高一数学《函数》专题训练材料(含答案)
- 格式:doc
- 大小:842.58 KB
- 文档页数:14
函数求解析式专项训练一、单选题(共8题;共16分)1.(2020高一上·开鲁期中)若,则的解析式为()A. B. C. D.2.(2020高三上·哈尔滨月考)若,则的解析式为()A. B. C. D.3.(2020高一上·定远月考)已知,则的解析式为()A. B. C. D.4.(2020高一上·定远月考)已知f(x-1)=x2,则f(x)的解析式为()A. f(x)=x2-2x-1B. f(x)=x2-2x+1C. f(x)=x2+2x-1D. f(x)=x2+2x+15.(2020高一上·泸县月考)已知函数,则的解析式是()A. B. C. D.6.(2020高一上·黄陵期中)已知,则的解析式为()A. B.C. D.7.(2020高二下·沈阳期末)已知,则的解析式为()A. B. C. D.8.(2020高一上·泉州期中)已知二次函数,,且,那么这个函数的解析式是().A. B. C. D.二、填空题(共7题;共7分)9.(2020高一上·湖南期中)已知,则的解析式为________.10.(2020高一上·赣县月考)已知, 则的解析式为________.11.(2020高一上·长治期中)已知则的解析式为________.12.(2020高一上·大名期中)已知函数,则函数的解析式为________.13.(2020高一上·江阴月考)已知,则的解析式为________.14.(2020高二上·六安开学考)若函数满足,则的解析式为________.15.(2020高一上·天津期中)设函数,,则的解析式是________.三、解答题(共6题;共75分)16.(2020高一上·广州期中)求下列函数的解析式.(1)已知一次函数满足,求;(2)已知,求.17.(2020高三上·新疆月考)根据条件,求函数解析式.(1);(2);(3);(4)已知是一元二次函数,且满足;.18.(2020高一上·南阳月考)根据下列条件,求的解析式.(1),其中为一次函数;(2).19.(2019高一上·长春月考)求函数解析式(1)已知是一次函数,且满足求.(2)已知满足,求.20.(2019高一上·辽源期中)根据条件求下列各函数的解析式:(1)已知函数f(x+1)=3x+2,则f(x)的解析式;(2)已知是一次函数,且满足,求的解析式;(3)已知满足,求的解析式.21.(2019高一上·昌吉月考)求下列函数的解析式:(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);(2)已知3f(x)+2f(-x)=x+3,求f(x).答案解析部分一、单选题1.【答案】C【解析】【解答】f(1)=x+ ,设t,t≥1,则x=(t﹣1)2,∴f(t)=(t﹣1)2+ ﹣1=t2﹣t,t≥1,∴函数f(x)的解析式为f(x)=x2﹣x(x≥1).故答案为:C.【分析】令,利用换元法即可求得解析式,注意换元的等价性即可.2.【答案】D【解析】【解答】设,则,则,所以函数的解析式为.故答案为:D.【分析】设,则,解得,即可求得函数的解析式.3.【答案】B【解析】【解答】由,令,则,则,即,故答案为:B。
20XX 年秋高一数学第一学期函数压轴训练题1.(本小题满分12分)已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x xf x =⋅的最大值与最小值及相应x 值.2.(14分)已知定义域为R 的函数2()12x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;3. (本小题满分10分)已知定义在区间(1,1)-上的函数2()1ax b f x x+=+为奇函数,且12()25f =. (1) 求实数a ,b 的值;(2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<.4. (14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0,(1)求f(1) (2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+4b(b ≥1), (I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。
6.(12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式;(2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -,试确定a 的取值范围;(3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值.7. (12分)设函数124()lg ()3x xa f x a R ++=∈.(1)当2a =-时,求()f x 的定义域;(2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <.8. (本题满分14分)已知幂函数(2)(1)()()k k f x xk z -+=∈满足(2)(3)f f <。
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
(完整版)高一函数大题训练含答案一、解答题1.已知a R ∈,当0x >时,()21log f x a x ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若函数()f x 过点()1,1,求此时函数()f x 的解析式; (Ⅱ)若函数()()22log g x f x x =+只有一个零点,求实数a 的值;(Ⅲ)设0a >,若对任意实数1,13t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在[],1t t +上的最大值与最小值的差不大于1,求实数a 的取值范围.2.(附加题,本小题满分10分,该题计入总分)已知函数()y f x =,若在区间()2,2-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(1)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由; (2)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.3.已知函数21()|1|,R.f x x x =-∈我们定义211312()(()),()(()),,f x f f x f x f f x ==11()(()).n n f x f f x -=其中2,3,.n =(1)判断函数1()f x 的奇偶性,并给出理由; (2)求方程13()()f x f x =的实数根个数;(3)已知实数0x 满足00()(),i j f x f x m ==其中1,0 1.i j n m ≤<≤<<求实数m 的所有可能值构成的集合.4.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.5.对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.6.对于函数()f x ,若存在实数m ,使得()()f x m f m +-为R 上的奇函数,则称()f x 是位差值为m 的“位差奇函数”.(1)判断函数()21f x x =+和2()g x x =是否是位差奇函数,并说明理由; (2)若()sin()f x x ϕ=+是位差值为3π的位差奇函数,求ϕ的值; (3)若对于任意[1,)m ∈+∞,()22x x f x t -=-⋅都不是位差值为m 的位差奇函数,求实数t 的取值范围.7.已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1,记()(||)f x g x =,x ∈R ;(1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x ∈R 恒成立,求实数k 的范围;(3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅-将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x 为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;8.已知集合M 是满足下列性质的函数()f x 的全体;在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.9.定义在D 上的函数()y f x =,如果满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤成立,则称函数()y f x =是D 上的有界函数,其中M 称为函数的上界.