高一上学期数学第一次月考试卷
- 格式:doc
- 大小:370.01 KB
- 文档页数:10
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一上学期第一次月考数学测试题及答案学校:___________班级:___________姓名:___________学号:___________一、单选题(共6小题)1.下列各式正确的是()A.a6÷a2=a3B.C.D.2.=()A.4B.8C.D.3.若2m=5,4n=3,则43n﹣m的值是()A.0.9B.1.08C.2D.44.已知,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.a<c<b5.设a∈R.若函数f(x)=(a﹣1)x为指数函数,且f(2)>f(3),则a的取值范围是()A.1<a<2B.2<a<3C.a<2D.a<2且a≠16.已知函数f(x)=a x﹣1﹣3(a>0,a≠1)恒过定点M(m,n),则函数g(x)=m+x n+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.多选题(共3小题)7.下列判断正确的有()A.=3﹣πB.(其中a>0)C.D.(其中m>0,n>0)8.已知(a>0),则下列选项中正确的有()A.B.C .D .9.已知函数,则下列结论正确的是( )A .函数f (x )的定义域为RB .函数f (x )的值域为(﹣1,1)C .函数f (x )的图象关于y 轴对称D .函数f (x )在R 上为减函数 三.填空题(共3小题)10.计算=.11.如图,曲线①②③④中有3条分别是函数的图象,其中曲线①与④关于y 轴对称,曲线②与③关于y 轴对称,则的图象是曲线 .(填曲线序号)12.下列说法中正确的序号为 . ①在同一坐标系中,函数y =2x 与函数的图象关于y 轴对称;②函数f (x )=a x +1(a >0且a ≠1)的图象经过定点(0,2); ③函数的单减区间为(﹣∞,1];④任意x ∈(2,+∞),都有2x >x 2.参考答案1 2 3 4 5 6 7 8 9 10 11 12 DBBBADBCDACAB②①②③一.选择题(共6小题)1.解:A 、原式=a 4,所以A 选项错误;B 、原式=,所以B 选项错误;C、原式=,所以C选项错误;D、a<0,原式=,所以D选项正确.故选:D.2.解:原式=×==23=8.故选:B.3.解:2m=5,4n=3,则43n﹣m=(4n)3÷4m=33÷52==1.08.故选:B.4.解:根据题意,设f(x)=2x,则f(x)在(0,+∞)单调递增,所以a=f(0.4)<b=f(0.6)设g(x)=x0.6,则g(x)在(0,+∞)单调递增,所以因为a>20=1,所以a>c,综合可得:c<a<b.故选:B.5.解:函数f(x)=(a﹣1)x为指数函数,f(2)>f(3)则函数f(x)在R上单调递减,故0<a﹣1<1,解得1<a<2.故选:A.6.解:由指数函数的图象和性质,令x﹣1=0,解得x=1所以f(1)=a0﹣3=﹣2,所以f(x)=a x﹣1﹣3恒过定点(1,﹣2),所以m=1,n=﹣2所以,因此不经过第四象限.故选:D.二.多选题(共3小题)解:对于选项A,=|3﹣π|=π﹣3,A错误;对于选项B,因为a>0,所以,B正确;对于选项C C正确;对于选项D,因为m>0,n>0,所以,D正确.故选:BCD.8.解:由,得,整理得,故A正确;由于,则,故B错误;由,a>0,得,则,故C正确;由,得,解得,故D错误.故选:AC.9.解:A:因为2x>0,所以函数f(x)的定义域为R,故A正确;B:由所以函数f(x)的值域为(﹣1,1),故B正确;C:因为所以函数f(x)是奇函数,其图象关于原点对称,不关于y轴对称,故C错误;D:因为函数y=2x+1是增函数,因为y=2x+1>1,所以函数是减函数因此函数是增函数,故D错误.故选:AB.三.填空题(共3小题)10.解:=+=.故答案为:.11.解:由指数函数的图像和性质可知,y=3x,y=图像关于y轴对称,y=3x在R上单调递增,y=在R上单调递减又曲线①②③④中有3条分别是函数y=2x,y=3x,y=的图象,曲线①与④关于y轴对称,曲线②与③关于y轴对称所以曲线③为y=3x,曲线④为y=2x,曲线②为y=.故答案为:②.12.解:在同一坐标系中,函数y=2x与函数=2﹣x的图象关于y轴对称,故①正确;当x=0时,y=a0+1=2故函数f(x)的图象经过定点(0,2),故②正确;设g(x)=x2﹣2x则g(x)在(﹣∞,1]上单调递减由复合函数的单调性可知,函数的单减区间为(﹣∞,1],故③正确;当x=4时,2x=x2,故④错误.故答案为:①②③.。
高一年级第一次月考数学试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},则集合A中的元素为()A. 1,2B. -1,-2C. 1,-2D. -1,22. 已知函数y = f(x)的定义域为(0, +∞),则函数y = f(x + 1)的定义域为()A. (-1, +∞)B. (0, +∞)C. (1, +∞)D. (0,1)3. 下列函数中,在区间(0,+∞)上为增函数的是()A. y=(1)/(x)B. y = -x + 1C. y=log_2xD. y = ((1)/(2))^x4. 若a = log_32,b=log_52,c = log_23,则()A. a>b>cB. b>a>cC. c>a>bD. c>b>a5. 函数y = √(x^2)-1的定义域为()A. [1, +∞)B. (-∞,-1]∪[1,+∞)C. [-1,1]D. (-∞,-1)6. 已知函数f(x)=2x + 1,g(x)=x^2,则f(g(2))的值为()A. 9B. 7C. 17D. 257. 设a = 2^0.3,b = 0.3^2,c=log_20.3,则a,b,c的大小关系是()A. a < b < cB. c < b < aC. c < a < bD. b < c < a8. 函数y = 3^x与y=log_3x的图象关于()对称。
