平面向量的概念及表示
- 格式:ppt
- 大小:887.00 KB
- 文档页数:8
平面向量的概念与性质平面向量是数学中的一个重要概念,它在几何学、物理学和工程学等领域中被广泛应用。
平面向量具有一些独特的性质,其概念和性质对于我们理解和解决许多实际问题至关重要。
一、平面向量的定义平面向量表示平面上的一个有向线段,可以用带箭头的直线段来表示。
平面向量常用字母加箭头上方加粗体来表示,例如向量a表示为→a。
平面向量有大小和方向两个基本属性。
二、平面向量的表示方法1. 分量表示法:平面向量可以由两个分量表示,分别是在x轴和y 轴上的投影。
设平面向量→a的分量分别为a1和a2,那么→a = a1i + a2j,其中i和j分别是x轴和y轴的单位向量。
2. 基点表示法:平面向量还可以通过起点和终点来表示。
以A为起点,B为终点的向量→AB可以简写为→AB。
三、平面向量的运算平面向量有加法和数乘两种基本的运算方式。
1. 加法运算:向量的加法满足平行四边形法则。
设向量→a的起点为A,终点为B,向量→b的起点为B,终点为C,则向量→a + →b的起点为A,终点为C。
2. 数乘运算:向量的数乘是指向量与一个实数的乘积。
设实数k,向量→a的起点为A,终点为B,则k→a的起点仍为A,终点为D,且AB与AD在同一直线上,且向量BD与向量AB方向相同(k>0)或相反(k<0)。
四、平面向量的性质1. 平行性:如果两个向量的方向相同或相反,即平行或反平行,那么这两个向量是平行的。
2. 零向量:零向量是一个特殊的向量,它的大小为0,不具备明确的方向。
3. 模长:向量的模长表示向量的大小,用|→a|来表示。
根据勾股定理,模长可以通过向量的分量计算得到,|→a| = √(a1² + a2²)。
4. 单位向量:模长为1的向量称为单位向量。
可以通过将向量除以它的模长得到单位向量,→a/|→a|。
5. 共线性:如果两个向量的方向相同、相反或平行,即它们可被放大或缩小到重合或相反方向,那么这两个向量是共线的。
平面向量的基本概念和表示方法平面向量是向量的一种特殊形式,它在平面上具有方向和大小。
在数学和物理学中,平面向量是一种常见的工具,用于描述物体的位移、力的作用、速度的方向等等。
本文将介绍平面向量的基本概念和表示方法。
一、基本概念平面向量由两个有序数构成,其中,第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
向量通常用小写字母加箭头来表示,比如向量a可以表示为➡a。
平面向量有三个重要的性质,即方向、大小和起点。
向量的方向由向量指向的位置决定,大小由向量的长度表示,起点是向量的起始位置。
二、表示方法平面向量有多种表示方法,下面介绍其中常见的两种方法:坐标表示法和分解表示法。
1. 坐标表示法坐标表示法是一种常见的表示方法,将向量的两个分量表示为一个有序数对。
例如,向量a的坐标表示为(a₁, a₂),其中a₁表示向量在x 轴上的分量,a₂表示向量在y轴上的分量。
以单位向量为例,单位向量在坐标表示法中的坐标为(1, 0)和(0, 1),分别代表x轴和y轴的正方向。
2. 分解表示法分解表示法是将向量分解成两个分量的和的形式。
以向量a为例,向量a可以分解为两个分量i和j的线性组合,即a = ai + aj。
其中,i 表示向量在x轴上的分量,j表示向量在y轴上的分量。
这种表示方法更直观,能够清晰地描述向量的方向和大小。
三、向量运算平面向量有四种基本运算,即加法、减法、数乘和点乘。
下面分别介绍这四种运算。
1. 加法向量加法将两个向量的对应分量相加得到一个新的向量。
例如,向量a和向量b的和可以表示为a + b = (a₁ + b₁, a₂ + b₂)。
向量加法满足交换律和结合律,即a + b = b + a和(a + b) + c = a + (b + c)。
2. 减法向量减法将两个向量的对应分量相减得到一个新的向量。
例如,向量a和向量b的差可以表示为a - b = (a₁ - b₁, a₂ - b₂)。
平面向量的定义及表示方法平面向量是在平面上具有大小和方向的量。
它可以用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
在数学中,我们通常用字母加上一个箭头来表示向量,如A B⃗,坐标上的A点到B点的向量。
平面向量的定义表明,它不仅仅是点之间的连线,它还具有独立的数学性质和运算规则。
我们可以通过平移、加法、乘法等操作来处理平面向量。
在平面向量的表示方法方面,有几种常用的方式,包括坐标表示法、分量表示法和向量的单位表示法。
1. 坐标表示法:在笛卡尔坐标系中,平面上的向量可以用坐标表示。
如果A和B是平面上的两个点,那么向量A B⃗的坐标可以表示为(ABx, ABy),其中ABx表示向量在x轴的投影,ABy表示向量在y轴的投影。