已知函数1112()1,()2412x xx xm f x a g x m -⋅⎛⎫⎛⎫=+⋅+= ⎪ ⎪+⋅⎝⎭⎝⎭. (1)当1a =时,求函数()y f x =在(,0)-∞上的值域,并判断函数()y f x =在(,0)-∞上是否为有界函数,请说明理由;(2)若函数()y f x =在[0,)+∞上是以3为上界的有界函数,求实数a 的取值范围; (3)若0m >,函数()y g x =在[]0,1上的上界是()T m ,求()T m 的解析式.10.已知定义在R 上的偶函数()f x 和奇函数()g x ,且()()xf xg x e +=.(1)求函数()f x ,()g x 的解析式;(2)设函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭,记()1231n H n F F F F n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()*,2n N n ∈≥.探究是否存在正整数()2n n ≥,使得对任意的(]0,1x ∈,不等式()()()2g x H n g x >⋅恒成立?若存在,求出所有满足条件的正整数n 的值;若不存在,请说明理由.11.已知函数()()2xf x x R =∈,记()()()g x f x f x =--.⑴解不等式:()()26f x f x -≤;⑵设k 为实数,若存在实数(]01,2x ∈,使得()()20021g x k g x =⋅-成立,求k 的取值范围;⑶记()()()22h x f x a f x b =++⋅+(其中a ,b 均为实数),若对于任意的[]0,1x ∈,均有()12h k ≤,求a ,b 的值. 12.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .13.记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数. (1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2xg x t=+,其中常数0t ≠,证明:()g x 是ψ函数; (3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.14.若存在常数()0k k >,使得对定义域D 内的任意()1212,x x x x ≠,都有()()1212f x f x k x x -≤-成立,则称函数()f x 在其定义域 D 上是“k -利普希兹条件函数”.(1)若函数()(),14f x x x =≤≤是“k -利普希兹条件函数”,求常数k 的最小值; (2)判断函数()2log f x x =是否是“2-利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若()()y f x x R =∈是周期为2的“1-利普希兹条件函数”,证明:对任意的实数12,x x ,都有()()121f x f x -≤.15.已知函数()21log 21mx f x x x +⎛⎫=- ⎪-⎝⎭()m 为常数是奇函数. (1)判断函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上的单调性,并用定义法证明你的结论;(2)若对于区间[]2,5上的任意值,使得不等式()2xf x n ≤+恒成立,求实数的取值范围.【参考答案】一、解答题1.(Ⅰ)()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭;(Ⅱ)0a =或14-;(Ⅲ)3[,)2+∞【解析】 【详解】试题分析:(Ⅰ)将点()1,1 代入可得函数的解析式;(Ⅱ)函数有一个零点,即()22log 0f x x += ,根据对数运算后可得210ax x +-= ,将问题转化为方程有一个实根,分0a = 和0,0a ≠∆= 两种情况,得到a 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值()()11f t f t -+≤ 整理为()2110at a t ++-≥ ,对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,0a > 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解a 的取值范围. 试题解析:(Ⅰ)函数()21log f x a x ⎛⎫=+ ⎪⎝⎭过点()1,1,()()21log 11f a ∴=+=, 1a ∴=,∴此时函数()21log 1(0)f x x x ⎛⎫=+> ⎪⎝⎭(Ⅱ)由()22log 0f x x +=得221log 2log 0a x x ⎛⎫+== ⎪⎝⎭,211a x x ⎛⎫∴+⋅= ⎪⎝⎭化为210ax x +-=, 当0a =时,可得1x =,经过验证满足函数()g x 只有一个零点;当0a ≠时,令140a ∆=+=解得14a =-,可得2x =,经过验证满足函数()g x 只有一个零点, 综上可得:0a =或14-.(Ⅲ)任取()12,0,x x ∈+∞且12x x <,则210x x x ∆=->, ()()11221222212121211221211221211log log log ,0,0,0,01,x ax x y f x f x a a x x x ax x x x a x ax x x ax x x ax x x ax x ⎛⎫⎛⎫+∆=-=+-+= ⎪ ⎪+⎝⎭⎝⎭<∴<+<++∴<<+1122212log 0x ax x x ax x +∴<+,即0y ∆<,()f x ∴在()0,+∞上单调递减.∴函数()f x 在区间[],1t t +上的最大值与最小值分别为()(),1f t f t +, ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫∴-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭,整理得()2110at a t ++-≥对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,令()()211h t at a t =++-,0,a >∴函数()h t 在区间1,13⎡⎤⎢⎥⎣⎦上单调递增,103h ⎛⎫∴≥ ⎪⎝⎭,即11093a a ++-≥,解得32a ≥, 故实数a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题以对数函数为载体,考查了函数的零点,单调性,最值,恒成立问题,以及转化与化归的能力,综合性比较高,最后一问转化为了二次函数的问题,所以需熟练掌握二次函数的恒成立问题.2.(Ⅰ)()f x 具有性质M ; (Ⅱ)23m ≤-或2m >或0m =【解析】 【详解】试题分析:(Ⅰ)()sin 2f x x =+具有性质M .若存在()022x ∈﹣,,使得()01f x =,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数()2221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在()22﹣,上有且只有一个实根.设()222h x x mx m =++,即()222h x x mx m =++在()22﹣,上有且只有一个零点.讨论m 的取值范围,结合零点存在定理,即可得到m 的范围.试题解析:(Ⅰ)()sin 2f x x =+具有性质M .依题意,若存在0x ∈(2,2)-,使0()1f x =,则0x ∈(2,2)-时有0sin 21x +=,即0sin 1x =-,022x k ππ=-,k Z ∈.由于0x ∈(2,2)-,所以02x π=-.又因为区间(2,2)-内有且仅有一个02x π=-,使0()1f x =成立,所以()f x 具有性质M 5分(Ⅱ)依题意,若函数2()221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在(2,2)-上有且只有一个实根.设2()22h x x mx m =++,即2()22h x x mx m =++在(2,2)-上有且只有一个零点. 解法一:(1)当2m -≤-时,即2m ≥时,可得()h x 在(2,2)-上为增函数,只需(2)0,{(2)0,h h -<>解得2,{2,3m m >>-交集得2m >.(2)当22m -<-<时,即22m -<<时,若使函数()h x 在(2,2)-上有且只有一个零点,需考虑以下3种情况:(ⅰ)0m =时,2()h x x =在(2,2)-上有且只有一个零点,符合题意. (ⅱ)当20m -<-<即02m <<时,需(2)0,{(2)0,h h -≤>解得2,{2,3m m ≥>-交集得∅.(ⅲ)当02m <-<时,即20m -<<时,需(2)0,{(2)0,h h ->≤解得2,{2,3m m <≤-交集得223m -<≤-.