A. x轴B. y轴C. 直线y = xD. 原点。
9. 若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2+1,则f(-1)等于()A. -2B. 2C. -1D. 010. 已知f(x)=x + 1,x≤slant0 x^2,x > 0,则f(f(-1))的值为()A. 0B. 1C. 2D. 411. 函数y = (1)/(x - 1)在区间[2,3]上的最大值为()A. 1B. (1)/(2)C. (1)/(3)D. (1)/(4)12. 若f(x)是偶函数,且在(0,+∞)上是减函数,f(3)=0,则不等式xf(x)>0的解集为()A. (-∞,-3)∪(0,3)B. (-3,0)∪(3,+∞)C. (-∞,-3)∪(-3,0)D. (0,3)∪(3,+∞)二、填空题(每题5分,共20分)13. 计算log_327=_ 。
高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。
1个 B。
2个 C。
3个 D。
4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。
(-∞,0] B。
(0,1) C。
(0,1] D。
[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。
M' ∪ N' B。
M' ∩ N' C。
(M ∪ N)' D。
(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。
a≤-3 B。
a≤3 C。
a≤5 D。
a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。
(2) C⊊(AB);则满足条件C的个数为()A。
1 B。
2 C。
3 D。
46.函数y=-|x-5||x|的递减区间是()A。
(5,+∞) B。
(-∞,0) U (5,+∞) C。
(-∞,0) U (0,5) D。
(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。
P' B。
M' C。
M ∩ P D。
M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。
[0,1) U (1,2] B。
[0,1) U (1,4] C。
[0,1) D。
(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。
(-∞,-2) U (2,+∞) B。
(-∞,-2] U [2,+∞) C。
[-2,+∞) D。
[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
高一上学期第一次月考数学试题一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()U P C Q ⋃=( )A.{}1,2B.{}3,4,5C.{}1,2,6,7D.{}1,2,3,4,52.下列各组函数是相同函数的一组是( )A.()()242,2x f x x g x x -=+=- ;B.()()()01,1f x x g x =-=; C.()()2,f x x g x x ==;D.()()32,2f x x g x x x =-=-.3. 函数2,1()1,1x x f x x x ⎧<=⎨-≥⎩则((4))f f -的值为( )A .15B .16C .5-D .15-4. 下列对应是集合A 到集合B 的映射的是 ( ) A. ,,:|3|A N B N f x x ++==→-B. {}{}:A B f ==平面内的圆,平面内的矩形,每一个圆对应它的内接矩形C. 1{02},{|06},:2A xB y y f x y x =≤≤=≤≤→= D. {0,1},{1,0,1},:A B f A ==-中的数开平方 5. 下列函数在区间(0,1)上是增函数的是( )A. ||y x =B. 32y x =-C. 12y x=+ D. 243y x x =-+6. 已知函数2()f x x bx c =-++的图象的对称轴为直线2x =,则( ) A. (0)(1)(3)f f f << B. (3)(1)(0)f f f <<C. (3)(1)(0)f f f <=D. (0)(1)(3)f f f <=7. 已知函数(1)f x +的定义域为(2,1)--,则函数()f x 的定义域为( )A. 3(,1)2-- B. (1,0)- C.(3,2)-- D. 3(2,)2-- 8. 函数()21f x x x =++的值域是( )A. [0,)+∞B. 1[,)2-+∞C. [0,)+∞ D [1,)+∞9. 已知函数2()2f x x x =+-,则函数()f x 在区间[1,1)-上( ) A.最大值为0,最小值为94- B.最大值为0,最小值为2-C.最大值为0,无最小值D.无最大值,最小值为94-10. 若集合{|12},{|}A x x B x x a =<<=>,满足A B ⊆,则实数a 的取值范围是( )A. 1a ≤B. 1a <C. 1a ≥D 2a ≤11.函数0(23)()332x f x x x+=++-的定义域是( )A. 3[3,]2-B. 333[3,)(,)222--⋃-C. 3[3,)2-D. 333[3,)(,]222--⋃-12. 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .3a =-B .3a <C .3a ≤-D .3a ≥-二、填空题: 本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上。
