浙江省温州市瑞安市五校联考2017年中考数学一模试卷(含解析)
- 格式:doc
- 大小:571.00 KB
- 文档页数:20
主视方向2017年浙江省温州市初中毕业生学业考试 数学试题卷 一、选择题(共10小题,每小题4分,共40分)1.6-的相反数是( )A .6B .1C .0D .6-2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A .75人B .100人C .125人D .200人乘公共汽车40%步行20%其他15%骑自行车25%3.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .4.下列选项中的整数,与17最接近的是( )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是( )A .5个B .6个C .7个D .8个6.已知点(1-,1y ),(4,y2)在一次函数32y x =-的图象上,则1y ,2y ,0的大小关系是() A .120y y << B .120y y << C .120y y << D .210y y <<7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是()A .5米B .6米C .6.5米D .12米α 8.我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =- ,23x =D .11x =-,23x =-9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM=22EF ,则正方形AB CD 的面积为( ) DB M AH EF GA .12sB .10sC .9sD .8s10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧¼12PP ,¼23P P ,¼34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )x yP 6P 5P 2P 4P 3P 1OA .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) 二、填空题(共6小题,每小题5分,共30分):11.分解因式:24m m +=_______________.12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________.13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_____________________.15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点 A ′,B ,则k 的值为_________. y B 'A 'C A O B第15题图 第16题图16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为_________cm .三、解答题(共8小题,共80分):17.(本题10分)(1)计算:22(3)(1)8⨯-+-+;(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.EC B19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣62.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m=.12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.已知扇形的面积为3π,圆心角为120°,则它的半径为.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.5.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.9.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m=m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.13.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,由PQ ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD , ∴△DEG 是等边三角形, ∴∠EDF=90°﹣60°=30°, ∴∠DEF=75°=∠MDE , ∴∠GDM=75°﹣60°=15°, ∴∠GMD=∠PGD ﹣∠GDM=15°, ∴GMD=∠GDM , ∴GM=GD=1, 过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=,∵S △DEG =,∴S △ACG :S △DEG =.2017年7月18日。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣62.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y17.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣39.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD 的面积为()A.12S B.10S C.9S D.8S10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m= .12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.已知扇形的面积为3π,圆心角为120°,则它的半径为.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.5.