2. 分量表示法:分量表示法是将平面向量投影到坐标轴上的方法。
对于向量A B⃗,它可以表示为A B⃗ = x⃗ i + y⃗ j,其中x⃗和y⃗分别表示向量的x和y方向的分量,i和j是坐标轴上的单位向量。
3. 向量的单位表示法:向量的单位表示法将向量的大小统一为1的向量,用于表示向量的方向。
在平面向量中,单位向量通常用i和j表示,其中i表示x轴的正方向,j表示y轴的正方向。
例如,向量A B⃗的单位向量可以表示为A B⃗ /|A B⃗ | = (ABx / |A B⃗ |) i + (ABy / |A B⃗ |) j。
除了上述常见的表示方法,平面向量还有一些其他的表示方法,如极坐标表示法和共线向量表示法,用于特殊情况下的向量表示和计算。
总结起来,平面向量可以用箭头表示,通过定义和表示方法,我们可以准确地描述和计算平面上的物理量和几何问题。
不同的表示方法可以根据具体情况和需要灵活运用,帮助解决实际问题和计算。
掌握平面向量的定义和表示方法,对于数学和物理学习都具有重要的意义。
平面向量的概念与运算平面向量是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
本文将从平面向量的定义开始,介绍平面向量的概念以及基本运算,包括向量的加法、减法、数乘等,以便读者对平面向量有更深入的理解。
一、平面向量的定义平面向量是具有大小和方向的量,常用有向线段表示。
在平面直角坐标系中,平移一个向量的有向线段,可以得到一个与原始向量大小和方向相同的向量。
平面向量通常用小写粗体字母表示,如a、b。
二、平面向量的表示平面向量可以用其在平面直角坐标系下的坐标表示。
设向量a的终点坐标为(x₁, y₁),起点坐标为(0, 0),则向量a可以表示为a = x₁i +y₁j,其中i和j分别表示x轴和y轴的单位向量。
三、平面向量的加法平面向量的加法遵循平行四边形法则。
设有向线段AB表示向量a,有向线段BC表示向量b,连接向量a的起点与向量b的终点,该有向线段表示向量a + b。
其数学表示为a + b = (x₁ + x₂)i + (y₁ + y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂, y₂)为向量b的坐标。
四、平面向量的减法平面向量的减法可以通过将被减向量取反并进行加法运算得到。
设有向线段AB表示向量a,有向线段BC表示向量b的负向量,连接向量a的起点与向量b的终点,该有向线段表示向量a - b。
其数学表示为a - b = (x₁ - x₂)i + (y₁ - y₂)j,其中(x₁, y₁)为向量a的坐标,(x₂,y₂)为向量b的坐标。
五、平面向量的数乘平面向量的数乘是指将向量的长度进行缩放。
设k为一个实数,向量a乘以k后得到的向量记为ka,则ka = k(x₁i + y₁j) = (kx₁)i +(ky₁)j,其中(x₁, y₁)为向量a的坐标。
六、平面向量的数量积平面向量的数量积又称为内积或点积,用符号·表示。
设有向线段AB表示向量a,有向线段BC表示向量b,则a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和向量b的长度,θ是向量a和向量b之间的夹角。
平面向量的坐标表示平面向量是二维向量,表示了平面上的位移量或者力的作用线。
为了便于计算和表达,平面向量通常使用坐标表示。
本文将介绍平面向量的坐标表示方法。
一、平面向量的定义平面向量是由大小和方向确定的箭头。
通常用有向线段表示,箭头所指示的方向为向量的方向,线段的长度则表示向量的大小,即模。
平面向量的定义如下:设平面上两个点A和B,表示平面向量的有向线段为→AB。
则平面向量的定义为:→AB = (x, y)其中,x为向量的x轴分量,y为向量的y轴分量。
二、平面向量的坐标表示平面向量的坐标表示就是将向量表示为一个有序数对(x, y),其中x 表示向量在x轴的分量,y表示向量在y轴的分量。
具体地,我们可以通过以下步骤来得到平面向量的坐标表示:1. 确定基准线:选择一个基准线作为x轴,通常选择水平的线段。
2. 确定正方向:在基准线上确定一个正方向,通常选择从左到右。
3. 确定坐标系:在确定基准线和正方向后,建立一个平面直角坐标系。
4. 确定向量的坐标:根据向量的起点和终点在坐标系中的位置来确定向量的坐标。
首先确定向量的x轴分量,即向量在x轴上的投影长度。
然后确定向量的y轴分量,即向量在y轴上的投影长度。
举例来说,考虑一个平面向量→AB,在坐标系中,点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。
则向量→AB的坐标表示为:→AB = (Bx - Ax, By - Ay)三、向量的运算平面向量的坐标表示使得向量之间的运算更加方便。