2024-2025学年高一上学期第一次月考数学试卷(基础篇)参考答案与试题解析第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生【解题思路】根据集合的定义依次判断各个选项即可.【解答过程】对于A:2023年参加“两会”的代表具有确定性,能构成集合,故A正确;对于B:北京冬奥会上受欢迎的运动项目,没有明确的标准,即对象不具有确定性,不能构成集合,故B 错误;对于C:π的近似值,没有明确的标准,即对象不具有确定性,不能构成集合,故C错误;对于D:我校跑步速度快的学生,没有明确的标准,即对象不具有确定性,不能构成集合,故D错误;故选:A.2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤0【解题思路】全称量词命题的否定为存在量词命题,求解即可.【解答过程】因为命题pp:∀xx>2,xx2−1>0,所以¬pp:∃xx>2,xx2−1≤0.故选:C.3.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<1【解题思路】利用必要不充分条件的意义,逐项判断即得.【解答过程】对于A,1<xx<3是xx<2的不充分不必要条件,A不是;对于B,xx<3是xx<2的一个必要不充分条件,B是;对于C,xx<1是xx<2的一个充分不必要条件,C不是;对于D,0<xx<1是xx<2的一个充分不必要条件,D不是.故选:B.4.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.4【解题思路】根据元素与集合、集合与集合之间的关系分析判断.【解答过程】对于①:因为0是{0}的元素,所以0∈{0},故①正确;对于②:因为空集是任何非空集合的真子集,所以∅ {0},故②正确;对于③:因为集合{0,1}的元素为0,1,集合{(0,1)}的元素为(0,1),两个集合的元素全不相同,所以{0,1},{(0,1)}之间不存在包含关系,故③错误;对于④:因为集合{(aa,bb)}的元素为(aa,bb),集合{(bb,aa)}的元素为(bb,aa),两个集合的元素不一定相同,所以{(aa,bb)},{(bb,aa)}不一定相等,故④错误;综上所述:正确的个数为2.故选:B.5.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-4【解题思路】利用整体法,结合不等式的性质即可求解.【解答过程】设zz=xx+2yy=mm(2xx+yy)+nn(xx−yy),故2mm+nn=1且mm−nn=2,所以mm=1,nn=−1,故zz=xx+2yy=(2xx+yy)−(xx−yy),由于3≤2xx+yy≤9,6≤xx−yy≤9,所以3+(−9)≤2xx+yy−(xx−yy)≤9+(−6),−6≤xx+2yy≤3,故最小值为−6,此时xx=4,yy=−5,故选:B.6.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}【解题思路】先求出MM,∁UU NN,再求MM∩(∁UU NN),【解答过程】因为UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},所以MM={5,7,9},因为UU={1,3,5,7,9},NN={3,7,9},所以∁UU NN={1,5},所以MM∩(∁UU NN)={5}.故选:B.7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}【解题思路】根据给定的解集求出aa,bb,再解一元二次不等式即得.【解答过程】由不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},得−2,−1是方程aaxx2+bbxx+2=0的两个根,且aa>0,因此−2+(−1)=−bb aa,且−2×(−1)=2aa,解得aa=1,bb=3,不等式2xx2+bbxx+aa<0化为:2xx2+3xx+1<0,解得−1<xx<−12,所以不等式2xx2+bbxx+aa<0为{xx|−1<xx<−12}.故选:C.8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6【解题思路】根据题意可知2aa+bb=32(aa+bb)+12(aa−bb),根据乘1法结合基本不等式运算求解. 【解答过程】因为aa>bb≥0,则aa+bb>0,aa−bb>0,且2aa+bb=32(aa+bb)+12(aa−bb),则2aa+bb=�32(aa+bb)+12(aa−bb)��6aa+bb+2aa−bb�=10+3(aa−bb)aa+bb+3(aa+bb)aa−bb≥10+2�3(aa−bb)aa+bb⋅3(aa+bb)aa−bb=16,当且仅当3(aa−bb)aa+bb=3(aa+bb)aa−bb,即aa=8,bb=0时,等号成立,所以2aa+bb的最小值为16.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
高一上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共27分)
1. (2分)设全集,集合A={1,3},B={3,5},则等于()
A . {1,4}
B . {1,5}
C . {2,5}
D . {2,4}
2. (2分) (2017高一上·辽源月考) >0)可以化简为()
A .
