螺栓断裂原因分析
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
螺栓断裂分析报告1. 引言螺栓是一种常见的连接元件,广泛应用于工程领域。
然而,在使用过程中,螺栓的断裂可能会导致严重的安全事故和设备损坏。
因此,对螺栓的断裂原因进行分析非常重要。
本文将介绍螺栓断裂的分析步骤,以帮助读者更好地了解螺栓断裂的原因,并提供相应的解决方案。
2. 分析步骤螺栓断裂分析通常可以按照以下步骤进行:2.1 收集断裂螺栓样本首先,需要收集断裂的螺栓样本。
这些样本应来自不同的工程项目,并涵盖不同的工作条件。
收集足够数量的样本有助于得出准确的结论。
2.2 观察断口形貌通过对断裂螺栓的断口形貌进行观察可以初步判断断裂的原因。
断口形貌可以分为韧性断口、脆性断口等。
韧性断口常常表明螺栓断裂是由于受到超负荷载荷所致,而脆性断口则意味着存在其他问题。
2.3 进行金相分析金相分析是一种常用的分析方法,通过对螺栓样本进行金相薄片制备和观察,可以获得螺栓的组织结构信息。
通过金相分析,可以检测到螺栓材料中的缺陷、夹杂物、氧化层等问题。
2.4 进行力学性能测试力学性能测试是评估螺栓质量的重要手段。
通过对螺栓样本进行拉伸试验、硬度测试等,可以了解螺栓的强度、韧性等性能参数。
与标准数值进行对比,可以判断螺栓是否达到设计要求。
2.5 考虑工况因素分析断裂螺栓时,还需要考虑螺栓所处的工作条件。
例如,工作温度、湿度、振动等因素都可能对螺栓的性能产生影响。
通过分析工况因素,可以找到与断裂相关的潜在问题。
2.6 结果分析与解决方案综合以上分析结果,可以得出螺栓断裂的原因。
根据不同的原因,提出相应的解决方案。
例如,如果断裂原因是由于材料质量问题,可以优化材料制备过程;如果是由于超负荷导致断裂,则需要对工作负荷进行合理评估等。
3. 结论螺栓断裂分析是一项复杂的工作,需要综合考虑多个因素。
通过对断裂螺栓样本的观察、金相分析、力学性能测试以及考虑工况因素,可以准确判断螺栓断裂的原因,并提出相应的解决方案。
对螺栓断裂问题的分析与解决不仅可以提高工程项目的安全性,还能为相关领域的研究提供参考。
柴油机主轴承螺栓断裂原因
柴油机主轴承螺栓断裂的原因可能有多种,以下是一些常见的原因:
1. 螺栓材料质量不佳:螺栓的材料质量不符合要求,例如存在杂质、内部结构不均匀等问题,导致螺栓的强度和韧性不足,容易发生断裂。
2. 热处理不当:螺栓的热处理工艺不正确,导致螺栓的机械性能不足,容易发生断裂。
例如,热处理温度过高或过低,冷却速度过快或过慢等。
3. 装配不当:在装配过程中,螺栓的拧紧力矩过大或过小,导致螺栓承受的应力过大或过小,容易发生断裂。
4. 柴油机运行工况不佳:柴油机长期在高温、高负荷、高振动等恶劣工况下运行,导致螺栓承受的应力过大或过小,容易发生断裂。
5. 腐蚀和磨损:螺栓长期处于腐蚀和磨损的环境中,导致螺栓的表面损伤和内部结构变化,容易发生断裂。
综上所述,要防止柴油机主轴承螺栓断裂,需要从多个方面入手,包括提高材料质量、优化热处理工艺、规范装配操作、改善柴油机运行工况以及加强腐蚀和磨损防护等。
同时,也需要定期对柴油机进行维护和检查,及时发现并处理潜在的问题。
紧固件螺栓断裂的原因有多种多样,归纳来说,一般螺栓的损坏由应力因数、疲劳、腐蚀和氢脆等原因形成。
1、应力因数超过常规应力(超应力)由剪切、拉伸、弯曲和压缩中的任一个或其组合而产生。
大多数设计人员首先考虑的是拉伸负荷、预紧力和附加实用载荷的组合。
预紧力基本是内部的和静态的,它使接合组件受压。
实用载荷是外部的,--般是施加在紧固件上的循环(往复)力。
拉伸负荷试图将接合组件抗开。
当这些负荷超过螺栓的屈服极限时,螺栓从弹性变形变为塑性区,导致螺栓永久变形,因此在外部负荷除去时不能再恢复原先的状态。
类似原因,如果螺栓上的外负荷超过其极限抗拉强度,螺栓将断裂。
螺栓拧紧是靠预紧力扭转得来的。
在安装时,过量的扭矩导致超扭矩,同时也使紧固件受到了超应力而降低了紧固件的轴向抗拉强度,即在连续扭转的螺栓与直接受张力拉伸的相同螺栓相比,屈服值比较低。
这样,螺栓有可能在不到相应标准的最小抗拉强度时就出现屈服。
扭转力矩大可以使螺栓预紧力增大.使接合松弛相应减少。
为了增加锁紧力,预紧力一般采取上限。
这样,除非屈服强度和极限抗拉强度之间差异数目很小,一般螺栓不会因扭转而出现屈服现象。
剪切负荷对螺栓纵轴方向施加一个垂直的力。
剪切应力分为单剪应力和双剪应力。
