人教版九年级上册数学知识点总结
- 格式:docx
- 大小:65.24 KB
- 文档页数:5
一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
人教版九年级数学上册知识点总结
1.代数
(1)多项式的概念、加减乘除、因式分解、配方法、公式法。
(2)一元二次方程及其解法、判别式、因式分解法、公式法、图像。
(3)一元二次不等式及其解法、图像、应用。
2.几何
(1)角的概念、角的度量、角平分线、垂线、平行线、角的和差倍角公式。
(2)三角形的概念、分类、性质、面积公式、勾股定理、正弦、余弦、正切等基本概念和公式。
(3)相似三角形的概念、判定、性质、应用。
(4)圆的概念、性质、圆周角、弧、切线、割线、圆的面积和周长公式。
(5)立体几何的概念、长方体、正方体、棱锥、棱台、圆锥、圆台的表面积和体积公式。
3.数据与概率
(1)数据的收集、整理、统计和分析。
(2)概率的基本概念、频率和概率的关系、事件的概率、互斥事件、独立事件。
4.函数
(1)函数的概念、函数的表示、函数的性质、函数的图像、函
数的基本变换、函数的复合。
(2)一次函数、二次函数、反比例函数、指数函数、对数函数。
以上是九年级数学上的主要知识点,需要注意的是,这些知识点是相互联系和影响的,需要理解和掌握它们的内在关系,才能真正运用自如。
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版九年级数学上册知识点九年级数学上册知识点人教版九年级数学上册是中学九年级学生的数学教材,该教材涵盖了许多重要的数学知识点。
本文将介绍九年级数学上册中的一些重要知识点,以帮助同学们更好地学习和掌握数学。
第一章:有理数有理数是指整数和分数的集合,包括正数、负数和零。
在这一章中,同学们将学习有理数的加减乘除法运算规则,以及有理数的大小比较。
此外,还会介绍有理数的分数表示和小数表示。
第二章:整式与分式整式是由常数、变量和运算符号组成的代数表达式,分式是指两个整式相除的形式。
同学们将学习整式的加减乘除法,以及分式的加减乘除法。
此外,还会学习如何将分式化简和扩展。
第三章:一元一次方程与不等式一元一次方程是指一个变量的一次方程,不等式是指两个数或表达式的大小关系。
在这一章中,同学们将学习解一元一次方程和不等式的方法,包括等式的加减乘除法、解方程的步骤,以及不等式的图像表示。
第四章:图形的性质图形的性质是指各种几何图形的特点和关系。
同学们将学习直线、角、三角形、四边形等几何图形的性质,包括各种角的定义和性质,以及各种图形的分类和特点。
第五章:平面直角坐标系平面直角坐标系是由两条相互垂直的数轴组成的坐标系,用于描述平面上的点的位置。
同学们将学习如何利用平面直角坐标系表示和计算点的坐标,以及如何利用坐标计算线段的长度和中点的坐标。
第六章:函数与图像函数是一种特殊的关系,将一个集合中的每个元素对应到另一个集合中的唯一元素。
同学们将学习函数的概念、函数的表示和函数图像的绘制。
此外,还会学习一次函数和反比例函数的性质和图像特点。
第七章:平面几何体的视图平面几何体的视图是指从不同方向观察平面几何体时所看到的形状。
同学们将学习如何根据平面几何体的标准视图绘制其真实形状,以及如何根据平面几何体的真实形状绘制其标准视图。
第八章:统计图与折线图统计图是用来展示数据分布和变化趋势的图表,包括直方图、折线图等。
同学们将学习如何根据给定的数据绘制统计图和折线图,以及如何根据统计图和折线图分析数据的特点和趋势。
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
九年级上册数学知识点归纳抛物线顶点坐标公式y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)相关结论过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1.x2=p^2/4,y1.y2=—P^2,要在直线过焦点时才能成立;②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];③(1/|FA|)+(1/|FB|)=2/P;④若OA垂直OB则AB过定点M(2P,0);⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);⑥弦长公式:AB=√(1+k^2).│x2-x1│;⑦△=b^2-4ac;⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有两个实数根;⑵△=b^2-4ac=0有两个一样的实数根;⑶△=b^2-4ac<0没实数根。
初三数学知识点【三角形中位线的定理】三角形的中位线平行于三角形的第三边,并且等于第三边的一半.【平行四边形的性质】①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分.【矩形的性质】①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等.正方形的判定与性质1.判定方法:(1)邻边相等的矩形;(2)邻边垂直的菱形;(3)对角线垂直的矩形;(4)对角线相等的菱形;2.性质:(1)边:四边相等,对边平行;(2)角:四个角都相等都是直角,邻角互补;(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理【等腰三角形的判定方法】1.有两条边相等的三角形是等腰三角形。
2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。
数学9年级上册人教版课程由于您没有具体说明关于九年级上册人教版数学课程哪方面的内容(例如知识点总结、题型归纳、复习资料等),以下为您提供一份较为全面的人教版九年级上册数学知识点总结:一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法。
- 对于方程x^2=p(p≥0),则x = ±√(p)。
- 对于方程(mx + n)^2=p(p≥0),则mx + n=±√(p),进而解得x=(-n±√(p))/(m)。
- 配方法。
- 步骤:- 把方程化为一般形式ax^2+bx + c = 0(a≠0)。
- 移项:把常数项移到方程右边,即ax^2+bx=-c。
- 二次项系数化为1:方程两边同时除以a,得到x^2+(b)/(a)x =-(c)/(a)。
- 配方:在方程两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2,然后化为(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2}。
- 开方求解。
- 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法。
- 把方程化为一般形式后,如果方程左边能分解因式,即ax^2+bx + c=(mx + p)(nx+q),那么方程可化为(mx + p)(nx + q)=0,则mx + p = 0或nx+q = 0,进而求解。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
九年级上册知识点
二次根式知识点
考点1、无理数
无限不循环的小数,叫做无理数。
常见的无理数:
1、π以及π的有理数倍数。
2、、、;
3、2.01001000100001…………
考点2、二次根式的概念
形如(a≥0)的式子叫做二次根式。
1、被开放数a是一个非负数;
2、二次根式是一个非负数,即≥0;
3、有限个二次根式的和等于0,则每个二次根式的被开方数必须是0.
