2020年初三数学月考模拟试题及答案
- 格式:doc
- 大小:492.50 KB
- 文档页数:10
1、 2019 —— 2020学年度第二学期初三年级月考数学试卷若OA 2,将三角板绕原点O 顺时针旋转75°则点A 的对应点A 的坐标为( )A . (3, 1)B . (1, 、3)C . (.2, 2) 、选择题(本大题共 -12等于( ) 12小题,每小题3分,共36分)9、若点A (1, y i ), B (2, y 2)都在反比例函数D . ( .. 2, 2)ky=-(k >0)的图象上,贝U y 1、x2、 F 列运算正确的是( x 2?x ^=x 6 C . (x 2) 3=x 6 D . x 2 - y 2= A . x 4+x 2=x 6 B . (x - y )2y 2的大小关系为()A.y 1 v y 2B.y 1 >y 2C.y 1< y 2D.y 1> >y 210、下列命题:①若a >b ,则a -c >b -c ;②|x|+| y|=0,则x+y=0;③顺次连接四边形各边中点所得的四边形是菱形,则原来四边形一定是矩形; ④垂直于弦的直径平分这条弦.其中原命题与逆命题均为真命题的 3、 在 Rt △ ABC 中, 3 / C=900, sinA= -,BC=6,则 AB=( 5 个数是( ) 4、 A. 4 B. 6 下列图形中,既是轴对称图形,又是中心对称图形的是 A. 5、如图,AB // CD , A . 34 C. 8 D. 10 B . D. A . 4个B . 3个C . 2个D . 1个 11、 如图,△ ABC 的两条中线BE 、 A.1 : 2 B.1: 3 C.1: 4 12、 抛物线y=ax 2+bx+c 的顶点为D D ECD 交于 O ,贝 U S A EDO : S A ADE =( D.1 : 6(-1 , 2)与x 轴的一个交点A 在 B . 54° C. DE 丄CE , / 1=34 °则/ DCE 的度数为( C .D7一3( 2 1)点(-3, 0)和(-2, 0)之间,其部分图象如图,给出以下结论:①b 2 -4acv0;②a+b+cv0;③c-a=2;④方程ax 2+bx+c=2有两个相等 的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.5个的解集是x > 1,则a 的取值范围是( 二、填空题(本大题共8小题,每小题3分,共24分)13、 蜜蜂建造的蜂果既坚固又省料,其厚度约为 0.000073米将0.000073用科学技术法表示为 _____14. 计算:- r + -2+ ( n- 1) 015.计算(a)三的结果是A. av 1 B . a< 1 C . a> 1 D . a> 1 7、如图,在。
人教版2020年九年级数学上册第一次月考模拟试卷一、选择题1.方程x2=4的解是()A.x1=4,x2=﹣4 B.x1=x2=2 C.x1=2,x2=﹣2 D.x1=1,x2=42.下列四个图形中,不是中心对称图形的是()A. B. C. D.3.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)4.已知点P(﹣b,2)与点Q(3,2a)关于原点对称点,则a、b的值分别是()A.﹣1、3 B.1、﹣3 C.﹣1、﹣3 D.1、35.一元二次方程x2﹣2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=10358.若A(﹣6,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣1图象上的三点,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y3<y1<y2D.y2<y1<y39.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3 B.1.3<x<1.4 C.1.4<x<1.5 D.1.5<x<1.610.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2﹣4ac<0中成立式子()A.②④⑤B.②③⑤C.①②④D.①③④二、填空题11.若(m﹣2)﹣mx+1=0是一元二次方程,则m的值为.12.一元二次方程(a+1)x2﹣ax+a2=1的一个根为0,则a= .13.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是.14.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C的度数是.15.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.16.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0),则方程ax2+bx+c=0(a≠0)的两根是.三、解答题17.解方程(1)2x2﹣4x=﹣1 (2)3x(2x+1)=4x+2.18.如图,在平面直角坐标系中,△ABC的顶点为A(﹣3,﹣2),B(﹣5,3),C(0,4).(1)以C为旋转中心,将△ABC绕C逆时针旋转90°,画出旋转后的对应的△A1B1C1,写出点A1的坐标;(2)求出(1)中点B旋转到点B1所经过的路径长(结果保留根号和π).19.已知抛物线y=ax2﹣bx+3经过点A(1,2),B(2,3).(1)求此抛物线的函数解析式.(2)判断点B(﹣1,﹣4)是否在此抛物线上.20.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.21.二次函数y=ax2+2x﹣1与直线y=2x﹣3交于点P(1,b).(1)求出此二次函数的解析式;(2)求此二次函数的顶点坐标,并指出x取何值时,该函数的y随x的增大而减小.22.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.23.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?24.如图,在ABCD中,AB=1,BC=,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为时,四边形ABEF是平行四边形;(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.25.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案1.故选:C.2.故选:C.3.故选:A.4.故选:A.5.故选:A.6.故选:C.7.故选:C.8.故选:A.9.故选:C.10.故选:D.11.答案是:﹣2.12.答案为:1.13.答案为:y=(x﹣5)2+2或y=x2﹣10x+27.14.答案为:45°.15.答案为(﹣2,2).16.答案为:x1=﹣1,x2=5.17.