以下是平面向量的常见运算:1. 向量的加法:设有向量→AB和→CD,它们的坐标表示分别为→AB = (x1, y1)和→CD = (x2, y2)。
则两个向量的和为:→AB + →CD = (x1 + x2, y1 + y2)2. 向量的数乘:设有向量→AB和实数k,它的坐标表示为→AB = (x, y)。
则向量的数乘为:k→AB = (kx, ky)3. 向量的减法:设有向量→AB和→CD,它们的坐标表示分别为→AB = (x1, y1)和→CD = (x2, y2)。
平面向量的概念、运算及坐标表示(讲义)➢ 知识点睛一、平面向量的基本概念 1. 定义:既有,又有 的量叫做向量.−−→表示:a , AB−−→模:向量 AB 的叫做向量的模,记作 .2. 几个特殊的向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量二、平面向量的线性运算1(几何意义)加法 减法 数乘定义求两个向量和的运算向量a 加上向量b 的, 即 a +(-b )=a -b实数与向量的 积是一个向量,记作λa法则法则法则λa = λ a当λ>0 时,λa 与 a 的方向 ; 当λ<0 时,λa 与 a的方向;当λ=0 时,λa =0运算律 交换律:λ(μa )= (λ+μ)a = λ(a +b )= (-λ)a = λ(a -b )=a +b =结合律: a -b =a +(-b )(a +b )+c =λ(μ1a ±μ2b )=λμ1a ±λμ2b三、向量相关定理1.共线向量定理:向量a(a≠0)与b 共线,当且仅当有唯一一个实数λ,使.扩充:对空间三点P,A,B,可通过证明下列任意一个结论成立来证明三点共线.−−→−−→① PA =λPB ;−−→−−→−−→②对平面任一点O,OP =OA+t AB ;−−→−−→−−→③对平面任一点O,OP =x OA+y OB(x +y =1).2.平面向量基本定理(1)基底:平面内的向量e1,e2 叫做表示这一平面内所有向量的一组基底.(2)定理:如果e1,e2 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a= .四、向量的坐标表示及运算1.坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i,j 作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j.这样,平面内的任一向量a 都可由x,y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a= .2.坐标运算设a=(x1,y1),b=(x2,y2),则a+b= ,a-b= ,λa= .(1)坐标求法−−→设A(x1,y1),B(x2,y2),则AB= .(2)向量位置关系与坐标a∥b ⇔ ⇔ .➢精讲精练1.下列四个命题:①若a = 0 ,则a 为零向量;②若a =b ,则−−→−−→ a=b 或a=-b;③若a∥b,则a =b ;④若非零向量AB 与CD 是共线向量,则A,B,C,D 四点共线.其中正确的有()A.0 个B.1 个C.2 个D.3 个2.根据图示填空:(1)a+b= ;(2)c-a= ;(3)a+b+d= ;(4)f-a-b= ;(5)c+d+e= ;(6)g-c-d= .3.若a,b 为非零向量,且a +b =a +b ,则()A.a∥b,且a 与b 方向相同B.a=bC.a=-bD.a,b 无论什么关系均可−−→−−→−−→4.如图,在正六边形ABCDEF 中,BA + CD + EF =()−−→−−→−−→A.0 B.BE C.AD D.CF−−→−−→−−→5.已知正方形ABCD 的边长为1,AB =a,BC =b,AC =c,则a +b +c =()A.0 B.3 C. 2 D.2 2−−→−−→−−→−−→6.平面上有A,B,C 三点,设m= AB +BC ,n= AB -BC ,若m,n 的长度恰好相等,则有()A.A,B,C 三点必在同一直线上B.△ABC 必为等腰三角形且∠B 为顶角C.△ABC 必为直角三角形且∠B=90°D.△ABC 必为等腰直角三角形−−→ −−→ −−→7. 已知AB =a+5b,BC =-2a+8b,CD =3(a-b),则()A.A,B,D 三点共线B.A,B,C 三点共线C.B,C,D 三点共线D.A,C,D 三点共线8.在△ABC 中,M 为边BC 上的任意一点,N 为AM 的中点,−−→−−→−−→若AN =λ AB +μ AC ,则λ+μ的值为()A.12 B.13C.14D.1−−→9.