从经验数据来讲,极限单剪应力大约是极限抗拉应力的65%。
许多设计人员优选剪切负荷,因为它利用了螺栓的抗拉和抗剪强度,它主要起类似销钉的作用,使受剪切的紧固件形成相对简单的联接.缺点是剪切联接使用范围小而且剪切联接不能经常使用,因其要求更多的材料和空间。
我们]知道,材料的组成成分和精度也起一定的决定性。
但是,将抗拉应力转换成剪切负荷的材料数据往往却是得不到的。
紧固件预紧力影响剪切联接的整体性。
预紧力越低,在与螺栓接触时接合层越易滑动。
剪切负荷能力通过乘以橫平面数计算(一个剪切平面通称单剪,两个剪切平面通称双剪),这些平面应该是无螺纹螺栓的横截面。
我们不提倡设计通过螺纹的剪切,因为紧固件的剪切强度可在横截面变化时被应力集中克服。
螺栓断裂原因分析螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。
即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。
很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。
换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。
静态紧固用螺栓很少会自行松动,也很少出现断裂情况。
但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。
所以我认为螺栓损坏的真正原因是松动。
螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。
受径向力作用的螺栓可能会被剪断。
因此设计时,对于关键的运动部位的连接紧固要注意防松设计。
自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。
对于弹簧垫片的放松效果,一直存在争议。
弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。
同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。
以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。
弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。
折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。
所以,弹簧垫圈对螺栓的防松作用可以忽略。
螺栓断裂分析报告一、引言螺栓是一种常见的连接元件,在机械设备和结构工程中得到广泛应用。
然而,螺栓在使用中可能会发生断裂,给机械设备和结构的安全运行带来隐患。
本报告旨在对螺栓断裂进行分析,并提供解决方案,以确保设备和结构的安全性。
二、螺栓断裂原因分析1.质量问题:螺栓断裂可能是由于螺栓本身存在质量问题所致,如材料强度不符合标准、制造工艺不良等。
为此,应关注螺栓的采购渠道和制造工艺,并严格按照相关标准进行选择和检测。
3.腐蚀问题:腐蚀是导致螺栓断裂的常见原因之一、在潮湿、酸性或碱性环境中,螺栓易受到腐蚀,使其材料的强度降低。
因此,在腐蚀环境中应选择抗腐蚀性能良好的螺栓材料,并进行定期维护保养。
4.紧固力不均匀:不正确的紧固力分布可能导致螺栓在负载过程中承受不均匀的力,从而引发断裂。
在安装过程中,应根据设备或结构的要求,采用正确的紧固力分布方案,并进行定期检查和调整。
三、螺栓断裂的解决方案1.优化选材:根据设备或结构的负荷、工作环境等要求,选择合适的螺栓材料。
关注材料的强度、韧性、抗腐蚀性等指标,并遵循标准进行选材。
2.合理设计螺栓连接:根据实际负荷情况和工作要求,合理选用螺栓的规格、数量和布置方式,并确保紧固力的均匀分布。
在设计过程中,可以借助有限元分析等工具来验证螺栓连接的安全性。
3.定期检查和维护:对于暴露在恶劣环境中的螺栓,应定期进行检查和维护,特别是针对腐蚀环境。
清洁螺栓表面,涂覆抗腐蚀涂层,必要时更换受损螺栓,以延长其使用寿命。
4.强化管理和培训:通过建立规范的螺栓管理制度和培训机制,提高操作人员的专业水平,加强螺栓使用和维护的知识宣传,以减少螺栓断裂的发生。
四、结论螺栓断裂是机械设备和结构工程中常见的问题,但可以通过合理选材、优化设计、定期维护和加强管理来减少其发生。
对于已经断裂的螺栓,应及时进行更换,并对其断裂原因进行调查分析,以避免类似问题再次发生。