解:(1)2x2﹣4x=﹣1,x2﹣2x=﹣,x2﹣2x+1=﹣+1,(x﹣1)2=,x﹣1=±x=;(2)方程整理得:3x(2x+1)﹣2(2x+1)=0,分解因式得:(3x﹣2)(2x+1)=0,可得3x﹣2=0或2x+1=0,解得:x1=,x2=﹣.18.解:(1)如图:∴点A1的坐标(6,1)(2)点B旋转到点B1所经过的路径长==19.解:(1)将点A(1,2),B(2,3)代入y=ax2﹣bx+3,得解得,∴抛物线的函数解析式为y=x2﹣0.5x+3,(2)当x=﹣1时,y=1+0.5+3=4.5≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上.20.解:(1)设经过x秒以后△PBQ面积为6cm2,则×(5﹣x)×2x=6,整理得:x2﹣5x+6=0,解得:x=2或x=3.答:2或3秒后△PBQ的面积等于6cm2 .(2)设经过x秒以后△PBQ面积为8cm2,则×(5﹣x)×2x=8,整理得:x2﹣5x+8=0,△=25﹣32=﹣7<0,所以,此方程无解,故△PQB的面积不能等于8cm2.21.解:(1)∵点P(1,b)在直线y=2x﹣3上,∴b=2﹣3=﹣1,∴P(1,﹣1),把P(1,﹣1)代入y=ax2+2x﹣1,得到a=﹣2,∴二次函数的解析式为y=﹣2x2+2x﹣1.(2)∵y=﹣2(x﹣)2﹣,∴顶点坐标为(,﹣),当x>时,y随x的增大而减小.22.(1)证明:∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)解:当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC,∵CA=CE,CB=CF,∴AE=BF,∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.23.解:(1)由题意得:y=60﹣(2)p=(200+x)(60﹣)=﹣+40x+12000(3)w=(200+x)(60﹣)﹣20×(60﹣)=﹣+42x+10800=﹣(x﹣210)2+15210当x=210时,w有最大值.此时,x+200=410,就是说,当每个房间的定价为每天410元时,w有最大值,且最大值是15210元.24.解:(1)结论:旋转角为90°时,四边形ABEF是平行四边形.理由:∵∠AOF=90°,∠BAO=90°,∴∠BAO=∠AOF,∴AB∥EF,又∵四边形ABCD是平行四边形,∴AF∥EB,∴四边形ABEF是平行四边形;(2)当旋转角∠AOF=45°时,四边形BEDF是菱形.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,BO=DO,∴∠FDO=∠EBO,∠DFO=∠BEO,在△DFO和△BEO中∵,∴△DFO≌△BEO(AAS),∴OF=OE,∴四边形BEDF是平行四边形,∵AB=1,BC=,∴在Rt△BAC中,由勾股定理得:AC=2,∴AO=1=AB,∵∠BAO=90°,∴∠AOB=45°,又∵∠AOF=45°,∴∠BOF=90°,∴BD⊥EF,∴四边形BEDF是菱形,即在旋转过程中,四边形BEDF能是菱形,此时AC绕点O顺时针旋转的度数是45°.25.解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).。
2020—2021年人教版九年级数学上册月考模拟考试(加答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数y =x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A 5B .2C .52D .510.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为( )A .40°B .50°C .80°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:34x x -=________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为_________cm .5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、C6、B7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x (x +2)(x ﹣2).3、23x -<≤4、6.5、12π+.6、23π 三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或(-或(-. 4、(1)略(2)5 ,2455、(1)120;(2)答案见解析;(3)90°;(4)16.6、(1) 4800元;(2) 降价60元.。
2020—2021年人教版九年级数学上册月考模拟考试(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x+1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x+1)2+3D .y=﹣5(x ﹣1)2+3 6.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A.94k B.94k-且0k≠C.94k且0k≠D.94k-7.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.52B.154C.3 D.58.下列图形具有稳定性的是()A.B.C. D.9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.如图,ABC中,ACB90∠=,A30∠=,AB16=,点P是斜边AB上任意一点,过点P作PQ AB⊥,垂足为P,交边AC(或边CB)于点Q,设AP x=,APQ的面积为y,则y与x之间的函数图象大致是()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:x 2-9=______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =-.3.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、C7、B8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(x +3)(x -3)3、5或34、30°5、16、49三、解答题(本大题共6小题,共72分)1、32x =-.2、22m m-+ 1. 3、(1)略;(2)略;(3)10.4、5、(1)30;(2)①补图见解析;②120;③70人.6、(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元。