B .
C .
D .
3. (2分) (2019高一上·遵义期中) 下列四组函数中,表示同一函数的是()
A . 与
B . 与
C . 与
D . 与
4. (2分) (2017高一上·雨花期中) 定义A﹣B={x|x∈A,且x∉B},若A={1,2,4,6,8,10},B={1,4,8},则A﹣B=()
A . {4,8}
B . {1,2,6,10}
C . {1}
D . {2,6,10}
5. (2分)对于下列命题:①若,则角的终边在第三、四象限;②若点P(2,4)在函数且)的图象上,则点Q(4,2)必在函数y=logax(a>0且)的图象上;③若角与角的终边成一条直线,则;④幂函数的图象必过点(1,1)与(0,0).其中所有正确命题的序号是()
A . ①③
B . ②
C . ③④
D . ②④
6. (5分) (2019高一上·蒙山月考) 已知则()
A . 13
B . 8
C . 15
D . 18
7. (2分)已知集合A={x|x2﹣4=0},集合B={x|ax=1},若B⊆A,则实数a的值是()
A . 0
B . ±
C . 0或±
D . 0或
8. (2分) (2018高一上·舒兰月考) 已知函数,则()
A . 0
B . 1
C . 4
D . 16
9. (2分) (2019高一上·包头月考) 已知函数,那么()
A . 函数的单调递减区间为,
B . 函数的单调递减区间为
C . 函数的单调递增区间为,
D . 函数的单调递增区间为
10. (2分)函数f(x)=log2(x﹣2)的定义域为()
A . (0,2)
B . (0,2]
C . (2,+∞)
D . [2,+∞)
11. (2分)(2020·邵阳模拟) 已知奇函数在上是增函数,若
,则的大小关系为()
A .
B .
C .
D .
12. (2分) (2019高一上·仁寿期中) 已知函数,则()
A . 16
B . 2
C .
D . 4
二、填空题 (共4题;共4分)
13. (1分) (2018高一上·新余月考) 已知,,则 ________.
14. (1分) (2017高一上·萧山期中) 已知函数f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围为________.
15. (1分) (2016高一上·盐城期中) 函数f(x)=﹣x2+2x﹣3,x∈[0,2]的值域是________
16. (1分) (2017高一下·卢龙期末) 若函数f(x)= 的定义域为R,则实数m的取值范围是________.
三、解答题 (共6题;共70分)
17. (10分) (2019高一上·汤原月考) 已知函数的定义域为集合A,不等式
的解集为集合B .
(1)求集合A和集合B;
(2)求 .
18. (10分) (2019高一上·蒙山月考) 已知函数,且 .
(1)求的值;
(2)判断函数的奇偶性并证明;
(3)判断在上的单调性并加以证明.
19. (10分) (2019高一上·长春月考) 已知为二次函数,其图象顶点为,且过坐标原点.
(1)求的解析式;
(2)求在区间上的最大值.
20. (10分) (2018高一上·扬州期中) 已知函数
(1)求函数的解析式并判断的奇偶性;
(2)用定义证明:函数在上单调递减;
(3)求函数的值域.
21. (15分) (2018高一上·滁州期中) 已知函数.
(1)判断函数的奇偶性并加以证明;
(2)判断函数在上的单调性,并用定义法加以证明.
22. (15分) (2019高一上·屯溪月考) 定义在上的函数满足:对任意的,都有:
(1)求证:函数是奇函数;
(2)若当时,有,求证:在上是减函数;
(3)在(2)的条件下解不等式: ;
(4)在(2)的条件下求证: .
参考答案一、单选题 (共12题;共27分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共70分) 17-1、答案:略
17-2、答案:略
18-1、
18-2、
18-3、
19-1、答案:略
19-2、答案:略
20-1、
20-2、
20-3、21-1、21-2、22-1、
22-2、
22-3、22-4、。