通过以上措施的综合应用,能够提高螺栓连接的安全性和可靠性,保证设备和结构的正常运行。
关于螺栓产生的问题及分析
一、螺栓松动
问题描述:螺栓在紧固后,经过一段时间或振动后,出现松动现象,导致连接部位出现间隙或产生移位。
原因分析:
1. 螺栓与螺母之间的摩擦系数不够,导致自锁能力不足。
2. 紧固时未使用合适的工具或方法,导致预紧力不足或预紧力不均匀。
3. 螺栓与被连接件之间的振动或冲击,导致螺栓松动。
解决方案:
1. 使用摩擦系数较高的螺母或添加垫片来增加摩擦力。
2. 使用合适的工具进行紧固,确保预紧力均匀且足够大。
3. 在连接部位增加防松装置,如弹簧垫圈、止动垫圈等。
二、螺栓断裂
问题描述:螺栓在受力或振动后,发生断裂现象,导致连接失效。
原因分析:
1. 螺栓材料存在缺陷,如夹杂物、气孔等。
2. 螺栓制造工艺不当,如热处理不当、机械加工过度等。
3. 螺栓受力过大或疲劳损伤,导致应力集中部位发生断裂。
4. 螺栓装配时受到损坏或碰撞。
解决方案:
1. 使用合格的材料,确保材料质量符合要求。
2. 严格控制制造工艺,确保螺栓质量稳定可靠。
3. 根据受力情况选择合适的螺栓规格和材料。
4. 确保装配时螺栓不受损坏或碰撞。
5. 加强定期检查和维护,及时更换受损螺栓。
三、螺栓腐蚀
问题描述:螺栓在使用过程中受到腐蚀,导致连接部位失效或产生安全隐患。
原因分析:
1. 螺栓材料不耐腐蚀,如普通碳钢螺栓在潮湿环境中容易生锈。
高强度螺栓低温脆性断裂及冲击韧性分析随着科学技术的进步,对钢材脆性研究逐渐增多,并取得一定成就,在民用、工业施工中得到广泛应用。
然而,低温、高压等环境是影响高强度螺栓的重要因素,易导致高强度螺栓发生脆性断裂,造成巨大损失。
一、高强度螺栓脆性断裂的分类高强度螺栓脆性断裂主要分为以下几种类型:第一,过载断裂:导致过载断裂的原因主要在于过载,致使螺栓强度不够。
2100m/s是其断裂发生时的基本速率,易造成严重影响,该种断裂形式主要出现于10.9级和12.9级钢结构高强度螺栓产品中。
第二,非过载断裂:受到材料以及低温的影响,引起的断裂现象,主要出现于屈强性高、塑性好的高强度螺栓。
第三,应力腐蚀断裂:受到腐蚀性环境的影响,致使其所承受的静力或准静力荷载低于屈服极限应力,导致其发生断裂。
二、高强度螺栓脆性断裂的技术要素高强度螺栓脆性断裂的技术要素主要分为当前质量、潜在质量以及最终质量。
首先,当前质量:当前质量主要涉及的内容包括变形抗力、开裂程度以及钢材质量等。
其次,潜在质量:潜在质量必须以当前质量为依据,科学、合理配置合金元素,有效开发镦锻前后热处理工序的相关工作,达到提升钢材性能的目的。
最后,最终质量:指高强度螺栓以及螺栓制品最终需达到的质量标准,提高抗拉强度,避免出现拉长、拉断以及滑扣等问题的发生。
三、材料与韧性的关系镦锻成型是螺栓较常应用的工艺,包括温锻、冷镦以及车削加工等环节,具有涉及面广、批量大等特点。
冲击韧度主要用于表示材料韧性大小,化学成分和纤维组织以及材料冶金质量其决定因素,易受环境温度和缺口状况影响。
(一)材料与冲击韧度碳元素是影响冲击韧度的关键因素,如果强度水平一致,低碳合金钢的断裂韧性明显高于中碳合金钢。
例如,20MnTiB与40CrNiMo,将两者均处理成10.9级螺栓,其在强度相近的情况下,20MnTiB的断裂韧性为113MN/m2/3,40CrNiMo的断裂韧性为78MN/m2/3,而对于冲击功而言,40CrNiMo比20MnTiB高20至45J左右。
高强度螺栓断裂分析曾振鹏(上海交通大学高温材料及高温测试教育部重点实验室,上海200030)摘要:采用断口分析、金相检验和硬度测定等方法,对高强度螺栓断裂原因进行了分析。
断口分析结果表明,断口平坦,呈放射状花样,微观形态主要为准解理花样,表明螺栓的断裂是脆性断裂;同时发现,在断口附近还存在横向内裂纹,内裂纹的断口形态与断裂断口一样。
金相分析表明,材料棒中存在严重的中心碳偏析,而中心碳偏析是引起断裂的主要原因。
关键词:高强度螺栓;准解理;横向内裂纹;中心碳偏析某厂生产的一批规格为M30×160mm的高强度大六角头螺栓,在进行验收试验时发生断裂。
螺栓材料为35CrMoA,采用常规工艺生产,硬度要求为35~39HRC。
1 检验1.1 材料的化学成分用VD25直读光谱仪进行了材料化学成分分析,分析结果(质量分数)列于表1。
从表1可以看出,材料的化学成分符合标准要求。
1.2 硬度测定硬度测定结果列于表2。