(3)当2m -≥时,即2m ≤-时,可得()h x 在(2,2)-上为减函数 只需(2)0,{(2)0,h h -><解得2,{2,3m m <<-交集得2m ≤-.综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m >或0m = 14分 解法二: 依题意,(1)由(2)(2)0h h -⋅<得,(42)(64)0m m -+<,解得23m <-或2m >. 同时需要考虑以下三种情况: (2)由22,{0,m -<-<∆=解得0m =.(3)由20,{(2)0,m h -<-<-=解得02,{2,m m <<=不等式组无解.(4)由02,{(2)0,m h <-<=解得20,{2,3m m -<<=-解得23m =-. 综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m = 14分.考点:1.零点存在定理;2.分类讨论的思想.3.(1)偶函数;答案见解析;(2)实数根个数为11;(3)⎪⎪⎩⎭.【解析】(1)由函数奇偶性的定义运算即可得解;(2)令1()f x t =,转化条件为0=t 或1,再解方程即可得解;(3)按照m ⎛∈ ⎝⎭、m ⎫∈⎪⎪⎝⎭分类,结合函数的单调性可得()(1,2,,)k f m m k n ≠=,再代入m =.【详解】(1)因为1()f x 的定义域R 关于原点是对称的,又2211()|()1||1|()f x x x f x -=--=-=,故函数1()f x 是偶函数;(2)令1()f x t =,则0t ≥,于是()()2231211()()()|1|1t f x f f x f f t t ====--,于是22|1|1t t -=+或22|1|1.t t -=-又0t ≥,解得0=t 或1,则方程13()()f x f x =的实数根个数即为210x -=或1的根的总个数,解得1x =±或0或 所以方程13()()f x f x =的实数根个数为11; (3)因为01m <<,当(0,1)m ∈时,1()f m 在(0,1)单调递减,且1(0)1f =,1(1)0f =, 则12(),(),,()n f m f m f m 的值域均为(0,1),①当m ⎛∈ ⎝⎭时,21()1f m m ⎫=-∈⎪⎪⎝⎭,于是1()f m m >,因为当m ⎛∈ ⎝⎭时,210m m +-<, 所以()()()()42222211110m m m m m m m m m m m -+-=---=-+-<,所以()()()()2142221112f m f f m m m m m ==--=-+<,即2()f m m <, 注意到1()f x 在(0,1)单调递减,于是()()()3121413112()()(),()()()()f m f f m f m f m f f m f f m f m =>=<=,()()()()514123615134()()()(),()()()(),.f m f f m f f m f m f m f f m f f m f m =>==<=于是6421350()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,②当m ⎫∈⎪⎪⎝⎭时,类比同理可得 5312460()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,于是当(0,1)m ∈且m ≠()(1,2,,)k f m m k n ≠=,若0()i f x m =,其中(0,1)m ∈,m ≠则().j i f m m -≠,即()00()()j i i i f f x f x -≠,也就是00()()j i f x f x ≠;当m =()i f x 的值域为[)0,+∞,所以存在0x 使得0()i f x =又1f ⎝⎭所以()()()()()01101110()()()j j i f x f f x f f f f x -====,即00()()i j f x f x ==所以实数m 的所有可能值构成的集合为⎪⎪⎩⎭.【点睛】本题考查了函数奇偶性、函数与方程及函数单调性的应用,考查了运算求解能力,属于难题.4.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+,所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =, 2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤, ()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题.5.(1)证明见解析 (2)k ≥(3)存在,4T ≥【解析】 【分析】(1)取特殊值使得()()f x f x T ≤+不成立,即可证明;(2)根据“T 同比不减函数”的定义,sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,分离参数k ,构造函数,转化为k 与函数的最值关系,即可求出结果;(3)去绝对值化简函数()f x 解析式,根据“T 同比不减函数”的定义,取1x =-,因为()()()1113f T f f -+≥-==成立,求出T 的范围,然后证明对任意的x ∈R ,()()f x T f x +≥恒成立,即可求出结论. 【详解】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=,因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎪≥= ⎪⎪⎝⎭ (3)设函数()11f x x x x =+--+是“T 同比不减函数”, ()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立, 所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立. (Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-, 所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立, 所以T 的取值范围是[)4,+∞. 【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.6.(1) 对于任意m 有()21f x x =+为位差奇函数, 不存在m 有2()g x x =为位差奇函数.(2),3k k Z πϕπ=-∈;(3) (),4t ∈-∞【解析】【分析】(1)根据题意计算()()f x m f m +-与()()g x m g m +-,判断为奇函数的条件即可.(2)根据()sin()f x x ϕ=+是位差值为3π的位差奇函数可得()()33f x f ππ+-为R 上的奇函数计算ϕ的值即可.(3)计算()()f x m f m +-为奇函数时满足的关系,再根据对于任意[1,)m ∈+∞()22x x f x t -=-⋅都不是位差值为m 的位差奇函数求解恒不成立问题即可.【详解】(1)由()21f x x =+,所以()()2()1(21)2f x m f m x m m x +-=++-+=为奇函数.故对于任意m 有()21f x x =+为位差奇函数.又2()g x x =,设222()()()()2G x g x m g m x m m x mx =+-=+-=+.此时()22()22G x x mx x mx -=--=-,若()G x 为奇函数则22220x mx x mx -++=恒成立.与假设矛盾,故不存在m 有2()g x x =为位差奇函数.(2) 由()sin()f x x ϕ=+是位差值为3π的位差奇函数可得,()()33f x f ππ+-为R 上的奇函数.即()()sin()sin()3333f x f x ππππϕϕ+-=++-+为奇函数. 即3k πϕπ+=,,3k k Z πϕπ=-∈.(3)设()()22()()()(222)12122x m m m m m x x x m h t x f t m t f x m ----+-=+-=--⋅-⋅⋅=--- .由题意()()0h x h x +-=对任意的[1,)m ∈+∞均不恒成立.此时()()()()22222222()()11110m x m x x m x m h x t h x t ----+-=--⋅-⋅-+--=即()()222221112122m x x x x m m m t t -----+-=-+=⋅-⇒⋅对任意的[1,)m ∈+∞不恒成立. 故22m t =在[1,)m ∈+∞无解.又22224m ≥=,故4t <.故(),4t ∈-∞【点睛】本题主要考查了函数的新定义问题,需要根据题意求所给的位差函数的表达式分析即可.属于中等题型.7.(1)0b =,1a =;(2)1[,8]2;(3)证明见解析,min 4M =; 【解析】【分析】(1)由已知()g x 在区间[2,3]上的最大值为4,最小值为1,结合函数的单调性及最值,易构造关于,a b 的方程组,解得,a b 的值。
