二次根式计算专题——30题(学生版含答案)
- 格式:doc
- 大小:280.00 KB
- 文档页数:5
二次根式计算专题1.计算:⑴36 4236 42⑵(3)2 (3)02732【答案】 (1)22; (2) 6 4 3 【解析】试题分析: (1)根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案 .试题解析: (1) 3 64 2 3 6 4 2(3 6) 2 (4 2) 2=54- 32 =22.(2)( 3)2(3) 0 273 23 1 3 3 2 36 4 3考点 : 实数的混合运算.2.计算( 1)﹣ × (2)( 6﹣ 2x )÷3.【答案】( 1) 1;( 2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案 .试题解析: (1)205 1 51232 55 3 3523321;(2)(6x 2x 1) 3 x4 x(6x 2x x ) 3 x2 x(3 x2 x )3 xx 3 x1 .3考点 : 二次根式的混合运算.3.计算:3 12 21482 3.3【答案】14.3【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的 ,最后算除法.试题解析:3 12 2 1482 3 =(6 3 23 4 3) 2 3 28 3 2 3 14 .333 3考点:二次根式运算.6 4.计算:3 62 32【答案】 2 2.【解析】试题分析:先算乘除、去绝对值符号 ,再算加减 .试题解析:原式 =3 23 3 2= 2 2考点:二次根式运算 .5.计算:2 18 3(3 2)【答案】3 3 .【解析】试题分析:先将二次根式化成最简二次根式 ,再化简.试题解析:2 18 3(3 2)= 2 32 33 6 33.考点:二次根式化简.6.计算:32314 .22【答案】2 .2【解析】试题分析:根据二次根式的运算法则计算即可 .试题解析:32 1 4 4 3 2 2 22 32 22 .22考点:二次根式的计算.7.计算:12 6 2 ( 3 1)( 3 1).【答案】3 2 .【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:12 6 2 ( 3 1)(3 1)=2 3 3 3 1= 3 2.考点:二次根式的化简.8.计算:123 63 222【答案】 0. 【解析】试题分析: 根据二次根式运算法则计算即可.试题解析:1223 6 3 2 6 3 6 1 6 0.2 2 2 2考点:二次根式计算 .9.计算: +112 3 .【答案】 13.【解析】试题分析:任何非零数的零次方都为 1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:+13 1 2 3 3 1 3 .12考点:二次根式的化简.10.计算: 8 3 10.5334【答案】 32 3 3 . 2 2【解析】试题分析:先化成最简二次根式 ,再进行运算.试题解析:原式 = 2232 3 = 3 2 3 3 .22 2 2考点:二次根式的化简. 11.计算:( 1)27121453( 2)1201418 2014 02 32【答案】( 1)1 15 ;(2) 3 2 .【解析】试题分析:( 1)根据二次根式的运算法则计算即可;( 2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )27 12 45 13 2 3 3 513 3 3 511 15 .3333 3( 2)12014 18 2014 0 2 2 3 1 3 2 1 2 2 3 3 2 . 考点: 1.实数的运算 ;2. 有理数的乘方;3.零指数幂 ;4.二次根式化简 ;5.绝对值 . 12.计算:( 3 2)( 3 2 ) (1 3) 0 2 12【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=3 2 1 2=2考点:二次根式的混合运算.13.计算:27 3 ( 2013)0 | 2 3 |.3【答案】 4 3 1.【解析】试题分析:解:27 3 ( 2013)0 |23|33 3 3 1 2 343 1.考点:二次根式化简.14.计算(32248)12 3【答案】 - 2 + 6 .2 3【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题 解析:(32 -24 +8) ?12(6 - 26 + 22)? 23(2 2-6)?23326 = -+23考点 : 二次根式的混合运算 .15.计算:12-1-2123【答案】43-2.32【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案 .试题解析:1 12 234 32 12--2=2 3-2 -3 =3-232考点 : 二次根式的运算 .5032 16.化简:( 1)8(2)( 6 2 15)3 612【答案】(1) 9;(2) 6 5 .2【解析】试题分析:( 1)先去分母,再把各二次根式化为最简二次根式,进行计算; ( 2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:( 1)原式 =52 4 2 9 ;2 2 2(2)原式= 63 2153 3 2 32 653265.考点:二次根式的混合运算; 17.计算( 1)27 3 32( 2)123 2【答案】( 1) 33 ; (2) 3.【解析】试题分析:( 1)根据运算顺序计算即可;( 2)将括号内化为最简二次根式后合并再平方运算即可 .试题解析:( 1) 2733 23 33 2 3 33 .(2) 1223 223 .3 2 33考点:二次根式化简 .18.计算:1 (32 1)(13 2)824【答案】 17. 【解析】试题分析:先化简1 和 8 ,运用平方差公式计算 (32 1)(13 2) ,再进行计算求2 4解 .试题解析:原式=2 18 1 222= 17考点 :实数的运算 .19.计算: ( 3) 027 |12 |312【答案】 2 3 .【解析】试题分析: 本题涉及零指数幂、 二次根式的化简、 分母有理化、 绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式 =1 3 32 1 3 22 3考点: 1.实数的运算; 2.零指数幂; 3.分母有理化. 20.计算:63 21①821 ②4812③233a 23 a 1 2a2 2 3【答案】①21;②14;③ a .33【解析】试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果; ②根据二次根式运算法则计算即可; ③根据二次根式运算法则计算即可 .试题解析:① 8 212 2 1 2 1 .=2 2② 6 3148 12 6 324 3 2 3282142 3 3 3.3 3 3 3③ 3a2 3 a1 2a = 1 3a2 2 2a = 1 4a212a a .2 23 6 a 3 6 6 3考点: 1.二次根式计算; 2.绝对值;指数幂 .21.计算:( 1)( 1)2012 5 (1)1 3 27 ( 2 1)02(2)3 12311 48 27 3 2【答案】( 1) 0;( 2)4 3 .【解析】试题分析:(1)原式 =1 5 2 3 10 ;(2)原式=63 3 2 3 33 4 3.考点: 1.实数的运算;2.二次根式的加减法.22.计算与化简(1)27 3(2)(3 5) 2 (4 7)(47) 33【答案】( 1)2 3 1;(2) 6 5 5 .【解析】试题分析:( 1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.3 0试题解析:( 1)27 33 3- 3 1 231.3(2)324 7 4 7 9655167 655. 5考点: 1.二次根式化简;指数幂; 3.完全平方公式和平方差公式 . 23.( 1) 2 8 2 18(2)121 1 27 3(3)2 123 (1 3) 03(4)(2 3 3 2)(2 3 3 2)【答案】( 1) 3 2 ;(2)163 ;(3)6;(4)6 9【解析】试题分析:本题主要考查根式的根式的混合运算和0 次幂运算 .根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。