由表可见,螺栓材料硬度虽符合技术要求,但已接近上限。
1.3 材料的显微组织(1)在抛光态下,可见材料中含有较严重的夹杂物,其形态、分布见图1。
对照标准[2],夹杂物级别为3~4级。
图1 夹杂物形态及分布状况100×图2 螺栓的显微组织280×4%硝酸酒精溶液侵蚀(2)显微组织见图2。
组织为回火马氏体+粒状贝氏体,并有少量铁素体。
从图2可明显看出,组织中存在严重偏析,出现回火马氏体和粒状贝氏体带,致使显微组织不均匀,而且在回火马氏体带中存在MnS夹杂。
对样品螺纹根部附近的组织进行了观察,未发现脱碳现象。
1.4 断口分析(1)图3a为断口的宏观形貌,断口较平坦,表面呈灰色,有明显的撕裂脊,呈放射状花样,放射线从中心向四周发射。
表明裂纹先在中心形成,然后向外扩展。
当裂纹扩展至整个横截面时,螺栓断裂。
图3 断口的宏观形貌图4 断口微观形貌(2)断口的微观形态基本上以准解理花样为主,还有一些二次裂纹,如图4所示。
螺栓断裂(螺栓头根部断裂,如果是单件估讣是应力集中的原因,断裂批量应是材料或热处理问题。
)
1.拧紧力矩过大(8.8级M8螺栓的介理拧紧力矩在18~23N.m)
2.螺栓根部设计不合理导致了应力集中
3.热处理没有达到要求,,导致硬度过髙,发生脆性断裂。
是否有回火脆性?螺纹处是否有
脱碳组织?
4.材料问题(8.8级螺栓的材质应该是40MnB或者是35CrMOA
5.电镀时如处理不当,容易导致氢的侵蚀,导致氢脆:氢脆断口的特征为:微观准解理面、微孔及韧性的
发丝。
(判断是否为氢脆有个最简单的办法:把样品表而水和油污淸洗干净,
烘干,倒一烧杯石蜡.加热到没有气泡冒出为止.然后把样品放入石蜡中,如果有气泡冒出就说明氢含址高)
6.枪未调好扭距,有冲击,岀现瞬间过载。
7.材料本身就有缺陷(螺栓头杆结合处有微裂纹。
螺栓断裂原因分析一般情况下,我们对于螺栓断裂从以下四个方面来分析:第一、螺栓的质量第二、螺栓的预紧力矩第三、螺栓的强度第四、螺栓的疲劳强度实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。
因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中基本用不到疲劳强度。
螺栓断裂不是由于螺栓的抗拉强度以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。
即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。
螺栓的断裂不是由于螺栓的疲劳强度螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。
换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。
螺纹紧固件损坏的真正原因是松动螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。
受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。
受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。
选用防松效果优异的螺纹防松方式是解决问题的根本所在以液压锤为例。
GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。
但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。
螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。
这种办法可以增加螺栓的预紧力,其摩擦力也得到了增加,当然防松效果也可以得到改善,但这种办法其实是一种非专业的办法,它的投入太大,收益太小。
螺栓断裂分析报告摘要:本报告针对螺栓断裂现象进行了详细的分析和研究。
通过对螺栓断裂的原因、影响以及防止措施的探讨,为相关行业的螺栓使用提供了重要的参考。
本报告基于理论分析与实际案例,对螺栓断裂的破坏机理进行了深入剖析,为预防螺栓断裂提供了有益的建议。
1. 引言螺栓断裂是制造行业普遍存在的问题,对设备和生产过程的正常运行产生了严重的影响。
因此,了解螺栓断裂的原因和预防方法对确保设备和工业机械的长期运行至关重要。
2. 螺栓断裂的原因螺栓断裂的主要原因可以归结为以下几点:2.1 载荷过大:超过螺栓设计承载能力的载荷会加剧螺栓的应力,导致螺栓断裂。