高一数学《函数》专题训练材料(学生版)一、函数概念相关 1、解析式相关①若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.②给出下列两个条件:(1)f(x+1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.③已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x );已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).2、定义域求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y2、值域① 求13+--=x x y 的值域 ②求函数x x y -+=142的值域③求函数66522-++-=x x x x y 的值域3、复合函数①已知函数分别由下表给出,则满足f(g(x))>g(f(x))的x 值是②已知函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+=a axf ax f xg 的定义域。
②若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域③已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。
4、分段函数①设函数f(x)=⎪⎩⎪⎨⎧>≤--0,0,1221x x x x 若f(x 0)>1,求x 0的取值范围。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
(完整版)高一函数大题训练及答案一、解答题1.已知a R ∈,当0x >时,()21log f x a x ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若函数()f x 过点()1,1,求此时函数()f x 的解析式; (Ⅱ)若函数()()22log g x f x x =+只有一个零点,求实数a 的值;(Ⅲ)设0a >,若对任意实数1,13t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在[],1t t +上的最大值与最小值的差不大于1,求实数a 的取值范围.2.(附加题,本小题满分10分,该题计入总分)已知函数()y f x =,若在区间()2,2-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(1)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由; (2)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.3.已知函数21()|1|,R.f x x x =-∈我们定义211312()(()),()(()),,f x f f x f x f f x ==11()(()).n n f x f f x -=其中2,3,.n =(1)判断函数1()f x 的奇偶性,并给出理由; (2)求方程13()()f x f x =的实数根个数;(3)已知实数0x 满足00()(),i j f x f x m ==其中1,0 1.i j n m ≤<≤<<求实数m 的所有可能值构成的集合.4.已知2()2(1)3()=-++∈f ax x a x R a .(1)若函数()f x 在3[,3]2单调递减,求实数a 的取值范围;(2)令()()1=-f x h x x ,若存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立,求实数a 的取值范围.5.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 6.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 7.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.8.对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.9.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.10.已知函数()y f x =,x D ∈,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有()()f x T mf x +>成立,则称函数()f x 是D 上的m 级类增周期函数,周期为T ,若恒有()()f x T mf x +=成立,则称函数()f x 是D 上的m 级类周期函数,周期为T .(1)已知函数2()f x x ax =-+是[3,)+∞上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知1T =,()y f x =是[0,)+∞上m 级类周期函数,且()y f x =是[0,)+∞上的单调递增函数,当[0,1)x ∈时,()2x f x =,求实数m 的取值范围;(3)是否存在实数k ,使函数()cos f x kx =是R 上的周期为T 的T 级类周期函数,若存在,求出实数k 和T 的值,若不存在,说明理由.11.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围.12.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况. 13.若存在常数()0k k >,使得对定义域D 内的任意()1212,x x x x ≠,都有()()1212f x f x k x x -≤-成立,则称函数()f x 在其定义域 D 上是“k -利普希兹条件函数”.(1)若函数()(),14f x x x =≤≤是“k -利普希兹条件函数”,求常数k 的最小值; (2)判断函数()2log f x x =是否是“2-利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若()()y f x x R =∈是周期为2的“1-利普希兹条件函数”,证明:对任意的实数12,x x ,都有()()121f x f x -≤.14.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.15.已知函数()21log 21mx f x x x +⎛⎫=- ⎪-⎝⎭()m 为常数是奇函数.(1)判断函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上的单调性,并用定义法证明你的结论;(2)若对于区间[]2,5上的任意值,使得不等式()2xf x n ≤+恒成立,求实数的取值范围.【参考答案】一、解答题1.(Ⅰ)()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭;(Ⅱ)0a =或14-;(Ⅲ)3[,)2+∞【解析】 【详解】试题分析:(Ⅰ)将点()1,1 代入可得函数的解析式;(Ⅱ)函数有一个零点,即()22log 0f x x += ,根据对数运算后可得210ax x +-= ,将问题转化为方程有一个实根,分0a = 和0,0a ≠∆= 两种情况,得到a 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值()()11f t f t -+≤ 整理为()2110at a t ++-≥ ,对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,0a > 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解a 的取值范围. 试题解析:(Ⅰ)函数()21log f x a x ⎛⎫=+ ⎪⎝⎭过点()1,1,()()21log 11f a ∴=+=, 1a ∴=,∴此时函数()21log 1(0)f x x x ⎛⎫=+> ⎪⎝⎭(Ⅱ)由()22log 0f x x +=得221log 2log 0a x x ⎛⎫+== ⎪⎝⎭,211a x x ⎛⎫∴+⋅= ⎪⎝⎭化为210ax x +-=, 当0a =时,可得1x =,经过验证满足函数()g x 只有一个零点;当0a ≠时,令140a ∆=+=解得14a =-,可得2x =,经过验证满足函数()g x 只有一个零点, 综上可得:0a =或14-.