π=,'2(2)(2)0g k i k i ππ=≠,由界说5.2知,2(0)z k i k π=≠是()g z 的1级零点,由性质5.5知,它是21(1)z z e -的1级极点(5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++,''22()2(1)4(1)z z z g z e ze e z πππππ=++++ ①0z i =±时, 0()0g z =,'0()0g z =,''0()0g z ≠,由界说5.2知,0z i =±是()g z 的2级零点,由性质5.5知,它是21(1)(1)zz e π++的2级极点,故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时,1()0g z =,'1()0g z ≠,由界说 5.2知,1(21),1,2,z k i k =+=±是()g z 的1级零点,由性质5.5知,它是21(1)(1)zz e π++的1级极点,故是2(1)(1)zzz e π++的1级极点. (6)21sin z解:函数的孤立奇点是0z =,1,2,z z k ==±= 令2()sin g z z =,'2()2cos g z z z =,①0z =时,因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++,所以0z =是()g z 的2级零点,从而它是21sin z的2级极点. ②1,2,z z k ==±=时,()0g z =,'()0g z ≠,由界说 5.2知,1,2,z z k ==±=是()g z 的1级零点,由性质5.5知,它是21sin z 的1级极点. 2. 指出下列各函数的所有零点,并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈,记()sin f z z z =,'()sin cos f z z z z =+①0z =时,因4222sin (1)3!(21)!n nz z z z z n +=-++-++,故0z =是sin z z 的2级零点.②,0z k k π=≠时,()0z k f z π==,'()0z k f z π=≠,由界说5.2知, ,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =,因242222(1)2!!n z z z z e z z n =+++++,所以由性质5.4知,0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =,1z k π=,22z k i π=,0k ≠,记2()sin (1)z f z z e z =-,'22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时,0z =是sin z 的1级零点,,1z e -的1级零点,2z 的2级零点,所以0z =是2sin (1)z z e z -的4级零点.②1z k π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说5.2知,1z k π=,0k ≠是()f z 的1级零点.③22z k i π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说 5.2知,22z k i π=,0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-,则'()cos 2f z z chz =+-,''()sin f z z shz =-+,'''()cos f z z chz =-+,(4)()sin f z z shz =+,(5)()cos f z z chz =+,将0z =代入,得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====,(5)()0f z ≠,由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点,故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点,所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠,即''''2000()(())(())0m f z f z f z -====,'10(())0m f z -≠,由界说5.2知,0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==,且0,2z z ==均是其1级极点.由定理5.2知,0011Re [(),0]lim ()lim22z z z s f z zf z z →→+===-+,0013Re [(),2]lim(2)()lim 2z z z s f z z f z z →→+=-==.(2)4231(1)z z ++解:函数的有限孤立奇点是z i =±,且z i =±是函数的3级极点,由定理5.2,423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →→→+-=-===-++, 423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →-→-→-++-=+===--.(3)241ze z-解:函数的有限孤立奇点是0z =,因22234443211(2)(2)2222(2)2!!2!3!!z n n n e z z z z z z n z z z n --=-----=-----所以由界说5.5知,2414Re [,0]3z e s z -=-.(4)21sin z z解:函数的有限孤立奇点是0z =, 因2232121111(1)1(1)sin ()3!(21)!3!(21)!nnn n z z z z z z n z zn z +---=-+++=-+++++所以由界说5.5知,211Re [sin ,0]6s z z=-. (5)1cos1z- 解:函数的有限孤立奇点是1z =,因。