2020—2021年人教版九年级数学上册月考模拟考试(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( )A .8B .18C .18-D .-82.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30° 10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.分解因式:3244a a a -+=__________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =__________.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.4.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、B6、A7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(2)a a -;3、﹣24、235、()120031-6、322三、解答题(本大题共6小题,共72分)1、无解.2、(1)k ﹥34;(2)k=2. 3、(1)略;(2)35. 4、(1)略;(2)四边形ACEF 是菱形,理由略.5、(1)600(2)见解析(3)3200(4)6、(1)超市B 型画笔单价为5元;(2)4.5,120410,20x x y x x ⎧=⎨+>⎩,其中x 是正整数;(3)小刚能购买65支B型画笔.。
2020—2021年人教版九年级数学上册月考模拟考试(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-52.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .984.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A .255B .55C .2D .1210.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.因式分解:3x 3﹣12x=_______.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x =12.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、C6、B7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、3x (x+2)(x ﹣2)3、增大.4、125.5、(2)或(12).6、2三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略;(2) 52.4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)14;(2)166、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
2020—2021年人教版九年级数学上册月考模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 22.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣24.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x +=C .()136x x -=D .()136x x +=7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm8.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )A .12B .1C .33D .39.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.64的立方根是____________.2.分解因式:3244a a a -+=__________.3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =-.3.如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.在四张背面完全相同的纸牌A 、B 、C 、D ,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、C5、C6、A7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(2)a a -;3、-12或14、1-或35、x <1或x >36、15.三、解答题(本大题共6小题,共72分)1、32x =- 2、22m m-+1. 3、(1)8;(2)6;(3),40cm,80cm 2.4、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)详见解析;(2)14. 6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
2020—2021年人教版九年级数学上册月考模拟考试【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12-2.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.下列方程组中,是二元一次方程组的是( ) A .4237x y x y +=⎧⎨+=⎩ B .2311546a b b c -=⎧⎨-=⎩ C .292x y x ⎧=⎨=⎩ D .284x y x y +=⎧⎨-=⎩5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A.3cm B.6 cm C.2.5cm D.5 cm8.一次函数y=ax+b和反比例函数ya bx-=在同一直角坐标系中的大致图象是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)116 __________.2.分解因式:33a b ab-=___________.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为__________米.6.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、A5、D6、C7、D8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、ab (a+b )(a ﹣b ).3、54、5、56、24三、解答题(本大题共6小题,共72分)1、32x =- 2、231211y x x =-+-3、(1)相切,略;(2)4、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。