如图,平面内有三个向量OA−−→,OB−−→,OC−−→,其中OA−−→与OB 的−−→−−→−−→−−→夹角为120°,OA 与OC 的夹角为30°,且OA =OB = 1,−−→ OC = 2−−→,若OC−−→=λOA −−→+μOB ,则λ+μ的值为.3λ λ λ +λ 10.已知 D ,E 分别是△ABC 的边 AB ,BC 上的点,且 AD = 1AB ,2 BE = 2BC .若 −−→−−→ −−→ λ ( , 为实数),则3 的值为 DE = .1 AB +λ2AC 1 2 1 2−−→ 11.如图,在△ABC 中,1 −−→ −−→ −−→ −−→ , ,若 =a ,−−→−−→BD = DC 2AE =3 ED AB AC =b ,则 BE =()A . 1 a + 1 bB . - 1 a + 1 b3 3 24 C . 1 a + 1 bD . - 1 a + 1 b2 43 3−−→1 −−→ −−→ 1 −−→ 12.如图,在△AOB 中, OC = OA ,OD 4 = OB ,AD 与 BC 2−−→相交于点 M ,设 OA −−→OM =.−−→=a , OB=b ,若以 a ,b 为基底,则13. 已知平行四边形 ABCD 的三个顶点 A ,B ,C 的坐标分别为 (-2,1),(-1,3),(3,4),则顶点 D 的坐标是.14. 若向量a=(1,1),b=(-1,1),c=(4,2),则c=()A.3a+b B.3a-bC.-a+3b D.a+3b15. 向量a,b,c 在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λ=.μ16. 已知平面向量a=(1,2),b=(-2,m),若a∥b,则2a+3b=()A.(-5,-10) B.(-4,-8)C.(-3,-6) D.(-2,-4)17. 已知向量a=(2,-1),b=(-1,m),c=(-1,2),若a+b 与c 共线,则m = .【参考答案】➢知识点睛一、平面向量的基本概念−−→1. 大小,方向,长度,AB二、平面向量的线性运算加法:三角形,平行四边形,b+a,a+(b+c)减法:相反向量数乘:相同,相反,(λμ)a,λa+μa,λa+λb,-(λa),λa-λb三、向量相关定理1. b=λa2. (1)不共线;(2)λ1e1+λ2e2四、向量的坐标表示及运算1. (x,y)2. (x1+x2,y1+y2),(x1-x2,y1-y2),(λx1,λy1)(1)(x2-x1,y2-y1)(2)b=λa,x2 =y2 =λ(x ,y ≠ 0 )x1y1➢精讲精练1. B2. (1)c;(2)b;(3)f;(4)d;(5)g;(6)e3. A4. D5. D6. C7. A8. A9. 610. 1211. B12. 1 a +3 b7 713. (2,2)14. B15. 416. B17. -11 1。
什么是平面向量平面向量是代数学中的一个重要概念,广泛应用于几何学、物理学和工程学等领域。
平面向量可以用来表示平面上的位移、速度、力等物理量,具有方向和大小两个特征。
一、平面向量的定义平面向量是由两个有序实数组成的有序对,记作AB→,其中A、B 表示平面上的两个点,→表示有向线段。
实数称为平面向量的坐标或分量,可以用来表示向量在坐标轴上的投影。
二、平面向量的表示平面向量可以用坐标轴上的点表示,也可以用向量的坐标表示。
以直角坐标系为例,设A点的坐标为(x1, y1),B点的坐标为(x2, y2),那么平面向量AB→的向量坐标为{(x2-x1), (y2-y1)}。
三、平面向量的运算1. 加法:设有平面向量AB→和CD→,则它们的和为AB→ +CD→ = AD→。
即向量的加法满足“三角形法则”。
2. 数乘:设有平面向量AB→,实数k,则kAB→ = BA→。
即向量的数乘改变了向量的方向或长度。
3. 减法:设有平面向量AB→和CD→,则它们的差为AB→ - CD→ = AD→。
即向量的减法可以看作是加法和数乘的结合。
四、平面向量的性质1. 零向量:零向量是长度为0的向量,任何向量与零向量的和等于该向量本身。
2. 平行向量:若两个向量的方向相同或相反,则它们是平行向量。
3. 共线向量:若两个向量在同一直线上,则它们是共线向量。
4. 相等向量:若两个向量的方向和长度相等,则它们是相等向量。
5. 单位向量:长度为1的向量称为单位向量,可以通过将一个非零向量除以它的模长得到。
五、平面向量的应用平面向量在几何学中被广泛应用,例如求向量的模长、向量的夹角、向量的投影等。
在物理学中,平面向量可用于描述力的大小和方向,在工程学中,平面向量可用于描述力的分解和合成等问题。
总结:平面向量是由两个有序实数组成的有序对,具有方向和大小两个特征。
它可以用坐标轴上的点或向量的坐标来表示。
平面向量的运算包括加法、数乘和减法,满足相应的运算规律。