(Ⅲ)任取()12,0,x x ∈+∞且12x x <,则210x x x ∆=->, ()()11221222212121211221211221211log log log ,0,0,0,01,x ax x y f x f x a a x x x ax x x x a x ax x x ax x x ax x x ax x ⎛⎫⎛⎫+∆=-=+-+= ⎪ ⎪+⎝⎭⎝⎭<∴<+<++∴<<+1122212log 0x ax x x ax x +∴<+,即0y ∆<,()f x ∴在()0,+∞上单调递减.∴函数()f x 在区间[],1t t +上的最大值与最小值分别为()(),1f t f t +, ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫∴-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭,整理得()2110at a t ++-≥对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,令()()211h t at a t =++-,0,a >∴函数()h t 在区间1,13⎡⎤⎢⎥⎣⎦上单调递增,103h ⎛⎫∴≥ ⎪⎝⎭,即11093a a ++-≥,解得32a ≥, 故实数a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题以对数函数为载体,考查了函数的零点,单调性,最值,恒成立问题,以及转化与化归的能力,综合性比较高,最后一问转化为了二次函数的问题,所以需熟练掌握二次函数的恒成立问题.2.(Ⅰ)()f x 具有性质M ; (Ⅱ)23m ≤-或2m >或0m =【解析】 【详解】试题分析:(Ⅰ)()sin 2f x x =+具有性质M .若存在()022x ∈﹣,,使得()01f x =,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数()2221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在()22﹣,上有且只有一个实根.设()222h x x mx m =++,即()222h x x mx m =++在()22﹣,上有且只有一个零点.讨论m 的取值范围,结合零点存在定理,即可得到m 的范围.试题解析:(Ⅰ)()sin 2f x x =+具有性质M .依题意,若存在0x ∈(2,2)-,使0()1f x =,则0x ∈(2,2)-时有0sin 21x +=,即0sin 1x =-,022x k ππ=-,k Z ∈.由于0x ∈(2,2)-,所以02x π=-.又因为区间(2,2)-内有且仅有一个02x π=-,使0()1f x =成立,所以()f x 具有性质M 5分(Ⅱ)依题意,若函数2()221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在(2,2)-上有且只有一个实根.设2()22h x x mx m =++,即2()22h x x mx m =++在(2,2)-上有且只有一个零点. 解法一:(1)当2m -≤-时,即2m ≥时,可得()h x 在(2,2)-上为增函数, 只需(2)0,{(2)0,h h -<>解得2,{2,3m m >>-交集得2m >.(2)当22m -<-<时,即22m -<<时,若使函数()h x 在(2,2)-上有且只有一个零点,需考虑以下3种情况:(ⅰ)0m =时,2()h x x =在(2,2)-上有且只有一个零点,符合题意. (ⅱ)当20m -<-<即02m <<时,需(2)0,{(2)0,h h -≤>解得2,{2,3m m ≥>-交集得∅.(ⅲ)当02m <-<时,即20m -<<时,需(2)0,{(2)0,h h ->≤解得2,{2,3m m <≤-交集得223m -<≤-.(3)当2m -≥时,即2m ≤-时,可得()h x 在(2,2)-上为减函数 只需(2)0,{(2)0,h h -><解得2,{2,3m m <<-交集得2m ≤-.综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m >或0m = 14分 解法二: 依题意,(1)由(2)(2)0h h -⋅<得,(42)(64)0m m -+<,解得23m <-或2m >. 同时需要考虑以下三种情况: (2)由22,{0,m -<-<∆=解得0m =. (3)由20,{(2)0,m h -<-<-=解得02,{2,m m <<=不等式组无解. (4)由02,{(2)0,m h <-<=解得20,{2,3m m -<<=-解得23m =-. 综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m = 14分.考点:1.零点存在定理;2.分类讨论的思想.3.(1)偶函数;答案见解析;(2)实数根个数为11;(3)⎪⎪⎩⎭.【解析】(1)由函数奇偶性的定义运算即可得解;(2)令1()f x t =,转化条件为0=t 或1,再解方程即可得解;(3)按照m ⎛∈ ⎝⎭、m ⎫∈⎪⎪⎝⎭分类,结合函数的单调性可得()(1,2,,)k f m m k n ≠=,再代入m =.【详解】(1)因为1()f x 的定义域R 关于原点是对称的,又2211()|()1||1|()f x x x f x -=--=-=,故函数1()f x 是偶函数;(2)令1()f x t =,则0t ≥,于是()()2231211()()()|1|1t f x f f x f f t t ====--,于是22|1|1t t -=+或22|1|1.t t -=-又0t ≥,解得0=t 或1,则方程13()()f x f x =的实数根个数即为210x -=或1的根的总个数,解得1x =±或0或 所以方程13()()f x f x =的实数根个数为11; (3)因为01m <<,当(0,1)m ∈时,1()f m 在(0,1)单调递减,且1(0)1f =,1(1)0f =, 则12(),(),,()n f m f m f m 的值域均为(0,1),①当m ⎛∈ ⎝⎭时,21()1f m m ⎫=-∈⎪⎪⎝⎭,于是1()f m m >,因为当m ⎛∈ ⎝⎭时,210m m +-<, 所以()()()()42222211110m m m m m m m m m m m -+-=---=-+-<,所以()()()()2142221112f m f f m m m m m ==--=-+<,即2()f m m <, 注意到1()f x 在(0,1)单调递减,于是()()()3121413112()()(),()()()()f m f f m f m f m f f m f f m f m =>=<=,()()()()514123615134()()()(),()()()(),.f m f f m f f m f m f m f f m f f m f m =>==<=于是6421350()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,②当m ⎫∈⎪⎪⎝⎭时,类比同理可得5312460()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,于是当(0,1)m ∈且m ≠()(1,2,,)k f m m k n ≠=,若0()i f x m =,其中(0,1)m ∈,m ≠则().j i f m m -≠,即()00()()j i i i f f x f x -≠,也就是00()()j i f x f x ≠;当m =()i f x 的值域为[)0,+∞,所以存在0x 使得0()i f x =又1f ⎝⎭所以()()()()()01101110()()()j j i f x f f x f f f f x -====,即00()()i j f x f x ==所以实数m的所有可能值构成的集合为⎪⎪⎩⎭.【点睛】本题考查了函数奇偶性、函数与方程及函数单调性的应用,考查了运算求解能力,属于难题. 4.(1)12a ≤(2)4([,).5∈-∞⋃+∞a 【解析】【分析】(1)对a 讨论,0a =,0a >,0a <,结合二次函数的图象和单调性的性质,得到不等式组,解不等式即可得到a 的范围;(2)由题意可得在3[,3]2∈x 上,max min 1()()2+-≥a h x h x 成立, 1()(1)21ah x a x x -=-+--,令11[,2]2=-∈t x ,则11()2,[,2]2a g t a t t t -=⋅+-∈.对a 讨论,(i )当0a ≤时,(ii )当01a <<时,求出单调性和最值,即可得到a 的范围.