2020—2021年人教版九年级数学上册月考模拟考试【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,13.若|321|0x y --=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -=D .()136x x += 7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B.412C.72D.48.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1124503_____.2.分解因式:2x 3﹣6x 2+4x =__________.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°(2)解分式方程:244x -+1=12x -2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、B6、A7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、2x(x﹣1)(x﹣2).3、如果两个角是等角的补角,那么它们相等.4、8.5、x=26、10三、解答题(本大题共6小题,共72分)1、(1)1;(2)分式方程的解为x=﹣1.2、(1)3a2-ab+7;(2)12.3、略.4、(1)略;(2)2ACπ=5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。
2020—2021年人教版九年级数学上册月考模拟考试及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( )A .8B .18C .18-D .-8 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <5.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( ) A .4m ≤ B .4m ≥ C .4m < D .4m =7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.下列图形具有稳定性的是()A.B.C. D.9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.25394+B.25392+C.18253+D.253182+二、填空题(本大题共6小题,每小题3分,共18分)1.计算(331)的结果等于___________.2.因式分解:(x+2)x﹣x﹣2=_______.3.若n边形的内角和是它的外角和的2倍,则n=__________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=___________°(点A ,B ,P 是网格线交点).5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B′,求△O A′B′的面积.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、A6、A7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、(x+2)(x﹣1)3、64、45.5、360°.6、三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略;(2)略;(3)10.4、(1)BF=10;(2)r=2.5、(1)50;(2)见解析;(3)16.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
2020—2021年人教版九年级数学上册月考模拟考试及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣6的倒数是( )A .﹣16B .16C .﹣6D .62.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .4 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.分解因式:x2-9=______.3.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.如图,P 为平行四边形ABCD 边BC 上一点,E F 、分别为PA PD 、上的点,且3,3,PA PE PD PF ==,,PEF PDC PAB 的面积分别记为12,S S S 、.若2,S =则12S S +=__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,在△ABC 中,∠ACB=90°,点D ,E 分别是边BC ,AB 上的中点,连接DE 并延长至点F ,使EF=2DE ,连接CE 、AF(1)证明:AF=CE ;(2)当∠B=30°时,试判断四边形ACEF 的形状并说明理由.5.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、(x +3)(x -3)3、-1或2或14、a ,b ,d 或a ,c ,d5、(2)或(12).6、18三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)略;(2)四边形ACEF 是菱形,理由略.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
2020—2021年人教版九年级数学上册月考模拟考试附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠48.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.使1x +有意义的x 的取值范围是__________.2.因式分解:a 3-a =_____________.3.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是__________.6.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是__________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点.(1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF,证明:AB FB=.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、C6、C7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥-2、a (a -1)(a + 1)3、-154、35、836、14三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 1,2.4、(1)略;(2)略.5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)35元/盒;(2)20%.。