平面向量知识点讲解一、向量的基本概念。
1. 向量的定义。
- 既有大小又有方向的量叫做向量。
例如,物理学中的力、位移等都是向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
2. 向量的表示。
- 几何表示:用有向线段表示向量,有向线段的起点和终点分别用大写字母表示,如→AB,其中A为起点,B为终点。
- 字母表示:可以用小写字母→a,→b,→c等表示向量。
3. 向量的模。
- 向量的大小叫做向量的模,记作|→AB|或|→a|。
例如,若→AB表示从点A(1,1)到点B(3,4)的向量,则|→AB|=√((3 - 1)^2+(4 - 1)^2)=√(4 + 9)=√(13)。
4. 零向量。
- 长度为0的向量叫做零向量,记作→0,其方向是任意的。
5. 单位向量。
- 长度等于1个单位长度的向量叫做单位向量。
与非零向量→a同方向的单位向量是(→a)/(|→a|)。
二、向量的基本运算。
1. 向量的加法。
- 三角形法则:已知非零向量→a,→b,在平面内任取一点A,作→AB=→a,→BC=→b,则向量→AC=→a+→b。
- 平行四边形法则:已知两个不共线向量→a,→b,作→AB=→a,→AD=→b,以AB,AD为邻边作平行四边形ABCD,则向量→AC=→a+→b。
- 向量加法满足交换律→a+→b=→b+→a和结合律(→a+→b)+→c=→a+(→b+→c)。
2. 向量的减法。
- 向量→a与→b的差→a-→b=→a+(-→b),其中-→b是→b的相反向量,其长度与→b相同,方向相反。
求→a-→b可以用三角形法则,即把→a与-→b首尾相接,则→a-→b是由-→b的起点指向→a的终点的向量。
3. 向量的数乘。
- 实数λ与向量→a的乘积是一个向量,记作λ→a。
当λ>0时,λ→a与→a方向相同;当λ < 0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。
且|λ→a|=|λ||→a|。
平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。
平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。
一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。
平行向量的特点是它们的模相等,方向相同或者相反。
2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。
3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。
设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。
二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。
设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。
在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。
根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。
对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。
设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。
平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。
平面向量知识点归纳平面向量是高中数学中的一个基本概念,同时也是高中数学中比较难理解和掌握的知识点之一。
下面我们将结合实例,对平面向量的定义、加减和数量积等知识点进行简明归纳。
一、平面向量的定义平面向量又称二维向量,是具有大小和方向的有向线段,通常用字母加箭头表示(如:$\vec{a}$)。
在直角坐标系中,平面向量可以表示成一个有序实数对$(a,b)$。
例如:已知点$A(1,2)$和点$B(3,4)$,连接这两个点所得的有向线段$\vec{AB}$就是一个平面向量,它的坐标表示为$\vec{AB}=(3-1,4-2)=(2,2)$。
二、平面向量的加减平面向量的加减法是指将两个向量相加(或相减)所得的向量,即$\vec{a}+\vec{b}$(或$\vec{a}-\vec{b}$),其坐标分别相加(或相减)。