二次根式计算专题训练一、解答题(共小题)30 .计算:1﹣+)+((1)+;(2)()..计算:2-20.)﹣﹣﹣)(π3.14)2| +| (1﹣(﹣).﹣4(+(2)2.(3)(x﹣3)﹣2 )(3﹣x)﹣(x.计算化简:3.6 +3)++(1)(22﹣.计算4.2)×÷(1()+﹣.计算:5.2(+3×)1×2)+3﹣26(.计算:602)×﹣2﹣))(1(+|)((2|﹣页)1第页(共122)﹣2+)(2)(2﹣)+(;(3)2﹣3+(4)(7+4.计算7÷2a≥0))(((1)?))3+﹣﹣)()(3+﹣4((.计算::8(+÷.)(+3﹣1()+2)﹣.计算921+((+)1+12)(﹣)(÷+﹣4)(1.).计算:10)﹣+)4﹣)1((2﹣(+2页)2第页(共120.1)﹣(﹣﹣);(4)+3()(2 +)(2.计算:112.2)+92x?﹣(3(1)(+﹣4)÷.计算:122.﹣②(;7+4 )(7 4)﹣()3﹣1﹣①4++4.计算题13+2)××1(2)﹣()÷(4(+1)(﹣﹣)(﹣(3 1))﹣.÷)5()×﹣6(+页)3第页(共1222+3ab+b的值..已知:,求b=a=,a1415.已知x,y 都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;20162015﹣()()(3.)18.计算:.2+ y=19.已知的值.y,计算x﹣﹣420.已知:a、b、c 是△ABC的三边长,化简.21.已知1<x<5,化简:﹣| x﹣5|.第4页(共12页)22.观察下列等式:①==;②==;③==回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++?+.23.观察下面的变形规律:=,=,=,=,?解答下面的问题:(1)若n 为正整数,请你猜想=;)×()(2)计算:(++?+24.阅读下面的材料,并解答后面的问题:==﹣1=﹣=;==﹣(1为正整数)的结果;)观察上面的等式,请直接写出(n(2)计算(;)=)((3)请利用上面的规律及解法计算:(+++?+)().第5页(共12页)25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算22﹣+12)﹣(1)(2﹣1)(2+7﹣1()9 5+2(.)29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算22﹣1)(﹣1+1)﹣(9(1))((+25﹣+72)第6页(共12页)《二次根式计算专题训练》参考答案与试题解析30 小题)一.解答题(共+5=7;).计算:(11= 2+)+(﹣(2)(=4+2+2﹣=6+.+20﹣﹣2| ﹣﹣﹣)+|+()π﹣3.142.计算:(1)(=1+24+9=12﹣5;(2)﹣4 ﹣(﹣)=2 ﹣4×﹣+2=+222(3)(x﹣3)(3﹣x)﹣(x﹣2)=﹣x+6x ﹣9﹣(x﹣2﹣13=﹣2x+10x4x+4)3.计算化简:=5+2++;(1)=2 +3 +2= 2×2 ﹣﹣(2)26 +36×+3×4= 14 4.计算(1)﹣2﹣2.﹣+= 6= 2+4(2)÷×.=2 ÷3 ×3= 2×)25.计算:(1×= 7+3+30= 37﹣2(2)2﹣6= 14+3+12= 420)﹣2+| ﹣| = 3﹣1+)(6.计算:(1=)(2()×(﹣﹣)×= 24=3﹣﹣+2)3(3﹣= 412+5= 8+52)(2﹣)+(2+)(2)(7+4﹣(4)22(2﹣)+(2+)=1+1=2)(2﹣()=2+=)a≥07.计算(1)(= 6a?)(2÷===2 +3 ﹣2 ﹣4=2 ﹣(3)+3﹣﹣)(﹣)=3 ﹣3+(4)(3 +2 ﹣5﹣﹣2=8.计算:(1)2﹣+;﹣=2=+3(2)3 +(﹣)+=+﹣2+= .÷第7页(共12页)9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;2(2)(1﹣)(1+ )+(1+ )=1﹣5+1+2 +5 =2+2 .10.计算:(1)﹣4﹣2;=2++=3()=2 2﹣3)﹣;﹣﹣(=3+2+2+(3)(2)(2=6;﹣)=12﹣6+0 =1)﹣﹣1(4).﹣(=4+1+3+11.计算:2×2x ﹣43﹣(1)()÷+3=4+=(﹣29 +)÷4﹣2=74÷=8.=5;=22 2x﹣)(2+912.计算:﹣①4 +2;﹣+2=7+4=4 +3+42)﹣(3)(7 7+4②(﹣4﹣﹣(﹣)﹣.)﹣1=45+6=49 4845+1613.计算题=2×3×(1)5 =30;××=== ;(2)﹣+2=×4 ﹣2 +2×=2 ﹣2 +)(1﹣(3)(﹣1﹣+1)=﹣(1+)=﹣(1﹣5)=4;)(﹣)=2)=2=12;(4)÷(﹣﹣÷÷()(5÷÷﹣﹣;×=4++=4+2)6(.===22+3ab+b的值.,求.已知:,b=a14a=2﹣,解:=2+ ,b= a=则a+b=4,ab=1,第8页(共12页)222 +ab=(a+ba)+3ab+b.=17,求x,y 都是有理数,并且满足.已知15的值.,y 的值,因此,将已知等式变形:【分析】观察式子,需求出x,都是有理数,可得x,y ,求解并使原式有意义即可.,【解答】解:∵.∴2也是有理数,与y+4 x,y 都是有理数,∴x+2y ﹣17 ∵解得∴有意义的条件是∵,≥x y,﹣∴取x=5,y= 4.∴此类问题求解,或是转换式子,求出各个未知数的值,然后代入求【点评】解.或是将所求式子转化为已知值的式子,然后整体代入求解..a﹣16.化简:﹣=﹣a,=【分析】分别求出,代入合并即可..【解答】解:原式=)=+(﹣a+1﹣a时,时,=a,当a≤0 0 【点评】本题考查了二次根式性质的应用当a≥a.=﹣.计算:17;=712﹣=9 ﹣1()9+53+10;×22=××)(22= 220162015﹣)()((3.)2015)])(=[(+﹣)?(+ 2015)()﹣(= 5 6? +)=+﹣(.﹣﹣=页)第页(共9 1218.计算:.2解:原式=+1﹣)﹣2 ++(=3+3﹣2+1﹣2+.=4﹣2的值.﹣y4,计算x19.已知y=+﹣【分析】的值,进,解不等式组可得x 根据二次根式有意义的条件可得:2 y求值即可.y 的值,然后代入x﹣而可求出【解答】解:由题意得:,解得:x=,+把x=代入y=﹣4,得y=﹣4,2=﹣16=﹣14.当x=,y=﹣4时x﹣y20.已知:a、b、c 是△.ABC的三边长,化简【解】解:∵a、b、 c 是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=| a+b+c| ﹣| b+c﹣a|+| c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣| x﹣5|.解:∵1<x<5,∴原式=| x﹣1| ﹣| x﹣5|=(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==?回答下列问题:(1)利用你观察到的规律,化简:第10 页(共12 页).+2)计算:+++?(=1)根据观察,可发现规律;【分析】(,根据规律,可得答案;分子分母都乘以分母两个数的差,2)根据二次根式的性质,(可分母有理化.= =【解答】解:(1)原式;)++2)原式=(+?+1).=(﹣,=,=,23 .观察下面的变形规律:=?解答下面的问题:=,;﹣n 为正整数,请你猜想(1)若=)计算:(2))×((+?++)+1)+?+(﹣]()=[解:原式(﹣1)+(﹣)+(﹣)=)(+1(﹣1.﹣﹣221)=(1 = 2015=2016.阅读下面的材料,并解答后面的问题:241﹣==;﹣==﹣==;((1)观察上面的等式,请直接写出n 为正整数)的结果﹣;=1 ))((2)计算()请利用上面的规律及解法计算:3()(++(++?).)?﹣+)(+﹣1+﹣=()(﹣=(1)+11=2017﹣.=2016页)第页(共11 1225.计算:(1)6﹣2 ﹣3= 6﹣5= 6﹣;+﹣+4=4 +3 )4﹣2=7+2.(2+4﹣2| = 2﹣﹣26.计算(1)|﹣2+2;=+2)(2+×﹣﹣×﹣﹣.===5+1+27.计算.﹣10=(6)÷+4﹣=(106)÷+418﹣40=()÷+8=30÷.=1528.计算(1)9﹣20+=;+7﹣5+2= 9 +142(2)(2 ﹣1)(2 +1)﹣(1﹣2 )= 12﹣1﹣1+4 ﹣12 = 4 ﹣2.29.计算下列各题.=6﹣6 +=6﹣﹣)×(1)(+35 ;﹣+=+1﹣+1﹣(2)2 .﹣×= 2=.计算30+7﹣)(195+2+14 ﹣20+=;= 92(2)(﹣1)(+1)﹣(1﹣2 )=3﹣1﹣(1+12﹣4 )=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。