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.9.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD 的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形A BCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a ﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m= m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.13.已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得: =.故答案是: =.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠A OD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m, m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m, m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E 到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABC DE中,∠BAE=540°﹣140°×2﹣90°×2=80°.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B 坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB 的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠AP B=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DE F=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.。
2017年浙江省温州市瑞安市五校联考中考数学一模试卷一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B.C.﹣ D.0.32.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A.B.C.D.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<24.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值25.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A.B.C.D.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C.D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大B.一直变小C.先变小再变大D.先变大再变小10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A.B.C.D.二、填空题11.因式分解:9x2﹣4=.12.函数y=﹣3x+6的图象与x轴的交点坐标为.13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为cm2.15.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为元.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为;(2)当BE与⊙O相切时,AE的长为.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值(写出满足的一个即可).19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D 恰好落在抛物线上时,求n 的值;(3)记CD 与抛物线的交点为E ,连接AE ,BE ,当△AEB 的面积为7时,n= .(直接写出答案)24.如图1,直角坐标系中有一矩形OABC ,其中O 是坐标原点,点A ,C 分别在x 轴和y 轴上,点B 的坐标为(3,4),直线y=x 交AB 于点D ,点P 是直线y=x 位于第一象限上的一点,连接PA ,以PA 为半径作⊙P , (1)连接AC ,当点P 落在AC 上时,求PA 的长; (2)当⊙P 经过点O 时,求证:△PAD 是等腰三角形; (3)设点P 的横坐标为m ,①在点P 移动的过程中,当⊙P 与矩形OABC 某一边的交点恰为该边的中点时,求所有满足要求的m 值;②如图2,记⊙P 与直线y=x 的两个交点分别为E ,F (点E 在点P 左下方),当DE ,DF 满足<<3时,求m 的取值范围.(请直接写出答案)2017年浙江省温州市瑞安市五校联考中考数学一模试卷参考答案与试题解析一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B.C.﹣ D.0.3【考点】26:无理数.【分析】根据无理数的定义即可判定选择项.【解答】解:是无理数,0,﹣,0.3是有理数,故选:B.2.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从几何体的正面看所得到的图形是,故选:A.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<2【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2≥0,得:x≥﹣2,解不等式x﹣1>0,得:x>1,∴不等式组的解集为x>1,故选:C.4.