第1章复变函数习题答案习题详解第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231+解:()()()132349232323231231i i i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫ ⎝⎛+i Re 虚部:132231-=⎪⎭⎫ ⎝⎛+i Im 共轭复数:1323231i i +=⎪⎭⎫ ⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg2) iii --131 解:()()()2532332113311131312ii i i i i i i i ii i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫ ⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫ ⎝⎛--i i i Im 共轭复数:253131i i i i +=⎪⎭⎫ ⎝⎛-- 模:234434253131222==+=--iii辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3) ()()ii i 25243-+ 解:()()()22672267272625243ii i i i i i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫ ⎝⎛-+i i i Re 虚部:()()1322625243-=-=⎪⎭⎫ ⎝⎛-+i i i Im 共轭复数:()()226725243i i i i +-=⎪⎭⎫ ⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛-+4) ii i+-2184解:ii i i i i31414218-=+-=+- 实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im共轭复数:()ii i i 314218+=+- 模:1031422218=+=+-i i i辐角:()()πππk arctg k arctg k i i i i i i Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()iiy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。
复变作业参考答案复变答案部分习题的参考答案练习一n 35一、1.cos;2. i.4222zzzz=实数七、解:1 z21 z21 z21 z2z+zz z z2z (z z)(1 zz) 02由于y 0,有z z 0,故(z z)(1 zz) 0 1 zz 0;z2 z 1 x2 y2 1 练习二三.证明:由函数f(z)在z0处连续,则对任意正实数0,总是存2| ,z在正常数0,使得当当|zz0-D都(f有),f(z )f( z成立),从而有|z-z0| , z D(f) |f(z) f(z0)| |f(z) f(z0)||f(z) f(z0)| ,|z-z0| , z D(f) ||f(z) f(z0)|| |f(z) f(z0)| ,综上得|f(z)|,f(z)在z0连续.ei i e i i六.(6)Argsini=argsini+2k arg+2k2ie 1 e arg+2k +2k . 2i2七.(1) z=Log2+ +2n i; 2复变答案练习三六.复变答案2022年-2022年学年第1 学期作业部分习题的参考答案任课老师_________班级:______________学号:__________姓名:______________日期:月日如图(b)z (2)设z在的C内部,以z为圆心,充分r 大的r为半径,作圆周Cr,使曲线C全含在Cr的内部,如图(b)所示. Cr f (ξ ) 图(b) 则ξ z在C和Cr围成的复连通区域内解析,且连续到边界,由柯西积分公式C∫f (ξ ) f (ξ ) dξ + ∫ dξ = 0 Cr ξ z C ξ z1 2π i∫Cf (ξ ) 1 dξ = ξ z 2π i∫f (ξ ) dξ Cr ξ z56由于上式左边与r无关, 故有1 f (ξ ) ∫ Cr ξ z d ξ A = o(1), (r → ∞). 2π i即得1 2π i1 2π i∫∫f (ξ ) d ξ = A, Cr ξ zf (ξ ) d ξ = A. ξ z所以C完57复变答案练习四一.解:(1) ( 1)n 1n 1nz= ( 1)nn 1n 1(n 1)z- ( 1)n 1znnn 1n 1=( 1) zn 1n 1z'- 1 zz2 zz,(|z| 1) ' -2 = =1 z 1 z 1 z二.解: f(z)111(z 1)(z 2)3 1 z 2 4 1 z 24nn1 z2 1 z 2.3n 1 3 4n 1 4收敛圆|z-2|3,收敛半径r=3. 1三.解:(1) f(z)(z 1)(z 2)11nz 1,(0 |z 1| 1). z 11 (z 1)n 1 (2)f(z)1z 211(z 2) 1z 22z 21 ( 1)n , 1|z-2| . z2 n 1n1n1z2四.