答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。
答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。
答案:4√2
2. 解方程:
√x + 3 = 7。
答案:x = 16
四、证明题
1. 证明√2是一个无理数。
答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。
答案:边长为√50厘米,即5√2厘米。
六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。
七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。
二次根式50道计算题一、基础题目1.计算 $ \sqrt{9} + \sqrt{16} $ 。
答案:$ \sqrt{9} + \sqrt{16} = 3 + 4 = 7 $ 。
2.计算 $ \sqrt{25} \times \sqrt{36} $ 。
答案:$ \sqrt{25} \times \sqrt{36} = 5 \times 6 = 30 $ 。
3.计算 $ 2\sqrt{49} - \sqrt{16} $ 。
答案:$ 2\sqrt{49} - \sqrt{16} = 2 \times 7 - 4 = 14 - 4 = 10 $ 。
4.计算 $ \sqrt{81} \div \sqrt{9} $ 。
答案:$ \sqrt{81} \div \sqrt{9} = 9 \div 3 = 3 $ 。
5.计算 $ (\sqrt{9} + \sqrt{4}) \times (\sqrt{16} -\sqrt{1}) $ 。
答案:$ (\sqrt{9} + \sqrt{4}) \times (\sqrt{16} -\sqrt{1}) = (3 + 2) \times (4 - 1) = 5 \times 3 = 15 $ 。
二、进阶题目6.计算 $ \sqrt{2} \times \sqrt{8} $ 。
答案:$ \sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8} = \sqrt{16} = 4 $ 。
7.计算 $ (\sqrt{20} + \sqrt{5})^2 $ 。
答案:$ (\sqrt{20} + \sqrt{5})^2 = (\sqrt{20})^2 +2 \times \sqrt{20} \times \sqrt{5} + (\sqrt{5})^2 = 20 +2\sqrt{100} + 5 = 20 + 20 + 5 = 45 $ 。
8.计算 $ \sqrt{49} \div \sqrt{98} $ 。
二次根式计算专题训练(总17页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除二次根式计算专题训练解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.二次根式计算专题训练参考答案与试题解析解答题(共30小题)1.(2017春?钦南区校级月考)计算:(1)+;(2)(+)+(﹣).【分析】(1)首先化简二次根式,进而合并得出答案;(2)首先化简二次根式,进而合并得出答案.【解答】解:(1)+=2+5=7;(2)(+)+(﹣)=4+2+2﹣=6+.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.2.(2017春?东港区月考)计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.【分析】(1)直接利用零指数幂的性质结合负整数指数幂的性质以及二次根式的性质、绝对值的性质分别化简求出答案;(2)直接化简二次根式,进而合并求出答案;(3)直接利用多项式乘法以及完全平方公式化简求出答案.【解答】解:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2=1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)=2﹣4×﹣+2=+;(3)(x﹣3)(3﹣x)﹣(x﹣2)2=﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣13.【点评】此题主要考查了二次根式的加减运算以及零指数幂的性质、负整数指数幂的性质以及二次根式的性质等知识,正确掌握相关运算法则是解题关键.3.(2017春?上虞区校级月考)计算化简:(1)++(2)2﹣6+3.【分析】(1)直接化简二次根式进而合并求出答案;(2)直接化简二次根式进而合并求出答案.【解答】解:(1)++=2+3+2=5+2;(2)2﹣6+3=2×2﹣6×+3×4=14.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.4.(2017春?兰陵县校级月考)计算(1)+﹣(2)÷×.【分析】先进行二次根式的化简,再结合二次根式混合运算的运算法则进行求解即可.【解答】解:(1)原式=2+4﹣2=6﹣2.(2)原式=2÷3×3=2.【点评】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式的化简及二次根式混合运算的运算法则.5.(2017春?黄陂区月考)计算:(1)×+3×2(2)2﹣6+3.【分析】(1)二次根式乘法法则即可化简求值(2)将各二次根式化为最简二次根式,然后合并同类二次根式.【解答】解:(1)原式=7+30=37(2)原式=4﹣2+12=14【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.6.(2017春?汇川区校级月考)计算:(1)()2﹣20+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)【分析】(1)根据二次根式的性质即可求值.(2)先将各二次根式化简,然后合并同类二次根式即可求值(3)化为最简二次根式后进行合并同类二次根式即可求值(4)先将7+4进行分解,然后提取公因式,最后再化简求值.【解答】解:(1)原式=3﹣1+=(2)原式=(3﹣)×=24(3)原式=4﹣12+5=﹣8+5(4)原式=(2+)2(2﹣)2+(2+)(2﹣)=1+1=2【点评】本题考查二次根式的混合运算,解题的关键熟练二次根式的运算法则,本题属于基础题型.7.(2017春?滨海县月考)计算(1)(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的除法法则运算;(3)先把各二次根式化简为最简二次根式,然后合并即可;(4)利用乘法公式展开,然后合并即可.【解答】解:(1)原式==6a;(2)原式==;(3)原式=2+3﹣2﹣4=2﹣3;(4)原式=3﹣3+2﹣5=﹣2﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.(2017春?杭州月考)计算::(1)+﹣(2)3+(﹣)+÷.【分析】根据二次根式的性质、二次根式的混合运算法则计算即可.【解答】解:(1)原式=+3﹣2=2;(2)原式=+﹣2+=.【点评】本题考查的是二次根式的混合运算,掌握二次根式的混合运算法则是解题的关键.9.(2017春?临沭县校级月考)计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.【分析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=3﹣2+=3﹣2+2=3;(2)原式=1﹣5+1+2+5=2+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10.(2017春?滨州月考)计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式计算;(4)先利用零指数幂的意义计算,然后把二次根式化为最简二次根式后合并即可.