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值2【考点】H7:二次函数的最值.【分析】根据抛物线开口向下和其顶点坐标为(2,﹣3),可直接做出判断.【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值﹣3.故选B.5.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分【考点】W4:中位数.【分析】按从小到大的顺序排列后,第7个数即为中位数.【解答】解:由题意,可得按从小到大的顺序排列后,第7个数据是17分,所以中位数为17分.故选B.6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用勾股定理求得AC的长,然后根据正弦的定义求解.【解答】解:在Rt△ABC中,AC===12,则sinB==.故选C.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26°B.28°C.30°D.32°【考点】M4:圆心角、弧、弦的关系.【分析】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数即可.【解答】解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=44°﹣16°=28°.故选B.8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C.D.【考点】AA:根的判别式.【分析】先利用判别式的意义得到△=(﹣2)2﹣4•3k>0,再解不等式求出k的范围,然后对各选项进行判断.【解答】解:根据题意得△=(﹣2)2﹣4•3k>0,解得k<.故选D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大B.一直变小C.先变小再变大D.先变大再变小【考点】E7:动点问题的函数图象.【分析】根据题意和函数图象可以得到ABD的面积大小变化情况,从而可以解答本题.【解答】解:设PC=x,则PD=2x,PB=x+1,=S梯形ADPC+S△ACB﹣S△PBD==,则S△ABD∴△ABD的面积随x的增大而减小,故选B.10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=2,x2=0(舍去),故k=x2=×4=4.故选A.二、填空题11.因式分解:9x2﹣4=(3x﹣2)(3x+2).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).12.函数y=﹣3x+6的图象与x轴的交点坐标为(2,0).【考点】F8:一次函数图象上点的坐标特征.【分析】令y=0,可求得与x轴交点横坐标,进而求出与x轴交点坐标.【解答】解:把y=0代入y=﹣3x+6得,x=2,于是图象与y轴的交点坐标为(2,0).故答案为:(2,0).13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为50°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】直接利用平行线的性质结合旋转的性质得出∠ACB的度数,进而得出答案.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,∠A=70°,∠D=30°,∴∠B′CD=∠D=∠ACB=30°,且∠A+∠B′CA=180°,∴∠BCD的度数为50°.故答案为:50°.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为6cm2.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【分析】根据BP=PQ=QC,由相似三角形的性质可得△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,根据三角形的面积公式和已知条件即可求得△PQR的面积.【解答】解:∵四边形ABCD是正方形,∴AD∥BC,∴△PRQ∽△DRA,∵BP=PQ=QC,∴△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,∴△PQR的面积=××正方形ABCD的面积=×144=6(cm2).故答案为:615.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为150元.【考点】B7:分式方程的应用.【分析】设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x﹣10)元,根据“两次所买植物的盆数相同”列出方程并解答.【解答】解:设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x ﹣10)元,依题意得:=,解得x=160.经检验,x=160是所列方程的解.则x﹣10=160﹣10=150(元).故答案是:150.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为8;(2)当BE与⊙O相切时,AE的长为6﹣2.【考点】MC:切线的性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)作BG⊥AD于G,连接CE,根据圆周角定理得出∠CED=90°,即CE ⊥AD,进而证得四边形BCEG是矩形,得出GE=BC=4,解直角三角形求得BE=6,然后根据勾股定理求得BG,根据四边形的面积公式即可求得菱形的面积;(2)连接OE,根据切线的性质得出FE⊥BE,即可得出∠BEG=∠CEO,进而求得∠ECD=∠GEB,通过解直角三角形得出=,由GE=AD,得出AG=ED,设BG=CE=a,得出=,通过变形得出AE2﹣12AE+16=0,解一元二次方程求得即可.