解:由于e ,故有e z2n,从而n 0n!n 0n!zedz= 0z2zz111 12n 2n2n 1zdz zdz z n! 0n!n 0n 0n!2n 1 n 0收敛半径|z| .复变答案练习五一.解:(1)z=0为3级极点,z=2k i(k 1, 2, )为1级极点,z= 为非孤立奇点.(2) z=1为本性奇点,z=2k i(k 0, 1, 2, )为1级极点,z= 为非孤立奇点.1 2二.解:记f(z) ,其中z=i为1级极点,z=1为2级2(z 1) z 1极点,因此11C(z 1)2(z2 1)=2 iRes f(z),i 2 iRes f(z),11 =2 i(z 1)2(z i)dz i+2 i12dzz 111 i i i. =22三.解:(1)m0,此时z=b和z= 为孤立奇点;11,Res f(z), . Res f(z),b mm (b a)(b a)(2) m0,此时z=a为m级极点,z= b和z= 均为孤立奇点;Res f(z),b四.(1)11,Resf(z),a ,Res f(z), 0. mm(b a)(b a)3 2m;(2)ab (a b);(3*)解1:以原点为中心,以r, R为半径作围线C如图复变答案作辅助函数f(z)lnz,在围线C的内部,f(z)有一个2级极点z=i,(1 z2)2f(z)的支点z=0及z= 不属于C内部.故f(z)在C所围区域上除z=i外lnzlnz,单值解析.令(z) (z i)222有(1 z)(z i)2'(z)1lnzlnz 2,23 z(z i)(z i)1lnilni1'(i) 2 . 23i(i i)(i i)4i8由留数定理得Clnzdz 22(1 z)'BMBB'A'A'NAABlnzdz 22(1 z)2 iRes[lnz,i] 22(1 z)lnz]22(1 z)dzd[(z i)22 ilimz i复变答案d (z) 2i 22 ilim 2 i i.z idz824zlnzlnz 0,所以dz 0; 其中,由于|zlimBMB'(1 z2)2| (1 z2)2由于limzlnz0,|z| 0(1 z2)2A'NAlnzdz 0; 22(1 z)在AB上,z=x,limABr 0Rlnzlnxdz dx __(1 z)(1 x)i在B'A'上,z=-x=xe(x0),lnz=lnx+ i,dz=-dx. rlim 0 R'A'B0lnzlnx idz dx 2222 (1 z)(1 x)lnxdxdx i 0(1 x2)2 (1 x2)2Clnzlnxdxdz 2 dx i __(1 x2)2(1 x)(1 z)比较得0解2:由于f(z)*224i.lnxdxdx . 22(1 x)4lnz在上半平面内的极点为i,是2级极点,故(1 z2)2z idlnzRes[f(z),i]dz(1 z2)2i . 48lnxdx i dx 2 idx dx i i. __(1 x)2(1 x)48 48比较得0lnxdxdx . 22(1 x)4复变答案sin sin五.解:记I C 2 z2d ,g( ,z) 2 z2*,由于g( ,在z) |的|内1部有两个孤z立奇z点因此由留数定理得sin sinI 2 iRes ,z 2 iRes , zz zsinz sinzsin( z)2 i . 2 iz z z z z f(z)sinz1sinz zz2n 11 z ( 1)n zn 0(2n 1)!z2n ( 1).(2n 1)!n 0n由正弦函数的泰勒展开性质知,函数f(z)在除z=0之外的任何地方都处处收敛.练习六一.|w(i)'| 2;Argw(i)'2.二.解:由于w(4i)=-4,将圆周|z-4i|=2变为直线v=u,所以它把z= 变为-4i,因此逆变换为iz 4i rew 4w 4ii由w(2i)=0得e 1,r 2.故所求变换为4i(z 2i). wz 2(1 2i)三.解:我们考虑逆变换,即将Rew0变为|z|2的变换.由于w(0)=1,复变答案w 1,其中是实数.注意到所以变换的形式是z 2ew 1if'(z)1dzdww f(z),2由argf(0)2,知argdzdww 12,从而得,所以z 2iw 1. z 2i, 故所求变换为wz 2iw 1四.解:由题意知道,可设z (1 ei ),则w u iv (1 ei )2 1u cos (1 cos ) 2cos 1 v 1sin (1 cos ) 21214代入u的表达式得u2 v2 u 0.五.解:设z=x+iy,则w ez exeiy(0 y )所以w是以r ex为半径,以为圆心角的扇形(除去原点). 2w ez4z. 七. 解: w z(i 1) (1 i)六.解:从|z-a|=|a|得(z a)(z a) |a|2复变答案将z1w代入上式得(1w a)(1wa) |a|2 整理得aw aw 1. 令a |a|ei ,w u iv,得。
___《复变函数》在线作业一15秋100分答案___《复变函数》在线作业一一、单选题(共30道试题,共60分)1.下列说法正确的是:(D)A。
复数域是实数域的扩张B。
复数域是有理数域的扩张C。
实数域是复数域的扩张D。
有理数域不是复数域的扩张2.下列说法正确的是:(A)A。
复数域上的加法和乘法都是可交换的B。
复数域上的加法和乘法都是不可交换的C。
复数域上的加法可交换,乘法不可交换D。
复数域上的加法不可交换,乘法可交换3.函数在复平面内为整函数是其为亚纯函数的(A)。
A。
充分条件B。
必要条件C。
充要条件D。
既非充分也非必要条件4.f(x,y) = e^x在复平面上(A)。
A。
处处连续B。
处处解析C。