【解答】解:(1)原式=3﹣2+=2;(2)原式=2+2﹣3+=3﹣;(3)原式=12﹣6=6;(4)原式=+1+3﹣1=4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.(2017春?武昌区校级月考)计算:(1)(3+﹣4)÷(2)+9﹣2x2.【分析】(1)直接化简二次根式进而合并,再利用二次根式除法运算法则求出答案;(2)直接化简二次根式进而合并得出答案.【解答】解:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2=4+3﹣2x2×=7﹣2=5.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.12.(2017春?孝南区校级月考)计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.【分析】①首先化简二次根式,进而合并求出答案;②首先利用乘法公式化简,进而合并求出答案.【解答】解:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2.=49﹣48﹣(45+1﹣6)=﹣45+6.【点评】此题主要考查了二次根式混合运算,正确化简二次根式是解题关键.13.(2017春?嵊州市月考)计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).【分析】(1)直接利用二次根式乘法运算法则求出答案;(2)直接化简二次根式进而合并得出答案;(3)直接利用乘法公式计算得出答案;(4)首先化简二次根式,进而利用二次根式除法运算法则求出答案;(5)直接利用二次根式乘除法运算法则求出答案;(6)直接找出有理化因式进而化简求出答案.【解答】解:(1)××===2×3×5=30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.14.(2017春?汇川区校级月考)已知:a=,b=,求a2+3ab+b2的值.【分析】根据分母有理化法则化简a、b,根据完全平方公式把所求的代数式变形,代入计算即可.【解答】解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab=17.【点评】本题考查的是二次根式的计算,掌握分母有理化法则、平方差公式和完全平方公式是解题的关键.15.(2017春?启东市月考)已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.(2016?阳泉模拟)化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a≤0时,=﹣a.17.(2016?山西模拟)计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2015(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2015(+)=(5﹣6)2015(+)=﹣(+)=﹣﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(2016?崇明县二模)计算:.【分析】分别依据分数指数幂、完全平方公式、负整数指数幂、分母有理化化简各式,再合并同类二次根式即可.【解答】解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.【点评】本题主要考查二次根式的混合运算,掌握分式的混合运算顺序是解题的根本,准确运算分数指数幂、负整数指数幂、完全平方公式及分母有理化等是解题的关键.19.(2016春?天津期末)已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.20.(2016秋?新化县期末)已知:a、b、c是△ABC的三边长,化简.【分析】根据三角形的三边关系定理得出a+b>c,b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.【解答】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.【点评】本题考查了合并同类项,二次根式的性质,绝对值的应用,关键是去掉绝对值符号.21.(2016春?长春期末)已知1<x<5,化简:﹣|x﹣5|.【分析】直接利用x的取值范围,进而去绝对值以及化简二次根式进而得出答案.【解答】解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5|=(x﹣1)﹣(5﹣x)=2x﹣6.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22.(2016秋?安陆市期末)观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.23.(2016春?固始县期末)观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()【分析】(1)根据题意确定出一般性规律,写出即可;(2)原式分母有理化后,计算即可得到结果.【解答】解:(1)=﹣;故答案为:﹣;(2)原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=2015.【点评】此题考查了分母有理化,弄清题中分母有理化规律是解本题的关键.24.(2016秋?贵港期末)阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().【分析】(1)利用分母有理化的方法解答;(2)根据平方差公式计算即可;(3)利用阅读材料的结论和二次根式的加减混合运算法则计算.【解答】解:(1)==﹣,故答案为:﹣;(2)()()=()2﹣()2=1,故答案为:1;(3)(+++…+)()=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1=2016.【点评】本题考查的是分母有理化的应用,掌握平方差公式、二次根式的性质是解题的关键.25.(2016春?博乐市期末)计算:(1)6﹣2﹣3(2)4+﹣+4.【分析】(1)先进行二次根式的合并,然后进行二次根式的化简;(2)先进行二次根式的化简,然后合并同类二次根式.【解答】解:(1)原式=6﹣5=6﹣;(2)原式=4+3﹣2+4=7+2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简以及同类二次根式的合并.26.(2016春?大冶市期末)计算(1)|﹣2|﹣+2(2)﹣×+.【分析】(1)直接利用绝对值的性质以及二次根式的性质化简求出答案;(2)首先化简二次根式进而合并求出答案.【解答】解:(1)原式=2﹣﹣2+2=;(2)原式=﹣×5+=﹣1+=﹣.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质,正确化简二次根式是解题关键.27.(2016春?寿光市期末)计算.【分析】观察可知,先化简括号内的并合并,再相除计算.【解答】解:原式=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.【点评】熟练化简二次根式,以及合并同类二次根式,实数的运算顺序与有理数相同.28.(2016春?禹城市期末)计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=9+14﹣20+=;(2)原式=12﹣1﹣1+4﹣12=4﹣2.【点评】本题考查了二次根式的混合运算,掌握平方差公式、完全平方公式以及化二次根视为最简二次根式是解题的关键.29.(2016秋?郓城县期末)计算下列各题.(1)(﹣)×+3(2)﹣×.【分析】(1)先根据二次根式的乘法法则运算,然后化简后合并即可;(2)先根据二次根式的乘除法则运算,然后化简后合并即可.【解答】解:(1)原式=﹣+=6﹣6+=6﹣5;(2)原式=+1﹣=2+1﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.30.(2016春?澄城县期末)计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2.【分析】(1)首先化简二次根式,进而合并同类二次根式求出答案;(2)直接利用乘法公式化简,进而求出答案.【解答】解:(1)9+7﹣5+2=9+14﹣20+=;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.。