【详解】(1)①当0a =时,()23f x x =-+,显然满足,②010123a a a a >⎧⎪⇒<<+⎨≥⎪⎩,③00132a a a a <⎧⎪⇒<+⎨≤⎪⎩, 综上实数a 的取值范围:12a ≤. (2)存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立即:在3[,3]2∈x 上,max min 1()()2+-≥a h x h x ,因为()1()(1)211-==-+---f x a h x a x x x ,令11[,2]2=-∈t x , 则11()2,[,2]2a g t a t t t -=⋅+-∈ (i )当0a ≤时,()g t 在1[,2]2t ∈上单调递减,所以max min 1()()2+-≥a g t g t ,等价于112()(2)227+-≥⇒≤a g g a ,所以0a ≤; (ii )当01a <<时,1()()2-=+-aa g t a t t ,()g t在上单调递减,在)+∞上单调递增. ①12≤时,即451a ≤<,()g t 在1[,2]2t ∈上单调递增.由max min 1()()2+-≥a g t g t 得到114(2)()225+-≥⇒≥a g g a ,所以451a ≤<. ②2≥时,即105a <≤,()g t 在1[,2]2t ∈上单调递减,由max min 1()()2+-≥a g t g t 得到112()(2)227+-≥⇒≤a g g a ,所以105a <≤. ③当122<<时,即1455a <<,min ()=g t g ,最大值则在(2)g 与1()2g 中取较大者,作差比较13(2)()322-=-g g a ,得到分类讨论标准:a .当1152<<a 时,13(2)()3022-=-<g g a ,此时max 1()()2=g t g ,由max min 1()()2+-≥a g t g t ,得到211()32409022a g g a a a +-≥⇒-+≥⇒≥或a ≤,所以15<≤ab .当1425≤<a 时,13(2)()3022-=->g g a ,此时max ()(2)=g t g , 由max min 1()()2+-≥a g t g t,得到14(2)25+-≥⇒≥≥a g g a a ,此时无解,在此类讨论中,4[,1).5∈⋃a c .当1a ≥,()g t 在1[,2]2t ∈上单调递增,由max min 1()()2+-≥a g t g t ,得到114(2)()225+-≥⇒≥a g g a ,所以1a ≥,综合以上三大类情况,4([,).5∈-∞⋃+∞a 【点睛】本题考查函数的单调性的应用,考查存在性问题的解法,注意运用分类讨论的思想方法,以及转化思想,考查运算能力,属于难题. 5.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力.6.(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得.(2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根, 所以00322xx =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =-设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =,所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+= 【点睛】本题考查函数方程思想,函数的零点问题,属于难题.7.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+, 所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =,2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤, ()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题.8.(1)证明见解析 (2)k π≥(3)存在,4T ≥【解析】 【分析】(1)取特殊值使得()()f x f x T ≤+不成立,即可证明;(2)根据“T 同比不减函数”的定义,sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,分离参数k ,构造函数,转化为k 与函数的最值关系,即可求出结果;(3)去绝对值化简函数()f x 解析式,根据“T 同比不减函数”的定义,取1x =-,因为()()()1113f T f f -+≥-==成立,求出T 的范围,然后证明对任意的x ∈R ,()()f x T f x +≥恒成立,即可求出结论. 【详解】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=,因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎪≥= ⎪⎪⎝⎭ (3)设函数()11f x x x x =+--+是“T 同比不减函数”, ()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立, 所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立. (Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-, 所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立, 所以T 的取值范围是[)4,+∞. 【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.9.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.10.(1)1a <;(2)2m ≥;(3)当1T =时,2k n π=,n ∈Z ;当1T =-时,(21)k n π=+,n ∈Z .【解析】 【分析】(1)由题意f (x +1)>2f (x )整理可求得a <x ﹣121x --,令x ﹣1=t (t ≥2),由g (t )=t 2t-在[2,+∞)上单调递增,即可求得实数a 的取值范围;(2)由x ∈[0,1)时,f (x )=2x ,可求得当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,利用f (x )在[0,+∞)上单调递增,可得m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1),从而可求实数m 的取值范围;(3)f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立,分当k =0时,T =1;当k ≠0时,要使cos k (x +T )=T cos kx 恒成立,只有T =±1,于是可得答案. 【详解】(1)由题意可知:f (x +1)>2f (x ),即﹣(x +1)2+a (x +1)>2(﹣x 2+ax )对一切[3,+∞)恒成立,整理得:(x ﹣1)a <x 2﹣2x ﹣1,∵x ≥3,∴a ()22122111x x x x x ----==--<x ﹣121x --, 令x ﹣1=t ,则t ∈[2,+∞),g (t )=t 2t-在[2,+∞)上单调递增,∴g (t )min =g (2)=1, ∴a <1.(2)∵x ∈[0,1)时,f (x )=2x ,∴当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mf (x ﹣1)=m 2f (x ﹣2)=…=mnf (x ﹣n )=mn •2x ﹣n , 即x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,n ∈N *, ∵f (x )在[0,+∞)上单调递增,∴m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1), 即m ≥2.(3)由已知,有f (x +T )=Tf (x )对一切实数x 恒成立, 即cos k (x +T )=T cos kx 对一切实数恒成立, 当k =0时,T =1; 当k ≠0时, ∵x ∈R ,∴kx ∈R ,kx +kT ∈R ,于是cos kx ∈[﹣1,1], 又∵cos (kx +kT )∈[﹣1,1],故要使cos k (x +T )=T cos kx 恒成立,只有T =±1, 当T =1时,cos (kx +k )=cos kx 得到 k =2n π,n ∈Z 且n ≠0; 当T =﹣1时,cos (kx ﹣k )=﹣cos kx 得到﹣k =2n π+π, 即k =(2n +1)π,n ∈Z ;综上可知:当T =1时,k =2n π,n ∈Z ; 当T =﹣1时,k =(2n +1)π,n ∈Z . 【点睛】本题考查周期函数,着重考查函数在一定条件下的恒成立问题,综合考查构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题. 11.