在原点解析D。
在x轴上解析5.复函数在单连通域B内解析是该函数曲线积分与路径无关的(C)。
A。
充分条件B。
必要条件C。
充要条件D。
既非充分也非必要条件6.下列说法正确的是:(B)A。
若f(z)在z0处解析,则f(z)在z0处连续B。
若f(z)在z0处连续,则f(z)在z0处不一定解析C。
若f(z)在z0处不连续,则f(z)在z0处不一定解析D。
若f(z)在z0处不解析,则f(z)在z0处不一定连续7.下列说法正确的是:(D)A。
复数域上的加法和乘法都是可交换的B。
复数域上的加法和乘法都是不可交换的C。
复数域上的加法可交换,乘法不可交换D。
复数域上的加法不可交换,乘法可交换8.若z0是f(z)的m(m为正整数)级极点,则z0是f'(z)/f(z)的(B)。
A。
可去奇点B。
极点C。
本性奇点D。
零点9.下列说法正确的是:(A)A。
复数域上的加法和乘法都满足结合律B。
复数域上的加法和乘法都不满足结合律C。
复数域上的加法满足结合律,乘法不满足结合律D。
复数域上的加法不满足结合律,乘法满足结合律10.对于同一条简单闭曲线,复函数曲线积分的实部(D)。
A。
相等于B。
大于C。
小于D。
无法判断11.下列说法正确的是:(A)A。
习题一 P311题 (2)i ii i -+-11 = 1)1(2)1(--++i i i i =223i --)R e (z 23-= ; 21)(-=z I m ; z = 23-2i + ; z =210;arg(z) = arctan-31π (4) 8i i i +-214 i i +-=41 i 31-= ;;1)Re(=z ;3)Im(-=z ;31i z += ;10=z 3a r c t a na r g -=z ; 5题(2) πππi e i 2)sin (cos 22=+=-;(4)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+=-)43sin(arctan )43cos(arctan 5)43sin(arctan )43cos(arctan 91634i i i;5θi e = );43arctan(-=θ (6) θθθθθθθθϑθθ7sin 7cos )()()2sin 2(cos )sin (cos )7(4322323i e e e e e i i i i i i i -====+---- ; 8题(2) 16)2()1(848==+πie i (4));3432sin 3432(cos2163ππππ-+-=--k i k i ;431arctan ππθ-=-= ;2,1,0=K);1(24)2222(2360i i K -=-= );125sin 125(cos261ππi K += );1213sin 1213(cos 262ππi K +=12题(2) ;3)2(=-z R e 即 ;3])2[(e =+-iy x R ;32=-x 5=x 直线(6) ;4)arg(π=-i z ;4))1(arg(π=-+y i x arctan;41π=-x y ;11=-xy 1+=x y 以i 为起点的射线(x>0). 13题(1) 0)(<z I m ; 即y<0, 不含实轴的下半平面,开区域,无界,单连通。
复变函数考试答案单选题(共40题,每题2分)1 .• A.充分• B.必要• C.充要• D.以上都不对2 .• A.只有一个• B.至少一个• C.没有• D.无法确定3 .• A.•• B.•• C.•• D.•4 .• A.•• B.•• C.•• D.•5 .• A.•• B.•• C.•• D.•6 .• A.•• B.•• C.•• D.•7 .• A.•• B.•• C.-1• D.18 .• A.•• B.•• C.•• D.•9 .• A.条件收敛• B.绝对收敛• C.发散• D.以上都不是• A.0• B.•• C.•• D.•11 .• A.连续• B.可导• C.可微• D.某一邻域内可微• A.•• B.•• C.•• D.•13 .• A.•• B.•• C.•• D.以上都不对14 .• A.直线• B.圆• C.双曲线• D.抛物线15 .• A.负实轴•• B.正实轴• C.实轴• D.单位圆16 .• A.•• B.•• C.•• D.•17 .• A.•• B.•• C.•• D.•18 .• A.第一、二、三• B.第二、三、四• C.第三、四、一• D.第四、一、二19 .• A.•• B.•• C.•• D.•20 .• A.三点共圆• B.三点共线• C.•• D.•••••• A.•• B.•• C.•• D.023 .• A.无关• B.有关• C.不一定有关• D.与方向有关24 .• A.1• B.2• C.•• D.•25 .• A.单值• B.有限的多值• C.无限多值• D.以上都不对26 .• A.必要非充分• B.充分非必要• C.充分必要• D.以上都不对27 .• A.•• B.•• C.•• D.•28 .• A.3• B.•• C.•• D.•29 .• A.•• B.•• C.•• D.•• A.三级极点• B.三级零点• C.可去奇点• D.本性奇点31 .• A.•• B.•• C.•• D.•32 .• A.•• B.•• C.•• D.•33 .• A.•• B.•• C.•• D.•••••35 .• A.极点•• B.非孤立奇点• C.本性奇点• D.可去奇点36 .• A.零点• B.一级极点• C.二级极点• D.三级极点37 .• A.•• B.•• C.•• D.•38 .• A.•• B.•• C.•• D.•••••• A.•• B.•• C.•• D.•多选题(共10题,每题2分)1 .• A.不连续• B.连续• C.不可微• D.可微• E.解析2 .• A.•• B.•• C.•• D.•• E.•3 .••• B.•• C.•• D.•• E.•4 .• A.•• B.•• C.•• D.•• E.••••••6 .• A.•• B.•• C.•• D.•• E.•7 .• A.•• B.•• C.•• D.•• E.•8 .• A.•• B.•• C.•• D.•• E.•9 .• A.•• B.•• C.•• D.•• E.•10 .• A.•• B.•• C.•• D.•• E.•。