八年级下册二次根式的计算专题八年级下册二次根式的计算专题一.解答题(共30小题)1.(2016·太仓市模拟)计算:√(3-2√2) + √(3+2√2)2.(2016·丹东模拟)计算:√(7+4√3) - √(7-4√3)3.(2016·海南校级一模)1)计算:√(2-√3) - √(5-2√3) + 32)化简:(2+√3)×(3-√3)4.(2016·崇明县二模)计算:√(5+2√6) + √(7+2√6)5.(2016春·罗定市期中)计算:√(10+4√6) - √(10-4√6)6.(2016春·津南区校级期中)计算:(√5-√3)/(√5+√3)7.(2016春·萧山区期中)1)计算:(√3+1)/(√2-1) - 2√22)化简:(2√6+√2)/(√6-√2)8.(2016春·台安县期中)计算:√(3+2√2) + √(7-4√3)9.(2016春·封开县期中)计算:√(2+√3)×√(3-√2)10.(2016春·中山市期中)计算:√(5+√24) - √(3+√8)11.(2016春·江门校级期中)计算:5/√8 + 3/√3212.(2016春·浦东新区期中)计算:2√5 + √45 - 3√213.(2016春·临沭县期中)1)计算:(√5+√2)/(√5-√2) + (√5-√2)/(√5+√2)2)化简:√(3+2√2) + √(3-2√2) - √(7+4√2)14.(2016春·新昌县校级期中)1)计算:2√(2+√3) - √(2-√3)2)化简:(√2+√3)/(√2-√3) - (√2-√3)/(√2+√3)15.(2016春·蓟县期中)1)计算:(√3+√2)/(√3-√2)+ (√3-√2)/(√3+√2) 2)化简:√(5+2√6) + 2√(5-2√6)16.(2016春·定州市期中)1)计算:4+√(7+4√3)/(2+√3) + √(7-4√3)/(2-√3) 2)化简:(√2-1)/(√3-2) - (√2+1)/(√3+2)17.(2016春·固始县期中)1)计算:4√2/(√6-√2)2)计算:(√5-1)/(√5+1)÷(√2-1)×(√2+1)18.(2016春·蚌埠期中)1)计算:(√5+1)/(√5-1) - (√3+1)/(√3-1)2)化简:√(2+√3) + √(6-2√3) - √(4-√3)19.(2016春·泰兴市期中)1)计算:√(5+2√6) - √(5-2√6) + √(7+4√3)2)化简:(√2+√3)/(√2-√3) + (√3+1)/(√3-1)20.(2016春·浦东新区期中)计算:(√3+√2)² - (√3-√2)²21.(2016春·东湖区期中)1)计算:(√2+√3)² - 3(√2-√3)²2)计算:√(3+2√2)×√(3-2√2) + √(7+4√2)22.(2016春·邹城市校级期中)1)计算:(√2+√3)/(√2-√3) - (√3-√2)/(√3+√2)2)化简:(√5+√3)/(√5-√3) - (√5-√3)/(√5+√3)23.(2016春·安陆市期中)1)计算:√(3+√2)×√(2-√2)2)化简:√(5+2√3) + 2√(5-2√3) - √(7+4√6)24.(2016春·微山县期中)1)计算:2√2×(√2+√3) - √2×(√2-√3)2)化简:√(7+4√2) - √(5+2√6) + 2√(3-2√2)25.(2016春·天津校级期中)1)计算:√(7+4√3) - √(7-4√3)÷√(5+2√3)2)化简:(√3+√2)×(√3-√2) + (√5+√2)×(√5-√2)26.(2016春·杭州期中)1)计算:√(7+4√3) + √(7-4√3) - 2√32)化简:(√3+√2)×(√3-√2) - (√5-√2)×(√5+√2)27.(2016春·召陵区期中)1)计算:√(a²+2a+1) - √(a²-2a+1)2)化简:(√a-√b)²28.计算与化简:1)2)3) ÷ - ÷ 3 - + × × +4) ÷ (x+2).改写:计算并化简以下式子:1)2)3) ÷ - ÷ 3 - + × × +4) ÷ (x+2).29.计算:1) 32) (23)4) ( - +3 ×6 + ) (2 ÷ )+(-1 2-3 ÷ 2 )2 ÷)×5) 2-3+2×+(1)-(2).改写:计算以下式子:1) 32) (23)4) ( - +3 ×6 + ) (2 ÷ )+(-1 2-3 ÷ 2 )2 ÷)×5) 2-3+2×+(1)-(2).30.计算1)3)1|-π+() (2) (1- ×(4)+2-1)( -( +1)+( -)-1)2. 改写:计算以下式子:1)3)1|-π+() (2) (1- ×(4)+2-1)( -( +1)+( -)-1)2.分析】(1)先合并同类二次根式,再进行分数运算;(2)先化简二次根式,再合并同类二次根式,最后进行分数运算.解答】解:(1)原式=2+13;2)原式=2﹣+1+23+14.点评】此题综合考查了二次根式的加减和分数的加减乘除运算,需要正确掌握运算法则和化简方法.注意分母中含有二次根式时需要进行有理化处理.14.计算:$2\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{3}$。
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。
二次根式测试题及答案一、选择题(每题3分,共15分)1. 计算下列二次根式的结果:\(\sqrt{4}\) 的值是()A. 2B. -2C. 4D. 02. 对于二次根式 \(\sqrt{9+x}\),若 \(x\) 的值为负数,则下列哪个选项是正确的?A. \(x\) 必须小于 -9B. \(x\) 必须大于 -9C. \(x\) 可以是任何实数D. \(x\) 必须等于 -93. 将下列二次根式化简为最简形式:\(\sqrt{64x^2}\) 可以化简为()A. \(8x\)B. \(8|x|\)C. \(-8x\)D. \(16x\)4. 若 \(\sqrt{a}\) 是有理数,那么 \(a\) 必须满足的条件是()A. \(a\) 必须大于0B. \(a\) 必须等于0C. \(a\) 必须小于0D. \(a\) 可以是任何实数5. 计算下列二次根式的加法:\(\sqrt{7} + \sqrt{7}\) 的结果是()A. \(2\sqrt{7}\)B. \(7\)C. \(14\)D. \(\sqrt{14}\)二、填空题(每题2分,共10分)1. 计算 \(\sqrt{25}\) 的结果是______。
2. 若 \(\sqrt{x} = 5\),则 \(x\) 的值是______。
3. 化简 \(\sqrt{121}\) 的结果是______。
4. 若 \(\sqrt{y} = -4\),那么 \(y\) 是______(填“有理数”或“无理数”)。
5. 计算 \(\sqrt{8} - \sqrt{18}\) 的结果是______。
三、解答题(每题7分,共28分)1. 计算并化简下列二次根式:\(\sqrt{50} - \sqrt{32}\)2. 解下列方程:\(2\sqrt{x} + 5 = 13\)3. 证明:\(\sqrt{2}\) 是无理数。
四、综合题(每题8分,共16分)1. 若 \(\sqrt{3a+1} + 4 = 9\),求 \(a\) 的值。
二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。
二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。