【解答】解:(1)作BG⊥AD于G,连接CE,∵四边形ABCD是菱形,∴AB=AD=BC=CD=4,AD∥BC,∵CD是直径,∴∠CED=90°,∴CE⊥AD,∴BG∥CE,∴四边形BCEG是矩形,∴GE=BC=4,∵cos∠AEB=,∴=,∴BE=×4=6,∴BG===2,∴菱形ABCD的面积=AD•BG=4×2=8;故答案为8;(2)连接OE,∵BE与⊙O相切,∴FE⊥BE,∴∠BEG=∠CEO,∵OE=OC,∴∠DCE=∠CEO,∴∠ECD=∠GEB,∴=,∵GE=AD,∴AG=ED,设BG=CE=a,∴=,∴16﹣a2=4AE,∴AG2=4AE,即(4﹣AE)2=4AE,∴AE2﹣12AE+16=0,解得AE=6﹣2或AE=6+2(不合题意,舍去),故答案为6﹣2.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).【考点】4A:单项式乘多项式;4C:完全平方公式;6E:零指数幂.【分析】(1)根据二次根式的性质、乘方法则、零指数幂的性质计算即可;(2)根据完全平方公式、单项式乘多项式的法则、合并同类项法则计算即可.【解答】解:(1)原式=3﹣8﹣1=3﹣9;(2)原式=m2+6m+9﹣m2+4m=10m+9.18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标(1,1).若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值2<h<3.5(写出满足的一个即可).【考点】R8:作图﹣旋转变换;P5:关于x轴、y轴对称的点的坐标;Q3:坐标与图形变化﹣平移.【分析】(1)根据图形旋转的性质画出△A1B1C1即可;(2)根据关于y轴对称的点的坐标特点得出点B2的坐标,再由△A1B1C1各点的坐标即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)∵B(﹣1,1),∴B2(1,1);∵B2(1,﹣1),H(﹣1,﹣2.5),∴2<h<3.5.故答案为:(1,1),2<h<3.5.19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.【考点】KM:等边三角形的判定与性质;KQ:勾股定理;T7:解直角三角形.【分析】(1)根据∠EDC=60°,DE=DC,运用有一个角是60°的等腰三角形是等边三角形进行判断即可.(2)过点E作EH⊥BC于H,构造直角三角形,先求得EH=EC•sin60°=2×=,CH=EC•cos60°=1,进而得到.【解答】解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE∥BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=AC=AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC•sin60°=2×=,CH=EC•cos60°=1,∴.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查1400人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数,进而可补全条形统计图并标出相应数据;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.【解答】解:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)900×(1﹣0.3﹣0.1﹣0.15﹣0.2)=225(万)答:估计最关注教育问题的人数约为225万人.(3)画树形图得:则P(抽取的两人恰好是甲和乙)=P=.21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.【解答】证明:(1)连结OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥CE,∴AD∥OC,∵OA=OC,∴∠DAC=∠ACO=∠CAO,∴AC平分∠BAD;(2)解:∵AD⊥CE,tan∠CAD=,AD=8,∴CD=6,∴AC=10,∵AB是⊙O的直径,∴∠ACB=90°=∠D,∵∠DAC=∠CAO,∴△ACD∽△ABC,∴AB:AC=AC:AD,∴AB=.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?【考点】95:二元一次方程的应用.【分析】(1)根据收费标准和电费=相应段的收费标准×用电量进行计算;(2)设3月份C用户用电x度,D用户用电y度.结合(1)中求得的相关数据得到:x>50,y≤50,200+5(x﹣50)﹣4y=38,求x、y的整数解即可.【解答】解:(1)设A用户用电量为x度,则4×50+5(x﹣50)=240,解得x=58;B用户的用电量:90﹣58=32(度).B用户的电费:32×4=128(元)A、B用户的电费:240+128=368(元),故答案是:(2)设3月份C用户用电x度,D用户用电y度.∵38不能被4和5整除,∴x>50,y≤50,∴200+5(x﹣50)﹣4y=38∴5x﹣4y=88,∴.∵,∴50<x≤57.6.又∵x是4的倍数,∴x=52,56 C用户可能缴的缴电费为210元或230元.23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n=.(直接写出答案)【考点】HF:二次函数综合题.【分析】(1)将x=﹣,y=a代入抛物线的解析式可求得a的值,求得方程x2﹣3x=0的解可得到点A的横坐标;(2)过D作DG⊥y轴于G,BH⊥x轴于H.先证明△ABH≌△DCG,从而得到CG=BH=,DG=AH═,然后由x D=OF+DG可求得点D的横坐标,然后将x=5代入抛物线的解析式可求得点D的纵坐标,最后由点D的坐标可得到点C的纵坐标;(3)连结AC,过点B作BH⊥OA,垂足为H.先证明△AFG∽△ABH,依据相似=FC•AH=7可得到关三角形的性质可求得GF=,则CF=n﹣,然后依据S△ABC于n的方程,从而可求得n的值.【解答】解:(1)当x=﹣时,a=(﹣)2﹣3×(﹣)=.