2020—2021年人教版九年级数学上册月考模拟考试(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。
2020—2021年人教版九年级数学上册月考模拟考试附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .127.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.因式分解:39-=_______.a a3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、A6、A7、B8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、a(a+3)(a-3)3、7或-14、3x <-或1x >.5、1276、9三、解答题(本大题共6小题,共72分)1、3x =-2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、略.4、(1)略;(2)5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)W 1=-2x ²+60x+8000,W 2=-19x+950;(2)当x=10时,W 总最大为9160元.。
2020—2021年人教版九年级数学上册月考模拟考试【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.因式分解:39a a-=_______.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、A6、A7、A8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a+3)(a-3)3、54、30°5、x≤1.6三、解答题(本大题共6小题,共72分)1、1x2、1 23、(1)略(2)略4、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1)60,10;(2)96°;(3)1020;(4)2 36、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
九年级数学月考模拟试卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为100分钟.2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分,全部在答题纸上作答.用黑色字迹钢笔或签字笔答在答题纸的相应位置上.试 卷 Ⅰ一. 选择题(本题共10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.-3的相反数是( ) A.31 B.3 C.-3 D.-31 2.抛物线y=2(x ﹣1)2﹣3的对称轴是直线( )A 、 x=2B 、x=1C 、x=﹣1D 、x=﹣3 3.下图中的几何体的主视图是( )4.如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( )A 、内含B 、相交C 、相切D 、外离5.若 ,则 的值等于( )A 、B 、C 、D 、56.如图,△ABC 内接于⊙O ,∠A=40°,则∠OBC 的度数为( ) A 、20° B 、40° C 、50° D 、70°7.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( )A 、 甲B 、乙C 、丙D 、 丁8.如图,冰淇淋蛋筒下部呈圆锥形,底面圆的直径为5cm ,母线为8 cm.则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )A 、36πcm 2B 、20πcm 2C 、18πcm 2D 、8πcm 2 9. 如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )A B C D 正面 第6题图第7题图第8题图 23a b =a bb+5325521A 2A 3A 4A 5A Oh tA .Oh t B .Oh t C .Oh tD .10. 如图,四边形ABCD ,A 1B 1BA, …, A 5B 5B 4A 4都是边长为1的小正方形. 已知 ∠ACB=α,∠A 1CB 1=1α,…,∠A 5CB 5=5α.则 的值为( )A 、 1B 、5C 、D 、试 卷 Ⅱ二、填空题(共6题,每题4分,共24分.)11.若反比例函数y= 在第一,三象限,则k 的取值范围是________12. 写出一个顶点在原点,开口向上的抛物线函数的解析式________13.如图,测量小玻璃管口径的量具ABC,AB 的长为10cm,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(DE ∥AB),那么小玻璃管口径14.从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+一次函数y ax b =+的图象不经过第三象限的概率是________ . 15.如图,⊙M 与x 轴相交于点 , ,与y 轴相切于点C , 则圆心M 的坐标是________ .16.如图, ,,…在函数的图像上, , ,323P A A ∆,……1P A A n n n-∆都是等边三角形,边 、 12A A 、23A A ,……1A A n n-都在x 轴上.⑴求 的坐标; ⑵求 y 1+y 2+y 3+…+y 10的值.三、解答题(共66分.)17. (本题6分)(1)计算:()tan 451π-︒- (2)解方程:xx 2121=+. 18.(本题6分) 如图,在△ABC 中,AB=AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE= DF ,并说明理由. 解: 需添加条件是 . 理由如下:19.