二次根式计算专题训练解答题(共30小题) 1 •计算: (1)?+ :■■;2•计算:(3)(x — 3) (3 — x ) — ( x — 2) 23 •计算化简: (1) J+.T* ■:4 •计算(1) ■+「J 1咚』(2)(倔) + (应-诉)•(1)冗― 3.14)+^3 — 2| ― + ((2)匸十.一X T 7:.—2(2) 一 :―(「; — .■:)•(2) 2 I/ —(常——堡(E +e )(寸)(畧——0)(€+0)+2(号——)(孚寸+卜)(寸)E x呂—粵)(0)— WIN (0)(02)罔弓乡(L)■ ■3CXI X 嘴E X E9•计算(1) I ::- 4 _ +J 丨宁:;10.计算:(2)伍+胡-(阿|“)8 •计算:: (1) ■+ -- . ■:(2) 3魯極(需-麻)+阪(3)( 2讥皿)(酣1 -麻);(4)(2) (1— -) (1+ D + (1+ G )(1)顷-412•计算:①仏+•廊-晶+W2 ;—7+4 ;) ( 7-4;;)-( 3 ! ■- 1) 213.计算题(1) 一・X I!,x I I(3)( - 1- . 口)( - . n+1)(5) .:■- [ x .丨一:+.:14.已知:求a2+3ab+b2的值.15 •已知x, y都是有理数,并且满足.,求,-•:亍的值.17•计算:⑵ 2. :;(1)9「;+5 1:?- 3 :-:;(3)(厂'.)2016(几--:)2015.丄18•计算:2代+詰-1尸_(寺厂打卡亍19.已知存二一;+斜-》"-4,计算x- y2的值.2°•已知:a 、b 、c 是A ABC 的三边长,化简' :1」 ,,.21 •已知 1v x v 5,化简:,,T ,.- |x -5| .22. 观察下列等式:23. 观察下面的变形规律:=「,.「=—, 解答下面的问题: (1)若n 为正整数,请你猜想 _亍= ; Vn+l+v n(2) 计算:(亠 + J 厂+』▼+••+ ---- 1 』 ------ )X(*2O1&+1)V2+1 V3+V2 V4+V3V2016+V20L5② 一 = -V5-V3 | =■' ■(亦+岛)(畐£〕 2③ -==■' ■③.…]却7+岛)Wnj2①]= 丨 =:1; 后「5+1)祐T) 2'7••回答下列问题:(1)利用你观察到的规律,化简: 1&+V23(2)计算:1+V3^W5^+V7+ +37TT+VT O T7(2) ^5^5 -VS +^2.26 •计算(1) \\[3- 2| -V4+2\[327•计算| 二匚. ■: 1:\24. 阅读下面的材料,并解答后面的问题: I = = — 1<2+1 (VzH )(V2-9 —I —=「点哼 「=込-、压; 「1==所—形(1) 观察上面的等式,请直接写出」,一(n 为正整数)的结果V n41 十 7 n(2) 计算(I ;i ) ( I 门)= ___ ;(3) 请利用上面的规律及解法计(--17 ').計宓渥.30.计算(1) 9 +7 T 7- 5 - :-:+2 .'28 •计算(1)恥+7届-5極+2$(2) (2. 一;- 1) (2. ;+1)-( 1-2「;)229.计算下列各题.(1)(. ■:-「)x . ::⑵I -、".(2) (:- 1) (.「;+1)-(1 - 2 :■;) 2二次根式计算专题训练参考答案与试题解析解答题(共30小题)1. (2017春?钦南区校级月考)计算: (1) 「+ 亍;(2) C 「+帀)+ (卜G.【分析】(1)首先化简二次根式,进而合并得出答案; (2)首先化简二次根式,进而合并得出答案. 【解答】解:(1) - + ■■=2. ~+5 口 =7.";(2)(廊皿6)+( =朋+池+2弟-晶 =6 一 "■+ 匚【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.(2)后-4將-(鹿-伍).(3) (x -3) (3-x )-( x -2) 2【分析】(1)直接利用零指数幕的性质结合负整数指数幕的性质以及二次根式的性质、绝对值的性质分别化简求出答案; (2)直接化简二次根式,进而合并求出答案;(3)直接利用多项式乘法以及完全平方公式化简求出答案.2 (2017春?东港区月考)计算:(1)冗-3.14)。
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
(2) ( T 7 + 〒)+ (~).(2) .r-4 丄-(--~).(3)( x — 3) (3 - x ) (x - 2)3 •计算化简: (1)匚 + =+ r(2) 2 = - 6 亠+3 U.二次根式计算专题训练解答题(共30小题) 1 •计算: (1) 〒+〒;2•计算:(1)(n-3.14) 0+l一21-^+d) -24 •计算 (1)匚+ “-(K9CM<)KCM <(号——0)(畧+0) +2g —cxl )(节+卜)(寸)E X(冒—博)侍e +^——g 0(0)粵——^——芒+(02)弓爲―(L)■ ■雯 + 置O ——IE 0x ^e +^X E(L)■ ■8 •计算::(1)二+ 厂-r (2) 3 一+ ■: (*二一;.汕)9•计算(1) =-4 丄+.=-乙(2) (1- ~.) (1+ ~) + (1+ 二)210.计算:(1) . = - 4 二+ 匚(2)匚+2 = -( .F-二)(3)( 2 =+ ~) (2 二-~); (4)[厂-(-D 0.11.计算:(1) (3 二+:市-4 •)十〒12•计算:①4二+ 77 -匚+4匚; 购(7+4 _) ( 7-4 _)-( 3 匸-1)13.计算题 (1)下(3)(— 1 -~) (- ~+1)14.已知:(5).三十二- b',求 a 2+3ab+b 2 的值.(4)上/(15 •已知x, y都是有理数,并且满足;_-.i ,求.…的值.17•计算:⑵2 -:7(1) 9 二+5 = - 3「;(3)(」! .'0 2016 ( -- 7) 2015丄18•计算:,•「:•「「「一」19 .已知W匕匚+,;二:.-4,计算X- y2的值.(1)若n为正整数,请你猜想1 = Vn+1+ Vn)x(沖「2°•已知:a、b、c是^ABC的三边长,化简—L,-:-21 •已知1v x v 5,化简:.■- |x-5| .22. 观察下列等式:① 1 二一「 ';② 1③ 1 二 _ _ =打_ _I 十-- '1••回答下列问题:(1)利用你观察到的规律,化简:一:5+V23(2)计算.——=——+ 1 + +•• +1+V3 后忑荷街:ViiWioi23. 观察下面的变形规律:1「、丄「乙二-乙1厂二,解答下面的问题:(2) 计算:1 一+ ] +•• +V2+1 V3+V2 V4+V3 V2016+V2015' (n 为正整数)的结果26 •计算(1) | 二-2| -【+2 二(2)底-存质. 24.阅读下面的材料,并解答后面的问题:+-—1 :.1 ■1Vs V2V3+V2(V3+V2)(V3W2)1=V4W3=V4+V3 (VI+V3)(V4^/3)(1)观察上面的等式,请直接写出 (2) 计算(- J (- I )=(3) 请利用上面的规律及解法计算:"近+1 +后忑+冈齐 卄+磁01亍+迈016)(癒^灯).(2) ^5^5-価 +4^2.27.计算丨 〒亍’125.计算:(2) (2 二-1) (2 二+1)-( 1-2 7))29.计算下列各题.(1)(「:-妁\)1&上+3 -⑵「二忑X「30.计算(1) 9 二+7 = - 5「+2(2)(二-1)(二+1)-(1 - 2 2 28 •计算(1)9 二+7 r - 5 二+2 . 1二次根式计算专题训练参考答案与试题解析解答题(共30小题)1. (2017春?钦南区校级月考)计算:(1)不+「;(2)( ~?+ 不)+ ( ^―:).【分析】(1)首先化简二次根式,进而合并得出答案;(2)首先化简二次根式,进而合并得出答案.【解答】解:(1)+〒=2 二+5 "=7 ";(2)(下+ 不)+ (=—-)=4* 岁+2"寸.;+2* ':;—-■!.;=6 ;+心.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.2. (2017春?东港区月考)计算:(1) ( n—3.14) °+| 2| —「+ ^ ) —2.3(3)(x—3) (3—x) — ( x—2) 2.【分析】(1)直接利用零指数幕的性质结合负整数指数幕的性质以及二次根式的性质、绝对值的性质分别化简求出答案;(2)直接化简二次根式,进而合并求出答案;(3)直接利用多项式乘法以及完全平方公式化简求出答案.【解答】解: (1) ( n—3.14) 0+|「-2| -「+J)—2=1+2 -乙-4 二+9=12- 5 7;(2). = - 4:]_ -(二-匚)=2 二-4xJ- 7+2 匚4=■+ ■:;(3)(x-3) (3-x)-( x-2厂=-x2+6x - 9 -(x2- 4x+4)2=-2<+10x- 13.【点评】此题主要考查了二次根式的加减运算以及零指数幕的性质、负整数指数幕的性质以及二次根式的性质等知识,正确掌握相关运算法则是解题关键.3. (2017春?上虞区校级月考)计算化简:(1) 匚+=(2) 2 r - 6 +3.【分析】(1)直接化简二次根式进而合并求出答案;(2)直接化简二次根式进而合并求出答案.