考点3、移因式于根号内、外的方法
移因式于根号外
1、当根号外的数是一个负数时,把负号留在根号外,然后把这个数平方后移到根号内
2、当根号内的数是一个正数时,直接把这个数平方后移到根号内
移因式于根号内
1、当根号内的数是正数时直接开方移到根号外
2、当根号内的数是负数时开方移到根号外后要添上负号
考点4、最简二次根式
知识回顾:
满足下列条件的二次根式,叫做最简二次根式:
(1) 被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。
知识特点:
1、最简二次根式中一定不含有分母;
2、对于数或者代数式,它们不能在写成a n×m的形式。
考点5、二次根式的化简与计算
二次根式的化简,实际上就是把二次根式化成最简二次根式,然后,通过合并同类二次根式的方法进行二次根式的加减运算。
二次根式的加减运算:a+b=(a+b),(m≥0);
二次根式的乘法运算:.=,( a≥0, b≥0);
二次根式的除法运算:÷=,( a≥0, b>0);
二次根式的乘方运算:=a,( a≥0);
二次根式的开方运算:=
考点6、与的异同点
1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;
2、相同点:当被开方数都是非负数,即时,=;时,
无意义,而
一元二次方程
考点一、一元二次方程
1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:,它的特征是:等式左边
十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
考点二、一元二次方程的解法
1、直接开平方法:
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接
开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,
是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法:
配方法的理论根据是完全平方公式,把公式中的a看
做未知数x,并用x代替,则有。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:
公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
5、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,,
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用考点三、一元二次方程根的判别式
根的判别式
一元二次方程中,叫做一元二次方程
的根的判别式,通常用“”来表示,即
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根
考点四、一元二次方程根与系数的关系
如果方程的两个实数根是,那么
,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
旋转
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用.
中心对称的两条基本性质:
1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分; 2.关于中心对称的两个图形是全等图形及其它们的应用.
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y).
圆
知识点1 圆的有关概念
(1)圆心和半径:圆心确定位置,半径确定大小。
等圆或同圆的半径都相等。
(2)弦:圆上任意两点之间的线段。
直径是圆中最长的弦。
(3)弧:圆上任意两点之间的部分。
完全重合的弧叫做等弧(强调度数相等且长度相等)(4)三角形的外心是三边垂直平分线的交点,它到三个顶点的距离相等。
(5)经过不在同一条直线上的三个点唯一确定一个圆。
知识点2 圆的有关性质
(1)圆是中心对称图形,也是轴对称图形。
(2) 弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中,有一组量相等,那么它
们所对的其余各组量都分别相等。
(3)垂径定理:垂直于弦的直径平分弦,也平分弦所对的优弧和劣弧。
(4) 圆周角的性质:①同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半
②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
知识点3 与圆有关的位置关系
(1)点与圆的位置关系:圆的半径为r ,点到圆心的距离为d
①点在圆内②点在圆上内③点在圆外
(2)直线与圆的位置关系圆的半径为r ,直线到圆的距离为d
①直线与圆相交点在圆内②直线与圆相切点在圆内③直线与圆相
离点在圆内
(1)圆与圆的位置关系①两圆外离②两圆外切③两圆相交④两圆内切⑤两圆内含
(2)切线的性质:圆的切线垂直于过切点的半径。
(3)切线的判定:经过半径的外端点且垂直于该半径的直线是圆的切线。
(4)切线长定义:从圆外一点作圆的切线,该点到切点的距离叫切线长。
(5)切线长定理:从圆外一点作出圆的两条切线,它们的切线长相等,且该点到圆心的连线平分两切线的夹角。
(6)三角形的内心:是三个角的平分线的交点,它到三边的距离相等。
知识点4 圆中的计算
(1)弧长公式:
(2)扇形面积:或
(3)圆锥的侧面积:(r指底面圆的半径,l指母线长)
概率初步
1.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
2.列举法和树状法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.。