2.2 腐蚀和疲劳:螺栓在潮湿或酸碱环境中易受到腐蚀,长期使用和重复加载会引起螺栓疲劳,最终导致断裂。
2.3 不合适的材料选择:选择低强度或不符合工作环境需求的材料使用螺栓,容易导致断裂。
2.4 不当的安装和紧固:螺栓的安装和紧固过程如果不正确,会影响其承载能力,增加螺栓断裂的风险。
3. 螺栓断裂的影响3.1 安全问题:螺栓断裂可能导致设备或机械的故障,对人员和生产环境造成潜在的安全隐患。
3.2 生产中断:螺栓断裂会导致设备停机和生产中断,给企业带来经济损失和生产延误。
3.3 维修和更换成本:螺栓断裂需要进行维修和更换,企业需要承担额外的成本。
4. 螺栓断裂的预防措施4.1 正确的设计和选择:根据工作环境和载荷要求,合理设计和选择螺栓材料和规格。
4.2 适当的安装和紧固:严格按照安装规范进行螺栓的安装和紧固,确保螺栓能够承受设计载荷。
4.3 定期检测和维护:定期检查螺栓的状态,及时发现问题并采取措施修复或更换。
4.4 使用防腐措施:在潮湿或有腐蚀环境的场所使用螺栓时,应采取防腐措施,延长螺栓的使用寿命。
5. 结论通过对螺栓断裂现象进行分析和探讨,我们可以得出以下结论:5.1 正确的设计和选择对于防止螺栓断裂至关重要。
5.2 安装和紧固过程必须按照规范进行,以确保螺栓可以承受设计载荷。
图1 断裂螺栓宏观形貌图2 螺栓断口的宏观形貌表1 螺栓样品化学成分(质量分数)(%元素检测结果标准值符合性判断C0.410.25~0.55符合P0.012≤0.025符合S0.016≤0.025符合貌,裂纹源处螺纹根部表面存在大量龟裂形貌,裂纹源断面局部磨损擦伤,未擦伤区域存在疲劳辉纹;螺栓断口裂纹扩展H热处理失效eatTreatmentFailure貌,局部存在擦伤,未擦伤区可见疲劳辉纹;最终断裂区形貌,为韧窝形貌。
(4)金相分析图4~图6为裂纹源区断面抛光态及侵蚀态形貌,裂纹源及扩展区断面较为平整。
螺栓表面存在脱碳现象,裂纹源附近表面存在大量细小裂纹,大多数裂纹位于螺栓表面全脱碳层,全脱碳层深度约为10.19μm。
断口裂纹扩展区较平整,裂纹扩展方式为穿晶扩展。
最终瞬断区表面显微形貌呈锯齿状。
断口源区的显微组织为的铁素体+回火索氏体,部分铁素体呈针状及沿晶分布。
根据GB/T 10561—2005,实际检验A法,对非金属夹杂物进行评级,结果为:A0.5,B1.0,C0.5,D0.5,DS0,如图7所示。
基体显微组织为回火索氏体,如图8所示。
(5)硬度检验截取断裂螺栓硬度试样,进行维氏硬度测定,结果如表2所示。
断裂螺栓硬度符合GB/T 3098.1—2010对10.9 级螺栓的技术要求。
2. 分析与讨论(1)检验结果分析螺栓的化学成分及心部硬度均符合GB/T 3098.1—2010对10.9 级螺栓的技术要求;断口宏观及微观分析可判断螺栓断裂模式为疲劳断裂,裂纹源位于螺栓中部螺杆与螺纹过渡处的第一个螺纹根部,裂纹源处螺纹根部表面存在大量龟裂形貌;金相检验表明螺栓表面存在脱碳现象,裂纹源附近表面存在大量微裂纹,微裂纹位于(a)螺栓断口形貌(b)断口裂纹源形貌(c)断口裂纹扩展区的SEM形貌(d)断口最终断裂区的SEM形貌图3 螺栓断口的SEM形貌图4 裂纹源处抛光态形貌图5 裂纹源处侵蚀态形貌(a)(b)图6 螺栓裂纹源附近表面显微形貌图7 断裂螺栓基体非金属夹杂物形貌图8 断裂螺栓基体显微组织形貌(下转第69页)。
螺栓的氢脆断裂分析精编WORD版
首先,螺栓的氢脆断裂是由于螺栓吸氢而引起的。
在一些特殊的工作
环境中,比如一些化工厂、电解池、含氢气环境等,螺栓会与氢气接触,
从而吸收氢气。
吸收过多的氢气会使螺栓的内部产生高压氢气团,进而导
致螺栓发生脆性断裂。
其次,氢气的脆性作用是导致螺栓断裂的主要原因之一、氢气本身是
一种非常活泼的元素,它会渗入到螺栓的晶界和内部缺陷处,并与金属原
子发生化学反应。
这种反应会造成螺栓内部形成氢化物,并导致螺栓的脆
性增加。
当螺栓承受外来载荷时,脆性增加的螺栓容易发生断裂。
此外,螺栓的氢脆断裂还与螺栓的材料和强度有关。
不同的螺栓材料
对氢脆的敏感性不同,在一些脆性金属中容易发生氢脆断裂。
高强度的螺
栓更容易发生氢脆断裂,因为高强度材料的晶界缺陷更多,氢气更容易渗入。
为了避免螺栓的氢脆断裂,可以采取一些措施。
首先,选择合适的螺
栓材料,避免使用容易氢脆的金属材料。
其次,在设计和制造过程中加强
螺栓的质量控制,确保螺栓不含有氢气。
此外,可以通过表面处理的方式