【解答】解:(1)匚+二+一7=2 匚+3 匚+2 二=5 匚+2 二;(2) 2 .r - 6 +3=2X 2 二-6X +3 X 4 二3【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.4. (2017春?兰陵县校级月考)计算(1)匚+ r - M(2)—x【分析】先进行二次根式的化简,再结合二次根式混合运算的运算法则进行求解即可.【解答】解:(1)原式=2「+4 _- 2 :=6 匚-2 二.(2)原式=2二十3二X 3匚=2匚.【点评】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式的化简及二次根式混合运算的运算法则.5. (2017春?黄陂区月考)计算:(1)「X -+3 _X2 r(2) 2.r - 6 +3 7.【分析】(1) 二次根式乘法法则即可化简求值(2)将各二次根式化为最简二次根式,然后合并同类二次根式.【解答】解:(1)原式=7 ~+30 ~=37 -(2)原式=4 _-2 =+12 T=14 匚【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.6. (2017春?汇川区校级月考)计算:(1) (「)2-20+| - ' |(2)(宀!- :)X(3) 2 = - 3「+r ;(4)(7+4 二)(2 -二)2+ (2+ 二)(2 -乙)【分析】(1)根据二次根式的性质即可求值.(2) 先将各二次根式化简,然后合并同类二次根式即可求值(3) 化为最简二次根式后进行合并同类二次根式即可求值(4) 先将7+4二进行分解,然后提取公因式,最后再化简求值.【解答】解:(1)原式=3- 1+ ='(2) 原式=(3三=24(3) 原式=4 7- 12 7+5 匚二-8 7+5 匚(4) 原式=(2+ 二)2(2 - 7) 2+ (2+ 二)(2 -乙)=1+1 =2【点评】本题考查二次根式的混合运算,解题的关键熟练二次根式的运算法则, 本题属于基础题型.7. (2017春?滨海县月考)计算(1).二?二(a> 0)(3) r + =-匚-“(4)(3+ ;,_?) (「]-")【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的除法法则运算;(3)先把各二次根式化简为最简二次根式,然后合并即可;(4)利用乘法公式展开,然后合并即可.【解答】解:(1)原式=.;;…=6a;=:;(3)原式=2「+3「- 2「- 4 -=2 二-3 匚;(4)原式=3 匚-3 二+2 ■-5 匚=-2 ':-".【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式, 然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8. (2017春?杭州月考)计算::(1)「+ 〒-=(2) 3.:丄+匚(二-+玉十匚.【分析】根据二次根式的性质、二次根式的混合运算法则计算即可.【解答】解:(1)原式=「+3「- 2 ~=2 ~;(2)原式=7+ 7-2 7+ 7= 7.【点评】本题考查的是二次根式的混合运算,掌握二次根式的混合运算法则是解题的关键.9. (2017春?临沐县校级月考)计算(1).二-4:]二+ 三-二(2)(1 - ~) (1+ ~) + (1+ ~) 2.【分析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=3匚-2二+=3 匚-2 二+2 匚=3 _;(2)原式=1 - 5+1+2 7+5=2+2 -.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式, 然后进行二次根式的乘除运算,再合并即可.10. (2017春?滨州月考)计算:(1).二-4丄+ 二(2)匚+2 =-(.= -二)(3) (2 -汁冒i\) (2會);(4) --------- 汁=-(二-1) 0.V3-1【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式计算;(4)先利用零指数幕的意义计算,然后把二次根式化为最简二次根式后合并即可.【解答】解:(1)原式=3 -- 2 _+ -=2匚;(2)原式=2匚+2 =- 3 =+匚=3 ':- ■:;(3)原式=12 - 6=6;(4)原式=二+1+3 二-1=4 「;.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11. (2017春?武昌区校级月考)计算:(1) (3 汁r-4.丄)十"【分析】(1)直接化简二次根式进而合并,再利用二次根式除法运算法则求出答案;(2)直接化简二次根式进而合并得出答案.【解答】解:(1) (3.U汁吉化、:-4」十〒=(9 2 十4 ■:(2) ;「+9 --5 讯9 =8 f 4甘::=2;=4 :+3 :- 2X 2X LI=7 ,- 2 :,=5 ■■.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.12. (2017春?孝南区校级月考)计算:① 4 二+「-匚+4 二;购(7+4 ") (7-4 ")-( 3 :- 1) 2.【分析】①首先化简二次根式,进而合并求出答案;② 首先利用乘法公式化简,进而合并求出答案.【解答】解:①4二+匸-匚+4二=4 二+3 ■- 2 匚+4 匚=7 二+2 匚;购(7+4 二)(7-4 二)-(3 -- 1) 2.=49- 48-( 45+1 - 6 二)=-45+6 ".【点评】此题主要考查了二次根式混合运算,正确化简二次根式是解题关键.13. (2017春?嵊州市月考)计算题(1)(3) (- 1- _) (- ~+1)【分析】(1)直接利用二次根式乘法运算法则求出答案;(2) 直接化简二次根式进而合并得出答案;(3) 直接利用乘法公式计算得出答案; (4) 首先化简二次根式,进而利用二次根式除法运算法则求出答案;(5) 直接利用二次根式乘除法运算法则求出答案;(6) 直接找出有理化因式进而化简求出答案.【解答】解:(1) 「X 甘|:;X .不=-__■ '二代 —=—=― =2X 3X 5=30;=~;(3) (- 1- ^)(-二+1) =-(1+ 二)(1 -=-(1-5)=4;(4) (5)(6)—「J X r+玉 1(4).启( 4 二-2 匚+2X :/22【分析】根据分母有理化法则化简(5) 卞• X r + —=4 -;*「•一 '.+2 r'.(6) = ^ u +-仝门 + -V6^/2 (V6+V2) (^6 W2) 42 【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.14 (2017春?汇川区校级月考)已知:a _J , b_J .,求a 2+3ab+b 2的值.a 、b ,根据完全平方公式把所求的代数式变 形,代入计算即可.【解答】解:a__ -=2+乙b__ - 2 -乙贝U a+b_4, ab_1,a 2+3ab+b 2_ (a+b ) 2+ab_17.【点评】本题考查的是二次根式的计算,掌握分母有理化法则、平方差公式和完 全平方公式是解题的关键. 15.(2017春?启东市月考)已知x, y 都是有理数,并且满足求.■:…的值.【分析】观察式子,需求出x , y 的值,因此,将已知等式变形: r 2(x 2+2v-17)+V2(y+4)=0,x , y 都是有理数,可得.x +2y-17=0,求解并使原式[y+4=0有意义即可.=12;(x2+2y-17)+V2(y+4)=0-16. (2016?阳泉模拟)化简:【分x , y 都是有理数,••• x 2+2y - 17与y+4也是有理数,x 2+2y-17=0y+4二 0解得ly=-4有意义的条件是x >y ,•••取 x=5, y=- 4,S L S -二-;【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或 是将所求式子转化为已知值的式子,然后整体代入求解.【解答】解:原式=-a i+ I =(-a+1)【点评】本题考查了二次根式的性质的应用,注意:当 a >0时, ==a ,当a < 0 时,「二-a. 17. (2016?山西模拟)计算:(1) 9 上-3 二;(2) 2 =:匚 '■(3) (二「)2016 ( ■- ^) 2015.