(1)9,08⎡⎤-⎢⎥⎣⎦;(2)0a >【解析】 【分析】(1)当1a =时,函数()()22221x x f x =--,转化为二次函数问题,利用二次函数的性质,即可求解;(2)由(1)转化为二次函数存在零点,利用二次函数的图象与性质,即可求解. 【详解】(1)当1a =时,()()224212221x x x x f x =⋅--=--,令2x t =,[]3,0x ∈-,则1,18t ⎡⎤∈⎢⎥⎣⎦,故221921248y t t t ⎛⎫=--=-- ⎪⎝⎭,1,18t ⎡⎤∈⎢⎥⎣⎦,故值域为9,08⎡⎤-⎢⎥⎣⎦.(2)关于x 的方程()222210x x a --=有解,等价于方程2210ax x --=在()0,∞+上有解记()221g x ax x =--当0a =时,解为10x =-<,不成立; 当0a <时,开口向下,对称轴104x a=<,过点()0,1-,不成立; 当0a >时,开口向上,对称轴104x a=>,过点()0,1-,必有一个根为正, 所以,0a >. 【点睛】本题主要考查了函数值域的求解,以及函数的零点问题的应用,其中解答中合理转化为二次函数,利用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,属于基础题.12.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b (2)令()()110y f x g x bx x a x a=-=+-=-+()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a =-的解的个数即可 ①当0b =时,222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 ②当0b >时 ,2220x a b =+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a=-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题.13.(1)12;(2)不是,理由见解析;(3)证明见解析. 【解析】 【详解】试题分析:(1)不妨设12x x >,则12k ≥恒成立.211114,42x x ≤≤≤∴<<,从而可得结果;(2)令1211,24x x ==,则()221111log log 1212424f f ⎛⎫⎛⎫-=-=---= ⎪ ⎪⎝⎭⎝⎭,从而可得函数()2log f x x =不是“2-利普希兹条件函数”; (3)设()f x 的最大值为M ,最小值为m ,在一个周期[]0,2,内()(),f a M f b m ==,利用基本不等式的性质可证明()()()()12221f x f x M m f a f b a b -≤-=-+≤--<.试题解析:(1)若函数f (x )=,(1≤x≤4)是“k ﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f (x1)﹣f (x2)|≤k|x1﹣x2|成立, 不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k 的最小值为 .(2)f (x )=log2x 的定义域为(0,+∞), 令x1=,x2=,则f ()﹣f ()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f (x1)﹣f (x2)>2|x1﹣x2|, ∴函数f (x )=log2x 不是“2﹣利普希兹条件函数”.(3)设f (x )的最大值为M ,最小值为m ,在一个周期[0,2]内f (a )=M ,f (b )=m , 则|f (x1)﹣f (x2)|≤M ﹣m=f (a )﹣f (b )≤|a ﹣b|. 若|a ﹣b|≤1,显然有|f (x1)﹣f (x2)|≤|a ﹣b|≤1. 若|a ﹣b|>1,不妨设a >b ,则0<b+2﹣a <1,∴|f (x1)﹣f (x2)|≤M ﹣m=f (a )﹣f (b+2)≤|a ﹣b ﹣2|<1. 综上,|f (x1)﹣f (x2)|≤1.14.(1)函数()sin()3f x x π=+是“M 类函数”;(2)54-;(3)[1,1)-.【解析】 【详解】试题分析:(1) 由()()f x f x -=-,得sin()sin()33x x ππ-+=-+整理可得02x R π=∈满足00()()f x f x -=-(2) 由题存在实数0[1,1]x ∈-满足00()()f x f x -=-,即方程2220x x m -++=在[1,1]-上有解.令12[,2]2xt =∈分离参数可得11()2m t t =-+,设11()()2g t t t =-+求值域,可得m 取最小值54-(3) 由题即存在实数0x ,满足00()()f x f x -=-,分02x ≥,022x -<<,02x ≤-三种情况讨论可得实数m 的取值范围.试题解析:(1)由()()f x f x -=-,得:sin()sin()33x x ππ-+=-+0x = 所以存在02x R π=∈满足00()()f x f x -=-所以函数()sin()3f x x π=+是“M 类函数”,(2)因为()2x f x m =+是定义在[1,1]-上的“M 类函数”, 所以存在实数0[1,1]x ∈-满足00()()f x f x -=-, 即方程2220x x m -++=在[1,1]-上有解. 令12[,2]2xt =∈则11()2m t t =-+,因为11()()2g t t t =-+在1[,1]2上递增,在[1,2]上递减所以当12t =或2t =时,m 取最小值54-(3)由220x mx ->对2x ≥恒成立,得1m <因为若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”所以存在实数0x ,满足00()()f x f x -=-①当02x ≥时,02x -≤-,所以22003log (2)x mx -=--,所以00142m x x =- 因为函数142y x x=-(2x ≥)是增函数,所以1m ≥- ②当022x -<<时,022x -<-<,所以33-=,矛盾③当02x ≤-时,02x -≥,所以2200log (2)3x mx +=,所以00142m x x =-+因为函数142y x x=-+(2)x ≤-是减函数,所以1m ≥-综上所述,实数m 的取值范围是[1,1)-点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.15.(1)()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数;证明见解析 (2)25log 63n ≥- 【解析】 【详解】试题分析:(1)利用奇偶性,确定函数的解析式,然后利用函数单调性的定义,判断函数的单调性;(2)利用函数的单调性,结合不等式恒成立问题,求解参数的取值范围.试题解析:(1)由条件可得()()0f x f x -+=,即 2211log log 02121mx mx x x -+⎛⎫⎛⎫+= ⎪ ⎪---⎝⎭⎝⎭化简得222114m x x -=-,从而得2m =±;由题意2m =-舍去,所以2m =即()212log 21x f x x x +⎛⎫=- ⎪-⎝⎭, ()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数, 证明如下:设1212x x <<<+∞, 则()()12f x f x -=122122121212log log 2121x x x x x x ⎛⎫⎛⎫++--+ ⎪ ⎪--⎝⎭⎝⎭因为1212x x <<<+∞,所以210x x ->,12210,210x x ->->; 所以可得1212122112112x x x x +-⋅>-+,所以()()120f x f x ->,即()()12f x f x >; 所以函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, (2)设()()2x g x f x =- ,由(1)得()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, 所以()()2x g x f x =-在[]2,5上单调递减;所以()()2x g x f x =-在[]2,5上的最大值为()252log 63g n =≥-. 由题意知()n g x ≥在[]2,5上的最大值,所以25log 63n ≥-.。
函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )= ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )= ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )= ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )= ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。