来降低螺栓的氢脆性,比如利用热处理或电化学处理来改善螺栓的性能。
总结起来,螺栓的氢脆断裂是一种在特定工作环境下发生的断裂现象,由于螺栓吸收了过多的氢气而引起。
氢气的脆性作用是导致螺栓断裂的主
要原因之一、为了避免螺栓的氢脆断裂,需要选择合适的螺栓材料,加强
螺栓的质量控制,并采取适当的表面处理方式。
通过这些措施可以有效地
预防螺栓的氢脆断裂。
2019年 第10期热加工M材料缺陷aterial Failure9高强度螺栓断裂原因分析■ 王嘉畅,冯文冲,张海兵摘要:针对10.9S 级高强度螺栓失效问题,采用金相检验、化学成分分析和扫描电子显微镜及能谱仪等方法进行分析。
结果表明:由于螺栓材料本身含有的氢在螺栓较大的安装应力下聚集,因此导致氢致延迟开裂,造成螺栓失效。
关键词:高强度螺栓;氢脆;失效据委托方介绍,来样为M20钢结构大六角头螺栓,等级为10.9S ,材质为20MnTiB 。
该螺栓为舞台桁架联接螺栓,舞台于2012年竣工,在2015年12月1日检修时,管理人员发现剧院舞台有螺母掉落。
该舞台桁架用于挂设剧院舞台幕布,由于桁架使用过程中,部分螺栓掉落,2016年3月2日施工单位进行检修并更换了19颗螺栓。
现场采用高强螺栓轴力扭矩复合测试仪对舞台桁架的高强螺栓联接状况进行了检测,发现原有螺栓扭矩及预拉力基本符合规范要求,部分螺栓存在预拉力过大现象,部分螺栓螺杆有变形,无法将螺栓取出。
此外,委托方未能提供螺栓具体生产工艺、现场安装等相关详细信息。
为找到断裂原因,消除安全隐患,笔者对断裂螺栓进行了失效分析。
1. 理化检验(1)宏观分析 对螺栓断口形貌进行观察,如图1、图2所示。
螺栓大六角头部涂有灰色防锈漆,杆部呈黑色,螺栓断裂于距螺杆第2~3牙螺纹牙底,该部位应为螺母紧固界面处,无明显塑性变形。
断口至螺杆间螺纹呈褐黄色,存在明显锈蚀痕迹。
断面起伏较大,高度可达两牙高度,且有些锈蚀。
断面颜色呈黑色和灰色两区域,黑色区域可见明显的放射线条纹,且汇聚于一侧螺牙底部,低倍下放大后可见一些闪光小刻面,呈脆性断裂特征。
裂源两侧周向边缘存在剪切唇特征。
灰色区域断口与轴向呈一定角度,断面较粗糙,为后续扩展断裂区域。
宏观分析螺栓断裂模式为脆性断裂。
(2)微观断口分析 将螺栓断口清洗后置于扫描电子显微镜下观察:①裂纹源区可见明显的放射线形貌,呈冰糖状沿晶断裂形貌,放大后晶面上可见鸡爪痕、微小孔洞形貌,断口可见大量沿晶二次裂纹形貌,呈氢致开图1 螺栓宏观形貌第10期 热加工图2 断口宏观形貌图3 裂纹源低倍形貌(15×)图4 裂纹源高倍形貌(50×)图5 裂纹源放大形貌(270×)图6 裂纹源沿晶特征(750×)图7 裂纹源沿晶特征(1200×)图8 扩展后期韧窝+沿晶特征(1100×)表1 螺栓断口化学成分(质量分数) (%)检验项目C P S 检测值0.200.0200.0170.25标准值0.17~0.24≤0.030≤0.0300.17~0.37图9 心部抛光态(100×)图10 心部显微组织(500×)图11 断口抛光态(100×)图12 断口显微组织(500×)图13 牙底抛光态(100×)行热酸蚀试验,与G B/T1979—2001中的评级图对比,结果如表的应力作用下氢原子在晶界或材料缺陷处聚集成氢分子而产生压力,形成延迟微裂纹。
风电机组叶片螺栓断裂原因分析及处理近年来,风电发电机组成为了可再生能源的重要组成部分。
风电机组使用叶轮作为动力传递装置,叶轮和轴承之间由螺栓连接。
然而,在风电机组运行过程中,经常会有螺栓断裂的现象出现,对设备的正常运行和安全性产生了威胁。
一、断裂原因分析1. 质量问题风电机组叶片螺栓的制造质量对其安全使用起着至关重要的作用。
一些低质量或次品螺栓的强度和韧性不能满足风电机组的使用需求,容易导致断裂。
2. 运行寿命风电机组叶片螺栓在长时间运行后容易出现疲劳断裂现象。
疲劳断裂是由于不停地承受交替载荷和应力的作用,使材料内部形成裂纹,最终导致断裂的现象。
对于螺栓而言,疲劳断裂是一种常见的断裂方式。
3. 腐蚀在风电机组使用过程中,螺栓容易受到环境因素影响,如空气中的湿度、氧气等气体的作用,进而导致腐蚀。
长期腐蚀会导致螺栓的强度和韧性下降,从而容易发生断裂。
4. 螺栓松动由于安装时没有严格按照规定的装配步骤进行安装,或在风电机组运行过程中由于外部因素引起螺栓松动,使其容易发生断裂。
二、处理方法1. 检查螺栓为确保风电机组的安全运行,应每年对风电机组叶片螺栓进行一次全面检查。