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2) 利用二次根式的乘除法则运算;(3) 先利用积的乘方得到原式=[(诉+后)(屈-宀^) ]2015?(后+衣),然后 利用平方差公式计算.【解答】解:(1)原式=9二+10二-12二=7 二;分别求出(2)原式=2X 2X 2X1 3 12x i x t 【点评】本题主要考查二次根式的混合运算, 掌握分式的混合运算顺序是解题的 根本,准确运算分数指数幕、负整数指数幕、 完全平方公式及分母有理化等是解 【分析】根据二次根式有意义的条件可得: /2x-3>0 L 3-2Z >0,解不等式组可得 x 的值,=「匚.;(3)原式=[(一汎)(=_“;;*) ]2015?(二+非) =(5 - 6) 2015?(二+井) =_(~+^|:i') =---【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如 能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半 功倍. 丄18. (2016?崇明县二模)计算:.…「厂—【分析】分别依据分数指数幕、完全平方公式、负整数指数幕、分母有理化化简 各式,再合并同类二次根式即可.【解答】解:原式「+广)2-— +2 =3+3 - 2 二+1 - 2+ ?=4 - \题的关键.19. (2016春?天津期末)已知y= _: _+ - 4,计算x -y 2的值.进而可求出y 的值,然后代入X -y 2求值即可. /2x-3>0\3-2K >0,解得:x=— 把 x=Z 代入 y 二 _. _ + 一一 ・-4,得 y 二-4,2当 x~, y= - 4 时 x - y 2迢—16= - 1县.2 2 2【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.20 . ( 2016秋?新化县期末)已知:a、b、c是厶ABC的三边长,化简【分析】根据三角形的三边关系定理得出a+b>c, b+c>a, b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.【解答】解::a、b、c是厶ABC的三边长,a+b>c, b+c>a, b+a>c,二原式=| a+b+c| - | b+c_ a|+| c- b - a|=a+b+c-( b+c- a) + (b+a - c)=a+b+c- b - c+a+b+a- c=3a+b - c.【点评】本题考查了合并同类项,二次根式的性质,绝对值的应用,关键是去掉绝对值符号.21. (2016春?长春期末)已知1v x v5,化简:「:■- |x-5| .【分析】直接利用x的取值范围,进而去绝对值以及化简二次根式进而得出答案. 【解答】解:••• 1vxv 5,二原式=| x- 11 - | x- 5|=(x- 1)-( 5- x)=2x- 6.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22. (2016秋?安陆市期末)观察下列等式:①]= 「= _ 一;+••+3^11W101【分析】(1 )根据观察,可发现规律; 1 =Vn+2WnVn+2+Vn 2 ,根据规律,可得②]二 E ; 二 __ -;+ _ J. : _③ 1 二_ _ =打_ _I 十■- ■1••回答下列问题:(1)利用你观察到的规律,化简:15+^23(2)计算:一=一+ ] + 一.皿7^771观察上面的等式,请直接写出1(n为正整数)的结果——二匚Vn+1+Vn(1)若n为正整数,请你猜想1Vn+1+ Vn答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式= ;(5+723)(5-^23) 2( 2 ) 原式= 伍-1 、忑毛、衍云+..+(V IO1+3VIT)(V LOI-3V II)」(—-i).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.23. (2016春?固始县期末)观察下面的变形规律:;=-:,:;】「:,二八',^! =「,解答下面的问题:(2)计算:+ _ _+••+ _______ _____ )X(倂:! IV2+1 V3^VT V4+V3 V2016^+72015【分析】(1)根据题意确定出一般性规律,写出即可;(2)原式分母有理化后,计算即可得到结果.1Vn+1+Vn【解答】解:(1)1 = ”口+1「丘上故答案为:.I •- -1;(2)原式=[(逅-1) +(近-+(五-晶)+••+(也61&-“2015)](価血+1)=(「「-1)(心“、匕+1)=(心工出)2 1 3-12 =2016— 1 =2015.【点评】此题考查了分母有理化,弄清题中分母有理化规律是解本题的关键.24. (2016秋?贵港期末)阅读下面的材料,并解答后面的问题:1 = 「=匚-1+ 一 .:' - : L1 = 匚—=7- -•十' ;故答案为:.I ■- -1 ;(2) ( - i) ( 一J = (J川.)2-( .1)2=1,故答案为:1;(3) ( —+ ——+ +• • + ) ( i - .T I -)V2+1 V3+V2 VW3 V2017+V2016=(「- 1+ -二\ 二上:川F)(打厂-丨)= ^.jr:— 1) +1) =2017- 1=2016.【点评】本题考查的是分母有理化的应用,掌握平方差公式、二次根式的性质是解题的关键.1 = ••= _---I - -:3 计算(J二丄’丄)(「二)=1 ;(3 )请利用上面的规律及解法计算:(一 + _ + 「+••+ - )(」•).V2+1 V3+V2 V4+V3 V2017+V2016【分析】(1)利用分母有理化的方法解答;(2)根据平方差公式计算即可;(3)利用阅读材料的结论和二次根式的加减混合运算法则计算.25. (2016春?博乐市期末)计算:(2) 4 :+ 二-_+4 -.【分析】(1)先进行二次根式的合并,然后进行二次根式的化简;(2)先进行二次根式的化简,然后合并同类二次根式.【解答】解:(1)原式=6 - 5 -(2)原式=4 匸+3 =- 2 二+4 匚=7 _+2 _.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简以及同类二次根式的合并.26. (2016春?大冶市期末)计算(1)| 二-2| - "+2 二【分析】(1)直接利用绝对值的性质以及二次根式的性质化简求出答案;(2)首先化简二次根式进而合并求出答案.【解答】解:(1)原式=2-二-2+2二=一;;(2)原式=■ - 1 X 5+-【点评】此题主要考查了二次根式的混合运算以及绝对值的性质,正确化简二次根式是解题关键.27. (2016春?寿光市期末)计算I【分析】观察可知,先化简括号内的并合并,再相除计算.【解答】解:原式=(10二-6「+4 —)-:=(10^1 覚:;-6 ~ .^+4 ~-)--=(40 乙-18 乙+8 二)十「=30 二十二=15 ':.【点评】熟练化简二次根式,以及合并同类二次根式,实数的运算顺序与有理数相同.28. (2016春?禹城市期末)计算(2)(2 二-1)(2 二+1)-( 1 - 2 二)2【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=9二+14二-20二+空3 ,(2)原式=12- 1- 1+4 7 - 12 =4 二-2.【点评】本题考查了二次根式的混合运算,掌握平方差公式、完全平方公式以及化二次根视为最简二次根式是解题的关键.29. (2016秋?郓城县期末)计算下列各题.(1)(匚-:)x 下+3 -V5 N2【分析】(1)先根据二次根式的乘法法则运算,然后化简后合并即可;24X i【解答】解:(1) 9二+7 = - 5(2)先根据二次根式的乘除法则运算,然后化简后合并即可.【解答】解:(i )原式二 ———=+ 7=6- 5 ;;(2)原式=— =2 匚+1 - 2【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式, 然后进行二次根式的乘除运算,再合并即可.30. (2016春?澄城县期末)计算(1) 9 二+7 = - 5「+2」(2) (二-1)(二+1)-( 1-2 二)2 *.【分析】(1)首先化简二次根式,进而合并同类二次根式求出答案;(2)直接利用乘法公式化简,进而求出答案.=9 旨4 * *「20 "+。