例如:已知向量$\vec{a}=(1,2)$和向量$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}=(1+3,2+4)=(4,6)$;$\vec{a}-\vec{b}=(1-3,2-4)=(-2,-2)$。
另外,平面向量加减法还满足以下性质:(1)交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$;$\vec{a}-\vec{b}=-\vec{b}+\vec{a}$(2)结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$(3)零向量:对于任意向量$\vec{a}$,有$\vec{a}+\vec{0}=\vec{a}$,$\vec{a}-\vec{a}=\vec{0}$。
其中,$\vec{0}=(0,0)$。
三、平面向量的数量积平面向量的数量积又称为点积或内积,表示为$\vec{a} \cdot \vec{b}$,它的值为两个向量的模长乘积与它们夹角的余弦值,并可以用各个分量表示出来。
$\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos\theta=a_xb_x+a_yb_y$其中,$|\vec{a}|=\sqrt{a_x^2+a_y^2}$,$|\vec{b}|=\sqrt{b_x^2+b_y^2}$,$\theta$表示$\vec{a}$与$\vec{b}$之间的夹角。
平面向量基本概念框架梳理平面向量是解决平面几何问题的重要工具之一。
它具有大小和方向,并可通过向量的加法和数乘进行运算。
本文将从向量的定义、表示形式、运算以及向量的性质等方面进行基本概念的框架梳理,以帮助读者全面理解和掌握平面向量的基本概念。
一、向量的定义向量是具有大小和方向的量,用有向线段表示。
有向线段的起点和终点分别称为向量的始点和终点,记作A和B,向量AB表示从A到B的有向线段。
若两个向量的大小和方向相等,则它们相等。
二、向量的表示形式1. 箭头表示法:向量AB用箭头AB表示。
2. 坐标表示法:在平面直角坐标系中,向量AB的表示形式为AB = (x, y),其中x和y分别为向量AB在x轴和y轴上的投影。
三、向量的运算1. 加法:向量的加法满足交换律和结合律。
设向量AB和向量CD,它们的和为向量AC。
即AB + CD = AC。
2. 数乘:向量的数乘即将向量的大小与方向分别与一个实数相乘。
设向量AB,实数k,它们的数乘表示为kAB。
3. 减法:向量的减法可视为加法和数乘的结合运算。
设向量AB和向量CD,它们的差为向量AD。
即AB - CD = AD。
四、向量的性质1. 零向量:零向量是大小为0的向量,任何向量与零向量的和都等于该向量本身。
2. 负向量:向量AB的负向量记作-AB,它与向量AB大小相等,方向相反,且满足AB + (-AB) = 0。
3. 平行向量:如果两个向量的方向相同或相反,它们称为平行向量。
4. 共线向量:如果两个向量的直线上的任意一点都与这两个向量的始点连线和终点连线共线,它们称为共线向量。
5. 模长与单位向量:向量AB的模长表示为|AB|,它的计算公式为|AB| = √(x² + y²)。
单位向量是模长为1的向量,它可以通过向量AB除以它的模长得到,记作u = AB/|AB|。
通过对平面向量的基本概念进行框架梳理,我们可以更好地理解和应用平面向量的相关知识。
向量的概念及表示1.向量的概念:(我们把既有大小又有方向的量叫向量>2.向量的表示方法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:错误!.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作0;②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1〉综合①、②才是平行向量的完整定义;(2〉向量a、b、c平行,记作a〃b〃c.5.相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1〉向量a与b相等,记作a=b;(2〉零向量与零向量相等;(3〉任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.6.共线向量与平行向量关系:平行向量就是共线向量,系这是因为任一组平行向量都可移到同一直线上.说明:(1>平行向量可以在同一直线上,要区别于两平行线的位置关系;(2>共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.[例1]判断下列命题是否正确,若不正确,请简述理由.①向量错误!与错误!