检查主要包括螺栓的表面质量、强度、松动情况等,可以更早地发现螺栓问题,及时解决。
2. 更换高质量螺栓为保证风电机组叶片螺栓的安全使用,应选用高质量的螺栓材料,避免使用次品。
高质量的螺栓具有良好的强度和韧性,可以保证在严重的载荷和应力下进行正常工作。
为抵御风电机组叶片螺栓的腐蚀,可以采取多种措施。
例如,对于对螺栓表面进行涂层防护,选用不易腐蚀的材料等。
4. 严格按照安装步骤进行安装为避免由于不规范的安装导致的螺栓松动,应严格按照风电机组的安装要求进行操作。
如检查工具使用是否得当,安装步骤是否遵守等。
结论风电机组叶片螺栓的断裂会对设备的安全和运行稳定性产生极大的影响,而风电机组的高质量制造和按照规范的安装流程,将是避免螺栓断裂的关键。
在日常使用中,要定期检查螺栓状态,加强对螺栓的防腐处理,以确保设备的安全、平稳运行。
螺栓断裂原因分析及预防摘要:本文通过对失效螺栓及同批次的零件进行理化分析和无损检测。
对断裂件进行了宏观、微观断口观察、金相组织检查、硬度、化学成分、破坏拉力等一系列试验,经分析找出螺栓失效原因,并提出预防措施。
关键词:螺栓断裂回火脆化螺栓作为飞机上重要的紧固件,其发生断裂危害较大。
我厂修理过程中使用的螺栓主要为M4、M5、M6、M8和M10等规格,然而在某产品装配和停放过程中,某批次30CrMnSiA M8的螺栓先后发生脆性断裂。
引起工厂高度重视,因为螺栓发生脆断,不论是氢脆断裂,还是热处理造成的脆性断裂大都与“批次性”问题有关,涉及数量多,危害大,组织专业人员对螺栓在装配过程中及装配一段时间后发生断裂的原因进行了分析,并对后续的预防工作,提出了建议和方案。
1 宏观、微观检查对断裂螺栓进行宏观观察:发现断裂位置接近于第一扣螺纹处见(图1)。
断裂处螺纹表面未发现有明显的机械接触痕迹,如压坑、啃刀、划伤等表面缺陷,也未发现热处理表面烧蚀痕迹、螺纹变形等现象,没有局部麻点、剥蚀等缺陷。
断裂螺栓螺纹牙底呈线性起源,放射棱线粗大,断口附近无明显宏观塑性变形,断口齐平,呈暗灰色,断面粗糙,具有金属光泽(图2)。
图1断裂螺栓图2螺栓断口图3 螺栓整体形貌对裂纹断口进行观察,断口特征呈现以沿晶为主+韧窝的混合断裂形貌,且断口源区未见冶金和加工等产生的缺陷。
对同批次的螺栓抽样进行了磁粉检测,在螺纹的根部没有发现表面或近表面裂纹,对螺栓进行X射线检测,也没有发现内部缺陷。
同批螺栓见图3。
2 材质检验2.1成份分析抽取同批次的螺栓去掉镀层后制取化学粉末,采用碳、硫联合测定仪对碳、硫含量进行了检测,利用QSN750光谱仪对其它元素进行了检测,结果见(表1),螺栓的化学成分符合技术要求,但含碳量较高。
表1 化学成份检测结果表2.2 金相分析在靠近断口位置切取金相试样,镶嵌、磨抛、腐蚀后,显微镜对试样进行组织观察,螺栓显微组织为较粗大的回火马氏体(图4)。
1、螺栓断裂的原因:1.由于螺栓的材料导致的,假如我们选用的材料比较好了之后,那么我们的螺栓质量也就会比较好。
假如我们选用的材料比较差,那么我们的螺栓在一定程度上断裂的程度就会比较多。
2.螺栓的强度不够高导致的,由于螺栓在承受的压力如果大于螺栓的强度,那么螺栓就会很容易出现断裂的现象。
因此我们在使用螺栓的时候最好能够了解一下该螺栓所能够承受的强度是多大,这样我们就能够选择高于这个强度的螺栓,螺栓断裂的可能性也会减少很多。
3.制造不合格导致的,很多的螺栓会因为生产不合格,这样就没有办法发挥出标准螺栓的质量,在一定程度上就会导致了螺栓的断裂。
我们在生产螺栓之后一定要经过检测,这样才能够保证螺栓是合格的才进行销售,这个也是对于消费者的一种最基本的保证。
4.由于螺栓的疲劳强度导致的。
螺栓会断裂最多的因素就是由于螺栓的疲劳强度所致。
我们在使用螺栓一开始是没有什么问题的,但是在经过物件的作业之后就有可能会产生一定的松动,在松动的时候继续作业是会让螺栓的疲劳强度增大,在到达了螺栓所能够承受的范围极限,那么螺栓也就随之断裂了。
2、预防螺栓断裂的措施:1.塞加垫铁2.改进螺栓加工工艺3.改进标准节加工工艺3、螺栓的质量有螺栓的长度、规格、类别、连接形式等条件决定。
4、螺栓的预紧力矩使得螺栓受到拉应力、剪应力两种力,而预紧力的控制是为了保证法兰连接系统紧密不漏、安全可靠地长周期运行,垫片表面必须有足够的密封比压,特别在高温工况下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变形,因此高温连接系统的密封比常温困难得多,此时螺栓预紧力的施加与控制就显得十分重要,过大或过小的预紧力都会对密封产生不利影响。