(本题6分)如图,在正方形网格图中建立一直角坐标系,564511245tan tan tan tan tan tan αααααα•+•++•L 1k x -(20)A ,(80)B ,()111P ,x y ()222P ,x y ()P ,n n n x y ()0y x x=>11P OA ∆212P A A ∆1OA 1P一条圆弧经过网格点A (0,2),B (4,2)C (6,0), 解答下列问题: (1) 请在图中确定该圆弧所在圆心D 点的位置,则D 点坐标为________ ;(2) 连结AD ,CD ,求⊙D 的半径(结果保留根号); (3) 求扇形DAC 的面积. (结果保留π)20.(本题8分)如图,已知矩形OABC 的两边OA,OC 分别在x 轴,y 轴的正半轴上,且点B (8,6),反比例函数y= k x 图象与BC 交于点D,与AB 交于点E ,其中D (2,6).(1)求反比例函数的解析式及E 点的坐标;(2)若矩形OABC 对角线的交点为F ,请判断点F 是否在此反比例函数的图象上,并说明理由.21.(本题8分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:⑴请估计:当n 很大时,摸到白球的频率将会接近 ________;(保留二个有效数字) ⑵试估算口袋中黑、白两种颜色的球各有多少只?⑶请画树状图或列表计算:从中一次摸两只球,这两只球颜色不同的概率是多少? 22.(本小题10分)某校教学楼后面紧邻着一个土山坡,坡上面是一块平地,如图10所示,BC ∥AD ,斜坡AB 长26m ,坡角∠BAD=67°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡. ⑴ 求改造前坡顶与地面的距离BE 的长;⑵ 为确保安全,学校计划改造时保持坡脚A 不动, 坡顶B 沿BC 削进到F 点处,问BF 至少是多少米?(参考数据:sin67°≈ ,cos67 ,tan50 )23. (本题10分)如图23—1,在△ABC 中,∠C=90°,AC=4,BC=3,四边形DEFG 为△ABC 的内接正方形,若设正方形的边长为x ,容易算出x 的长为 .探究与计算:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m58 96 116 295 484 601 摸到白球的频率n m0.580.640.580.590.6050.601 xyOC AB EDy = k x 6 5 5 13 12 13 6037图① 图② 备用图(1)如图23—2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于 △ABC ,则正方形的边长为________;(2)如图23—3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于 △ABC ,则正方形的边长为________.猜想与证明:如图23—4,若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,请你猜想正方形的边长是多少?并对你的猜想进行证明.24、(本题12分)如图①,将一边AB 长为4cm 的矩形框架ABCD 与两直角边分别为4cm 、3cm 的直角三角形框架拼成直角梯形ABED .动点,P Q 同时从点E 出发,点P 沿E→D→A方向以每秒3cm 的速度运动,点Q 沿E→B→A方向以每秒4cm 的速度运动.而当点P 到达点A 时,点Q 正好到达点A .设,P Q 同时从点E 出发,经过的时间为t 秒时.(1)分别求出梯形中,DE AD 的长度;(2)当 时,求 的面积,并直接写出此时 的形状(如图②);(3)在点 的运动过程中,是否存在某一时刻,使得四边形APEQ 是梯形.若存在,请求出相应的t 的值;若不存在,请说明理由.图23—1D图23—2A图23—3ADDEE图23—4ADE74t =EPQ ∆EPQ ∆,P Q九年级数学模拟试卷答题卷一.选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只 有一项符合题目要求)题目 12345678910选项二、填空题(本题有6小题,每小题4分共24分)11. 12. 13.14. 15. 16. 三、解答题(本题共有8小题,各小题都必须写出解答过程) 17.(本题满分6分)(1)计算:()tan 4591π-︒- (2)解方程:xx 2121=+ 18.(本题满分6分)(1)你添加的条件是 ; (2)证明:19.(本题满分6分)(4) (1)请在图中确定该圆弧所在圆心D 点的位置,则D 点坐标为________ ; (2) (3)20.(本题满分8分)(1)(2)21.(本题满分8分)(1)(2)(3)22.(本题满分10分)(1)(2)23.(本题满分10分)探究与计算:(1)(2)猜想与证明:图23—1CDFG图23—2AC 图23—3ACGGFFDDEE图23—4ACG FD E24.(本题满分12分)图①图②备用图(1)(2)(3)参考答案一、选择题(每题3分,共30分)二、填空题(每题4分,共24分) 11. K >1 12.略 13.14.15.(5,4) 16. 152),6,2(三、解答题(共66分)17.(1)原式= —3 (2)X=2 18.略 19.(1)D ( (2)2√ 5 (3) 5∏ 20. (2)F 仍在图像上.证明略 21.(1)0.6 (2)白球3只 黑球2只 (3)0.6 22.(1) 24 (2)10 23. 探究与计算:(1)6049;(2)6061. 猜想与证明:若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,正方形的边长是602512n +.证明如下:如图3,过点C 作CN ⊥AB ,垂足为N ,交GF 于点M .设小正方形的边长为x . ∵四边形GDEF 为矩形,∴GF ∥AB .CM ⊥GF .容易算出.125CD =∴CM GF CN AB =.即.1251255xnx -=∴x=602512n +.即小正方形的边长是602512n +.24.(1) 1AD cm =. (2)2193256288EPQ S cm =--=V 此时, EPQ ∆为直角三角形 (3)①当点Q 在EB 上,点P 在ED 上时,即当01t ≤≤时,要使四边形APEQ 为梯形,必须使AQ EP P ,如图,图3DEN∴四边形AQED 为平行四边形∴EQ=AD=1 , 14t = ②当点Q 在BA 上,点P 在DE 上时,即当513t <<时,要使四边形APEQ 为梯形,必须使EQ ∥AP ,如图,过点P 作AD 的垂线交AD 的延长线于点M ,由题知:44,4,3,53BQ t BE EP t DP t =-===-由△P DM ∽△DEC 得34(53),(53)55DF t PF t =-=- 由△AMP ∽△EBQ 得PF BQ AF BE =,即4(53)44534(53)15t t t --=-+ 化简得: 2941400t t -+=,解得: 14118t +=(舍去), 24118t =③当点Q 在BA 上,点P 在DA 上时,即当523t ≤≤时,显然四边形的两组对边都不平行,此时四边形APEQ 不可能为梯形. 综合得,满足条件的t 存在, 14t =或4118t =。