是共线向量,则A、B、C、D四点必在一直线上;b5E2RGbCAP②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形的充要条件是错误!=错误!;p1EanqFDPw⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同.分析:①不正确•共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量错误!、错误!在同一直线上.DXDiTa9E3d②不正确•单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的④、⑤正确.⑥不正确.如图,错误!与错误!共线,虽起点不同,但其终点却相同.RTCrpUDGiTABCJ1>评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.【例2】:下列命题正确的是〈)A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行分析:由于零向量与任一向量都共线,所以A不正确,由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确•向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.5PCzVD7HxA 评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合.jLBHrnAILg说明:1.向量有三个要素:起点、方向、长度.2.向量不能比较大小,但向量的长度(或模>可以比较大小3.实数与向量不能相加减,但实数与向量可以相乘.4.向量a与实数a.5.零向量0与实数06.注意下列写法是错误的:②错误!+错误!+错误!=0。
平面向量及其应用知识点总结
一、平面向量的定义和性质
1. 平面向量的定义:平面上的向量是由两个有序数对表示的,称为平
面向量。
2. 平面向量的性质:
(1)平面向量有大小和方向,大小为其长度,方向为从起点指向终点的方向。
(2)平面向量可以相加、相减和数乘,满足加法交换律、结合律和数乘结合律。
(3)平面向量之间可以定义数量积和叉积,满足数量积交换律、结合律和分配律,叉积具有反交换律和分配律。
二、平面向量的表示方法
1. 坐标表示法:设平面上两个点A(x1,y1)和B(x2,y2),则以A为起点,B为终点所表示的平面向量为AB=(x2-x1,y2-y1)。
2. 向量符号表示法:在AB上任取一点C作为起点,则以C为起点,B为终点所表示的平面向量也是AB。
三、平面向量之间的运算
1. 平移:将一个平面上的向量沿着另一个给定的非零向量进行移动得到新的向量。
2. 旋转:将一个给定角度旋转后得到新的向量。
3. 投影:将一个向量沿着另一个向量的方向投影得到新的向量。
4. 反向:将一个向量反过来得到新的向量。
5. 平面向量之间的加法、减法和数乘运算。
四、平面向量的应用
1. 向量运动学:平面上的物体在运动时可以用平面向量表示其位移、速度和加速度等物理量。
2. 向量力学:平面上的物体在受力时可以用平面向量表示其受力和作
用力等物理量,通过分解力求解问题。
3. 向量几何:利用平面向量可以求解线段长度、角度、垂直、平行等几何问题,如判断两条直线是否相交,判断三点共线等问题。
4. 向量代数:利用平面向量可以进行代数运算,如求解方程组、矩阵计算等问题。
平面向量与空间向量平面向量和空间向量是数学中的重要概念,它们在几何和物理学等领域中有着广泛的应用。
本文将介绍平面向量和空间向量的概念、性质和运算规则,帮助读者更好地理解和应用这两个概念。
1. 平面向量的概念和表示方法平面向量是二维空间中的有向线段,可以用两个点表示,也可以用坐标表示。
设P和Q是平面上的两个点,向量PQ可以表示为向量→PQ或向量→QP。
向量PQ的长度称为向量的模,用||→PQ||表示。
向量PQ的方向可以用一个角度或者一个与坐标轴的夹角来表示。
2. 平面向量的运算规则(1) 加法:向量的加法满足“三角形法则”和“平行四边形法则”。
即若有向量→AB和→AC,则它们的和为→AB + →AC,可以通过将向量→AB和→AC的起点相连得到向量→AE,其中E为连接AB和AC的对角线的交点。
(2) 减法:向量的减法相当于加上其相反向量,即A - B = A + (-B)。
(3) 数乘:向量与一个实数的乘积称为数量积,即k→AB = →AB +→AB + ... + →AB (k个)。
3. 空间向量的概念和表示方法空间向量是三维空间中具有大小和方向的量,可以用有向线段、坐标或者参数方程来表示。
三维空间中的向量与平面向量类似,可以进行加法、减法和数量积运算。
4. 平面向量和空间向量的关系平面向量是空间向量的特殊情况,即在三维空间中z轴分量为零的向量。