螺栓预紧力过大,密封垫片会被压死而失去弹性,甚至会将螺栓拧断;过小的螺栓预紧力又使受压后垫片表面的残余压紧应力达不到工作密封比压,从而导致连接系统泄漏。
因此如何控制螺栓预紧力是生产实际中必须重视的问题。
5、螺栓的抗拉强度和屈服强度决定了螺栓的强度,强度越大,通常寿命越大。
螺栓断裂引言螺栓是一种常用的紧固件,广泛应用于各个领域,如机械制造、建筑工程、汽车制造等。
然而,螺栓的断裂是一种常见的故障,会导致设备的停工和安全隐患。
本文将探讨螺栓断裂的原因、预防措施以及处理方法,以期提高螺栓的可靠性和安全性。
螺栓断裂的原因螺栓断裂的原因复杂多样,主要包括以下几个方面:1. 过载当螺栓承受超过其承载能力的载荷时,会发生断裂现象。
这可能是由于设计不合理、材料不符合要求或者使用过程中的意外超载造成的。
因此,在设计和使用过程中,需要对螺栓进行充分的强度计算和载荷分析,合理选择螺栓材料和尺寸,以避免超载断裂。
2. 疲劳螺栓在长时间的工作循环中,受到的循环载荷会引起疲劳断裂。
循环载荷包括振动、冲击、震动等,这些载荷会在螺栓表面产生应力集中,从而导致疲劳裂纹的形成和扩展。
为了预防螺栓的疲劳断裂,需要选择高强度的材料、合理的表面处理和正确的安装方法。
3. 材料质量螺栓的材料质量直接影响其断裂的风险。
低质量的材料可能存在成分不合格、缺陷、夹杂物等问题,这些缺陷会降低螺栓的强度和抗疲劳性能,增加断裂的风险。
因此,在购买和使用螺栓时,应选择信誉好的供应商,并进行材料质量检测。
4. 安装错误错误的安装方法也会导致螺栓断裂。
例如,过紧或过松的拧紧力矩都会对螺栓产生不良影响,造成松动或者断裂。
正确的安装方法包括合理的拧紧力矩、均匀的力分布和正确的工具使用等。
螺栓断裂的预防措施为了避免螺栓断裂,可以采取以下预防措施:1. 合理设计在设计上,应充分考虑螺栓的承载能力和工作环境,选择合适的材料、尺寸和标准。
合理的力学计算和工程分析可以保证螺栓的强度和可靠性。
2. 材料检测在采购螺栓时,应选择信誉好的供应商,并进行材料质量检测。
对于重要的工程项目,可以采用无损检测等方法来检测螺栓的材料质量和缺陷情况。
3. 正确安装正确的安装方法是避免螺栓断裂的关键。
在安装过程中,应遵循螺栓的安装规范,包括拧紧力矩、工具使用、力分布等。
螺栓断裂原因的分析
一般情况下,我们对于螺栓断裂从以下四个方面来分析:
第一、螺栓的质量
第二、螺栓的预紧力矩
第三、螺栓的强度
第四、螺栓的疲劳强度
实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。
因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。
一、螺栓断裂不是由于螺栓的抗拉强度:
以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。
即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。
二、螺栓的断裂不是由于螺栓的疲劳强度:
螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。
换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。
三、螺纹紧固件损坏的真正原因是松动:
螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。
受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。
受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。
四、选用防松效果优异的螺纹防松方式是解决问题的根本所在:
以液压锤为例。
GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。
但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。
螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。
这种办法可以增加螺栓的预紧力,其摩擦力也得到了增加,当然防松效果也可以得到改善,但这种办法其实是一种非专业的办法,它的投入太大,收益太小。
总之,螺栓是:“不松不断,一松就断。
”。