∴B(﹣,).由x2﹣3x=0,得x1=0(舍去),x2=3.∴A(3,0).(2)如图1所示:过D作DG⊥y轴于G,BH⊥x轴于H.∵ABCD为平行四边形,∴CD∥AB,CD=AB.∴∠DCG=∠AEF.∵BH∥EF,∴∠HBA=∠FEA.∴∠HBA=∠DCG.在△ABH和△DCG中,∴△ABH≌△DCG.∴CG=BH=,DG=AH=+3=.∴x D=OF+DG=+=5.将x=5代入抛物线的解析式得:y=10.∴n=10+=.(3)如图2所示:连结AC,过点B作BH⊥OA,垂足为H.∵DC∥BA,=S△BAC.∴S△ABE由(2)可知:AG=,AH=,BH=.∵GF∥BH,∴△AFG∽△ABH.∴=,即=,解得:GF=.∴CF=n﹣.=S△ABC=FC•AH,∵S△ABE∴×(n﹣)×=7,解得n=.故答案为:.24.如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y=x交AB于点D,点P是直线y= x位于第一象限上的一点,连接PA,以PA为半径作⊙P,(1)连接AC,当点P落在AC上时,求PA的长;(2)当⊙P经过点O时,求证:△PAD是等腰三角形;(3)设点P的横坐标为m,①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;②如图2,记⊙P与直线y=x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足<<3时,求m的取值范围.(请直接写出答案)【考点】MR:圆的综合题.【分析】(1)由△OPC∽△ADP,可得,求出AC、AD即可解决问题;(2)只要证明∠PDA=∠DAP即可.(3)①分三种情形分别求解即可ⅰ)如图2中,交点M是OC中点,PM=PA;ⅱ)如图3中,交点M是OA中点,PM=PA;ⅲ)如图4中,交点M是AB中点,PM=PA;ⅳ)如图5中,交点M是BC中点,PM=PA;②如图6中,当DE=3DF时,易知PA=2PD.由此列出方程即可解决问题.【解答】解:(1)如图1中,∵B(3,4)∴BC=3,AB=4∵∠B=90°∴AC=5∵OC∥AB,∴△OPC∽△ADP,∴,即∴.(2)∵⊙P经过点O,∴OP=AP∴∠POA=∠PAO,∵∠PDA+∠POA=∠DAP+∠PAO,∴∠PDA=∠DAP,∴△PAD是等腰三角形.(3)①分4种情形讨论:ⅰ)如图2中,交点M是OC中点,PM=PA则,解得.ⅱ)如图3中,交点M是OA中点,PM=PA∴MG=GA=,∴.ⅲ)如图4中,交点M是AB中点,PM=PA∴PG=AM=1,∴PH=2DH=2×=1,∴m=2.ⅳ)如图5中,交点M是BC中点,PM=PA则,解得.综上所述,满足要求的m值为或或2或.②如图6中,当DE=3DF时,易知PA=2PD.设P(m,),则=2,解得m=或4,当m=4时,ED=DF,综上可知,当DE,DF满足<<3时,m的取值范围为<m<4.2017年5月25日。
2017年浙江省温州市中考数学一模试卷一.选择题(共15小题)1.计算:(﹣3)+4的结果是()A.﹣7 B.﹣1 C.1 D.72.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.33.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是()A.B.C.D.4.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.5.若分式无意义,则()A.x=2 B.x=﹣1 C.x=1 D.x≠﹣16.在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2 B.3 C.4 D.67.若四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=1:3:8,则∠D的度数是()A.10° B.30° C.80° D.120°8.下列选项中的图形,不属于中心对称图形的是()A.等边三角形B.正方形C.正六边形 D.圆9.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A.B.C.D.10.不等式组的解是()A.x<1 B.x≥3 C.1≤x<3 D.1<x≤311.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)12.在半径为2的圆中,弦AB的长为2,则的长等于()A.B.C. D.13.如图,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(5,2) B.(4,2) C.(3,2) D.(﹣1,2)14.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A.(﹣1,1)B.(﹣1,2)C.(1,2) D.(2,1)15.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.若P、Q两点同时出发,当点Q运动到点C时,P、Q两点同时停止运动,则在整个运动过程中PQ的长度变化情况是()。
2017年9月温州市一模考试模拟(一)数学试题(参考答案)选择题部份(共40分)一、选择题:本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
非选择题部份(共110分)二、填空题:本大题共7个小题,多空题每题6分,单空题每题4分,共36分。