因此,平面向量的运算规则可以直接应用于空间向量。
同时,空间向量也可以投影到平面上,得到平面向量。
5. 平面向量和空间向量的应用平面向量和空间向量在几何和物理学等领域中有广泛的应用。
在几何学中,平面向量可以用来研究平面图形的性质和关系,例如线段的垂直、平行、共线等。
在物理学中,向量可以描述物体的位移、速度、加速度等物理量,并用于力的合成和分解,以及研究物体受力平衡的条件。
综上所述,平面向量和空间向量是数学中的基础概念,它们具有重要的理论和应用价值。
通过研究和掌握平面向量和空间向量的定义、性质和运算规则,可以帮助我们更好地理解和解决与向量相关的问题。
平面向量概念1. 概念定义平面向量是指在平面上具有大小和方向的量。
它由两个有序实数对(x,y)表示,其中x表示向量在x轴上的投影,y表示向量在y轴上的投影。
平面向量通常用小写字母加上一个箭头来表示,如→a。
2. 重要性平面向量是数学中的重要概念,具有广泛的应用。
它在几何、物理、工程等领域中起着重要作用。
2.1 几何应用平面向量可以用于描述平面上的点、直线、曲线等几何对象的位置、方向和形状。
通过向量的加法、减法、数乘等运算,可以得到平面上的向量和向量之间的关系,从而解决几何问题。
2.2 物理应用在物理学中,平面向量用于描述物体的位移、速度、加速度等物理量。
通过向量的运算,可以分析物体的运动规律,解决物理问题。
2.3 工程应用在工程领域中,平面向量可以用于描述力、力矩、电场强度等物理量。
通过向量的运算,可以分析结构的受力情况、电场的分布等问题,为工程设计和分析提供依据。
3. 平面向量的基本运算3.1 加法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a+→b=(x1+x2, y1+y2)。
向量加法满足交换律和结合律。
3.2 减法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a-→b=(x1-x2, y1-y2)。
减法可以看作加法的逆运算。
3.3 数乘设有向量→a=(x, y)和实数k,则k→a=(kx, ky)。
数乘改变向量的大小,但不改变其方向。
3.4 数量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的数量积为→a·→b=x1x2+y1y2。
数量积的结果是一个实数,表示两个向量的夹角的余弦值乘以两个向量的模的乘积。
3.5 向量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的向量积为→a×→b=x1y2-y1x2。
向量积的结果是一个向量,其大小表示两个向量构成的平行四边形的面积,方向垂直于这个平行四边形。
平面向量的概念和运算平面向量是高中数学中一个重要的概念,它在解决几何问题和物理问题中有着广泛的应用。
本文将介绍平面向量的定义、表示、基本运算以及一些常见的性质和应用。
一、平面向量的定义和表示平面向量是有大小和方向的量。
在平面直角坐标系中,以有向线段表示平面向量。
设点A和点B为平面上的两个点,线段AB的起点为A,终点为B,则线段AB代表的向量记作AB。
平面向量表示为:AB = (x,y),其中x和y分别代表向量在x轴和y 轴上的投影长度。
例如,向量AB = (3,2)表示该向量在x轴上的投影长度为3,在y轴上的投影长度为2。
二、平面向量的基本运算1. 平面向量的加法设有两个向量AB = (x1, y1)和CD = (x2, y2),则它们的和记作AB + CD = (x1+x2, y1+y2)。
例如,向量AB = (3, 2)和CD = (-1, 4),它们的和为AB + CD = (3+(-1), 2+4) = (2, 6)。
2. 平面向量的数乘设有一个向量AB = (x, y)和一个实数k,则k乘以向量AB记作kAB = (kx, ky)。
例如,向量AB = (3, 2)的2倍为2AB = (2*3, 2*2) = (6, 4)。
3. 平面向量的减法设有两个向量AB = (x1, y1)和CD = (x2, y2),则它们的差记作AB - CD = AB + (-CD),其中-CD = (-x2, -y2)。
例如,向量AB = (3, 2)和CD = (-1, 4),它们的差为AB - CD = AB + (-CD) = (3,2) + (-1,-4) = (2,-2)。
三、平面向量的性质和应用1. 平面向量的共线性与共面性如果两个向量的夹角为0°或180°,则它们共线;如果三个向量在同一个平面内,则它们共面。
2. 平面向量的数量积设有两个向量AB = (x1, y1)和CD = (x2, y2),它们的数量积记作AB·CD = x1x2 + y1y2。