南海校区计算机工程系2009/2010学年(一)学期期中考试试卷《复变函数》试卷专业 电子信息工程 年级2008班级 姓名 学号一、填空题(每小题3分,共15分): 1、20002000)1()1(i i -++=100122、)1(Ln i +=12224ln ()i k ππ++。
3、⎰=-+1||)2)(12(d z z z zz =5i π。
4、dz z tgz i⎰+12cos 1(沿1到i 的直线段)=22111122tgi tg i tg tg +--。
5、dz z zz ⎰=2=0。
二、选择题(每小题3分,共15分):1、 设y x ,为实数,yi x z yi x z +-=++=11,1121且有,12||||21=+z z 则动点),(y x 的轨迹是 (B ).(A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线 2、下列函数中为解析函数的是( C )(A) xyi y x 222-- (B) xyi x +2 (C) )2()1(222x x y i y x +-+- (D) 33iy x +3、 设函数iv u z f +=)(在区域D 内解析, 下列等式中错误的是(B ). (A) x v i x u z f ∂∂+∂∂=)(' (B) xv i y v z f ∂∂+∂∂=)(' (C) yv i y u z f ∂∂+∂∂=)(' (D) y u i x u z f ∂∂-∂∂=)('4、 设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( C ).(A) ),(),(y x iu y x v + (B) ),(),(y x iu y x v -(C) ),(),(y x iv y x u - (D) xv i x u ∂∂-∂∂ 5、 设函数)(z f 在区域D 内有定义,则下命题中,正确的是(C ) (A )若|)(|z f 在区域D 内是一常数,则)(z f 在D 内是一常数. (B )若))(Re(z f 在区域D 内是一常数,则)(z f 在D 内是一常数. (C )若)(z f 与)(z f 在区域D 内是解析,则)(z f 在D 内是一常数. (D )若)(arg z f 在区域D 内是一常数,则)(z f 在D 内是一常数. 三、计算题(15分)(1)⎰=+-+12d 12102sin e z z z z z z . (2)⎰--c z z z d )1)(1(132,41:=z c . 解:原式=11223e sin d ()()z z z z z z =+--⎰ 解:23110()()z z --=的根都在圆周 因为23,z z ==都不在圆1||z =的内部, 1||z =上,因此23111()()z z --在圆 23e sin ()()z zz z +--在圆1||z =的内部解析, 14z =的内部解析,由柯西—古由柯西—古萨基本定理,原式=0 萨基本定理,原式=0(3)I=z zz dz C+⎰||的值,其中C 为正向圆周|z|=2.解:222222222||C C C C C C C C z z z z z z z z I dz dz dz dz dz dz dz dz z z z ⋅=+=+=+=+⎰⎰⎰⎰⎰⎰⎰⎰因为2z 在圆|z|=2的内部解析,由柯西—古萨基本定理,02C zdz =⎰ 因为0z =在圆|z|=2的内部,由柯西积分公式2224C dz i i zππ=⋅=⎰ 所以4I i π=四、(9分)计算积分 ⎰-+=C z z z dzI )2)(1(3 的值, 其中.2,1,|:|≠=r r z C解:当1||z r =<,3311212()()()()CCdzz z I dz z z z z+-==+-⎰⎰ 112()()z z +-在圆1||z r =<内部解析,且0z =在圆1||z r =<内部,由高阶导数公式,0003321111211212321321[]''|()''|[]|()()()()z z z i i I i z z z z z z πππ=====⋅-=-+--+-+ 2131384[]i iππ=--=-。
1.第1题
A..
B..
C..
D..
您的答案:D 题目分数:1.0 此题得分:1.0
2.第2题
A..
B..
C..
D..
您的答案:B 题目分数:2.0 此题得分:2.0
3.第3题
A..
B..
C..
D..
您的答案:C 题目分数:2.0 此题得分:2.0
4.第4题
A..
B..
C..
D..
您的答案:C 题目分数:2.0 此题得分:2.0
5.第5题
A..
B..
C..
D..
您的答案:B 题目分数:2.0 此题得分:2.0
6.第6题
A..
B..
C..
D..
您的答案:D 题目分数:1.0 此题得分:1.0
7.第7题
A..
B..
C..
D..
您的答案:C 题目分数:2.0 此题得分:2.0
8.第8题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