11.11,2p x == 12.104++ 13.,73π14. 3, 2715.85 16.201632017 17.3119(,]106三、解答题:本大题共5小题.总分值74分.解许诺写出文字说明、证明进程和演算步骤.18.解:(Ⅰ)1()sin 22sin 2)22f x x x x =-+=1sin 222x x -=sin 23x π-() 故周期为π(Ⅱ)由222,232k x k k Z πππππ-+≤-≤+∈,可得5,1212k x k k Z ππππ-+≤≤+∈, 取0k =,那么5,1212x ππ⎡⎤∈-⎢⎥⎣⎦,取1k =,那么1117,1212x ππ⎡⎤∈⎢⎥⎣⎦, 又因为[]0,x π∈,因此()f x 的单调递增区间为50,12π⎡⎤⎢⎥⎣⎦和11,12ππ⎡⎤⎢⎥⎣⎦(写开区间也对)19. 解:(Ⅰ)连接BD交OC与N,连接MN .因为O为AD的中点,AD =2,因此OA =OD =1=BC .又因为AD //BC,因此四边形OBCD为平行四边形,因此N为BD的中点,因为M为PB的中点,因此MN //PD .又因为MN ⊂平面OCM,PD ⊄平面OCM,因此PD //平面OCM .(Ⅱ)由四边形OBCD为平行四边形,知OB =CD =1,因此ΔAOB为等边三角形,因此∠A =60∘,因此BD =√1+4−2×1×2×12=√3,即AB 2+BD 2=AD 2,即AB ⊥BD . 因为DP ⊥平面ABP,因此AB ⊥PD .又因为BD ∩PD =D,因此AB ⊥平面BDP,因此∠APB为AP与平面PBD所成的角,即∠APB =60∘,因此PB =√33. 20.解:(Ⅰ)当1a =时,()ln f x x x =-,'1()1f x x=-, 因此曲线()y f x =在点11(,ln 2)22+处的切线的斜率为'11()11122f =-=-. 所求切线方程为11(ln 2)()22y x -+=--, 即ln 210x y +--=. (Ⅱ)假设当1a <时,在1[,e]e存在一点0x ,使0()e 1f x >-成立, 那么只需证明1[,e]ex ∈时, max ()e 1f x >-即可. 22221(1)(1)[(1)]'()1(0)a a x ax a x x a f x x x x x x--+----=+-==>, 令'()0f x =得,11x =,21x a =-,当1a <时,10a -<, 当1,1x e ⎛⎫∈ ⎪⎝⎭时,'()0;f x <当()1,x e ∈时,'()0.f x > 函数)(x f 在1[,1]e上递减,在[1,e]上递增, max 1()max{(),(e)}ef x f f ∴=. 于是,只需证明(e)e 1f >-或1()e 1ef >-即可 ∵ 1(e)(e 1)e (e 1)e a f a ---=----(e 1)(1)ea +-=0> ∴ (e)e 1f >-成立 因此假设正确,即当1a <时,在1[,e]ex ∈上至少存在一点0x ,使0()e 1f x >-成立.22.证明:(Ⅰ)由n a =2121n n a a -=- (*),显然n a >0 (*)式⇒2211222(1)2(1)(1)n n n n n a a a a a --=-=-=+- 故1n a -与11n a --同号,又01211033a -=-=>, 因此10n a ->,即1n a <(注意:也能够用数学归纳法证明) 因此 1(21)(1)0n n n n a a a a --=+-<,即1n n a a -< 因此 11n n a a -<< (1n ≥)(Ⅱ)(*)式⇒2121n n n n n b a a a a -=-=-+, 由110110n n n n a a a a --<<<⇒-+>,从而110n n n b a a -=-+>,于是,120n n S b b b =+++>, 由(Ⅰ)有112(1)(1)n n n a a a --=+-⇒11112(1)n n n a a a --=-+12<, 因此2120111211(1)(1)(1)22232n n n n n a a a a --⎛⎫⎛⎫-<-<-<<-= ⎪ ⎪⎝⎭⎝⎭ (**) 因此1201121(1)(1)(1)n n n n S b b b a a a a a a -=+++=-++-++-+ 013n n a a n n a =-+=+- 2221(1)3332n n n a n =-++-<-++ 222113322n n ≤-++=- ∴102n S n <<-(2n ≥)成立。
浙江省温州市2017年中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6B.1C.0D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3B.4C.5D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC 内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6B.1C.0D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3B.4C.5D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【专题】17:推理填空题.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【专题】153:代数几何综合题.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP ⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【专题】11:计算题.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【专题】16:压轴题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C 作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,=CG×CH=,∴S△ACG=,∵S△DEG:S△DEG=.∴S△ACG【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2016-2017学年浙江省温州市瑞安市五校联考九年级(上)期中数学试卷 一、选择题1.抛物线y=x2﹣1与y轴的交点坐标是( )A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.