高一数学《函数》专题训练材料(学生版)一、函数概念相关 1、解析式相关①若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.②给出下列两个条件:(1)f(x+1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.③已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x );已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).2、定义域求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y2、值域① 求13+--=x x y 的值域 ②求函数x x y -+=142的值域③求函数66522-++-=x x x x y 的值域3、复合函数①已知函数分别由下表给出,则满足f(g(x))>g(f(x))的x 值是②已知函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+=a axf ax f xg 的定义域。
②若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域③已知函数2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论。
4、分段函数①设函数f(x)=⎪⎩⎪⎨⎧>≤--0,0,1221x x x x 若f(x 0)>1,求x 0的取值范围。
②已知函数f(x)=⎪⎩⎪⎨⎧+∞∈∈-∈+),4(,11]4,2(,13]2,0[,12x x x x x ,求函数f(x)的值域。
③设f(x)为定义域在R 上的偶函数,当x ≤-1时,f(x)的图象是过点(-2,0),斜率为1的射线。
又在的图象中有一部分是过顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)解析式,并作出其图象。
二、函数的性质1、单调性①已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内()②函数f (x )=ax -1x +3在(-∞,-3)上是减函数,则a 的取值范围是________.③已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2) C .(-2,1) D .(-∞,-2)∪(1,+∞) ④定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝⎛⎭⎫a +b 2⑤偶函数f (x )在(-∞,0]上单调递减,且f (x )在[-2,k ]上的最大值点与最小值点横坐标之差为3,则k =________.2、奇偶性①已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。
②若f (x )为奇函数,且在(-∞,0)上是减函数,又f (-2)=0,则xf (x )<0的解集为________③已知y=f (x )是偶函数,且在),0[+∞上是减函数,则f (1-x 2)是增函数的区间是 3、最值①已知函数M ,最小值为m,则M/m 的值②求函数()[]224,,0,2f x x mx m m R x =-+∈∈的最大值与最小值 ③求函数()[]223,2,f x x x x a a =++∈-,a R ∈的最大值与最小值④分别在下列定义域范围内,求函数24x y x+=的最值(1)0x >(2)[]1,2x ∈(3)[]1,4x ∈(4)[]()1,1x a a ∈>⑤求函数()[]2412,2,51x x f x x x -+=∈-的最大值与最小值 ⑥已知函数()[)22,1,x x af x x x++=∈+∞ (1) 当2a =时,求函数()f x 的最小值;若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围高一数学《函数》专题训练材料(教师版)二、函数概念相关 5、解析式相关①若函数f (x )=21x 2-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.解:∵f(x )=21(x-1)2+a-21. ∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间. ∴f(x )min =f (1)=a-21=1 ① f (x )max =f (b )=21b 2-b+a=b ②由①②解得⎪⎩⎪⎨⎧==.3,23b a②给出下列两个条件:(1)f(x+1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.解:(1)令t=x +1,∴t≥1,x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t 2-1,即f(x)=x 2-1,x∈[1,+∞).(2)设f(x)=ax 2+bx+c (a≠0),∴f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f(0)=3⇒c=3,∴f(x)=x 2-x+3. ③已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x );已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解:(1)设f (x )=ax+b ,则3f (x+1)-2f (x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b=7,故f (x )=2x+7.(2)2f (x )+f (x1)=3x , ①把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x-x 3,∴f(x )=2x-x1.6、定义域 ①求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x7、值域求13+--=x x y 的值域解法一:(图象法)可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图,观察得值域{}44≤≤-y y解法三:(选)(不等式法)414114)1(134)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 可得值域②求函数x x y -+=142的值域解:设 x t -=1 则 t ≥0 x=1-2t代入得 t t t f y 4)1(2)(2+-⋅==4)1(224222+--=++-=t t t∵t ≥0 ∴y ≤4③求函数66522-++-=x x x x y 的值域方法一:去分母得 (y -1)2x +(y+5)x -6y -6=0 ① 当 y ≠1时 ∵x ∈R ∴△=(y+5)2+4(y -1)×6(y+1)≥0 由此得 (5y+1)2≥0检验 51-=y (有一个根时需验证)时 2)56(2551=-⋅+--=x (代入①求根)∵2 ∉ 定义域 { x| x ≠2且 x ≠3} ∴51-≠y 再检验 y=1 代入①求得 x=2 ∴y ≠1综上所述,函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}方法二:把已知函数化为函数36133)3)(2()3)(2(--=+-=+---=x x x x x x x y (x ≠2) 由此可得 y ≠1,∵ x=2时51-=y 即 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}8、复合函数①已知函数分别由下表给出,则满足f(g(x))>g(f(x))的x 值是 2 (代入)②已知函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+=a a xf ax f xg 的定义域。
[解析]由已知,有⎪⎪⎩⎪⎪⎨⎧<<-<<-⇒⎪⎪⎩⎪⎪⎨⎧<<-<<-.232,2321,2321,2321a x a ax a a x ax (1)当1=a 时,定义域为}2321|{<<-x x ; (2)当a a 2323>,即10<<a 时,有221a a ->-,定义域为}232|{a x a x <<-;(3)当a a 2323<,即1>a 时,有221a a -<-, 定义域为}2321|{ax a x <<-. 故当1≥a 时,定义域为}2321|{a x a x <<-; 当10<<a 时,定义域为}.232|{a x a x <<-[点评]对于含有参数的函数,求其定义域,必须对字母进行讨论,要注意思考讨论字母的方法。