9.第9题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
10.第10题
A..
B..
C..
D..
您的答案:D
题目分数:2.0
此题得分:2.0 11.第11题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
12.第12题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
13.第13题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
14.第14题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
15.第15题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
16.第16题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
17.第17题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
18.第18题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
19.第19题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
20.第20题A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
21.第21题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
22.第22题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
23.第23题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
24.第24题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
25.第25题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
26.第26题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
27.第27题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
28.第28题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
29.第29题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
30.第30题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
31.第31题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
32.第32题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
33.第33题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
34.第34题
A..
B..
C..
D..
您的答案:B
题目分数:3.0 此题得分:3.0
35.第35题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
36.第36题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
37.第37题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
38.第38题
A..
B..
C..
D..
您的答案:B
题目分数:2.0 此题得分:2.0
39.第39题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
40.第40题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
41.第41题
A..
B..
C..
D..
您的答案:C
题目分数:2.0 此题得分:2.0
42.第42题
A..
B..
C..
D..
您的答案:A
题目分数:2.0 此题得分:2.0
43.第43题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
44.第44题
A..
B.,
C.,
D.,
您的答案:D
题目分数:2.0 此题得分:2.0
45.第45题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
46.第46题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:0.0
47.第47题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
48.第48题
A..
B..
C...
D..
您的答案:C
题目分数:2.0 此题得分:2.0
49.第49题
A..
B..
C..
D..
您的答案:D
题目分数:2.0 此题得分:2.0
50.第50题
A..
B..
C..
D..
您的答案:C 题目分数:3.0 此题得分:3.0。