如图,已知A,B,C为⊙O上三点,若∠AOB=80°,则∠ACB度数为( )A.80°B.70°C.60°D.40°3.将抛物线y=x2向右平移2个单位所得抛物线的函数表达式为( )A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+24.从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是( )A.抽到方块8B.抽到K牌C.抽到梅花D.抽到大王5.如图,在矩形ABCD中,AB=4,AD=3,若以点A为圆心,以4为半径作⊙A,则下列各点在⊙A外的是( )A.点AB.点B C.点C D.点D6.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为( )A.1cm B.2cm C.3cm D.4cm7.如图,在3×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A.B.C.D.8.如图,已知抛物线y=ax2+bx+c的顶点为(2,﹣1),抛物线与y轴的交点为(0,3),当函数值y<3时,自变量x的取值范围是( )A.0<x<2B.0<x<3C.0<x<4D.1<x<39.如图,AB为半圆O的直径,C、D是半圆上的两点,且D是的中点,连接AC,若∠B=70°,则∠DAB的度数为( )A.54°B.55°C.56°D.57°10.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是( )A.一直不变B.一直减小C.一直增大D.先减小后增大二、填空题11.已知抛物线y=x2+bx+2的对称轴为直线x=1,则b的值是 .12.一个不透明的袋子中装有3个红球和若干个白球,它们除颜色外其余都相同.现随机从袋中摸出一个球,若颜色是白色的概率为,则袋中白球的个数是 .13.如图,已知AB和CD是⊙O的两条直径,CE∥AB,若的度数为40°,则的度数为 .14.如图,经过原点的⊙P与x轴,y轴分别交于A(3,0),B(0,4)两点,点C是上一点,且BC=2,则AC= .15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为21m,则能建成的饲养室总占地面积最大为 m2.16.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为 .三、解答题17.已知△ABC顶点都在4×4的正方形网格格点上,如图所示.(1)请画出△ABC的外接圆,并标明圆心O的位置;(2)这个圆中弦BC所对的圆周角的度数是 .18.均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字1234出现的次数16201410(1)计算上述试验中“4朝下”的频率是多少?(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?为什么?19.已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.求证: =.20.如图,抛物线y=x2﹣bx+3与x轴相交于点A,B,且过点C(4,3).(1)求b的值和该抛物线顶点P的坐标;(2)将该抛物线向左平移,记平移后抛物线的顶点为P′,当四边形AP′PB为平行四边形时,求平移后抛物线的解析式.21.为了在校体育节的排球比赛上取得好成绩,甲、乙、丙、丁四人一起训练传接球.传接球规则如下:接球者把球随机传给另外三人中的一人.现由甲开始传球,请回答下列问题(假设每次传球都能接到球):(1)写出第一次接球者是乙的概率;(2)用列表或画树状图的方法求第二次接球者是甲的概率.22.如图是一种窗框的设计示意图,矩形ABCD被分成上下两部分,上部的矩形CDFE由两个正方形组成,制作窗框的材料总长为6m.(1)若AB为1m,直接写出此时窗户的透光面积 m2;(2)设AB=x,求窗户透光面积S关于x的函数表达式,并求出S的最大值.23.如图,在△ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连接BD,(1)求证:点E是的中点;(2)当BC=12,且AD:CD=1:2时,求⊙O的半径.24.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为 .(直接写出答案)2016-2017学年浙江省温州市瑞安市五校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题1.抛物线y=x2﹣1与y轴的交点坐标是( )A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)【考点】二次函数图象上点的坐标特征.【分析】将x=0代入抛物线解析式,解求出函数与y轴的交点坐标.【解答】解:当x=0时,y=﹣1.所以,抛物线y=x2﹣1与y轴的交点坐标是(0,﹣1).故选B.2.如图,已知A,B,C为⊙O上三点,若∠AOB=80°,则∠ACB度数为( )A.80°B.70°C.60°D.40°【考点】圆周角定理.【分析】根据圆周角定理得出∠ACB=∠AOB,代入求出即可.【解答】解:∵∠AOB=80°,∴∠ACB=∠AOB=40°,故选D.3.将抛物线y=x2向右平移2个单位所得抛物线的函数表达式为( )A.y=(x﹣2)2B.y=(x+2)2C.y=x2﹣2D.y=x2+2【考点】二次函数图象与几何变换.【分析】易得原抛物线的顶点坐标,用顶点式表示出新的抛物线解析式,把新的顶点代入即可.【解答】解:∵原抛物线的顶点为(0,0),把抛物线y=x2向右平移2个单位,∴新抛物线的顶点为(2,0),设新抛物线的解析式为y=(x﹣h)2+k,∴所得抛物线的函数表达式为y=(x﹣2)2.故选:A.4.从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是( )A.抽到方块8B.抽到K牌C.抽到梅花D.抽到大王【考点】可能性的大小.【分析】每张牌被抽到的机会相等,因而只要比较哪个包含的可能结果最多即可得出答案.【解答】解:A、抽到方块8的可能性是;B、抽到K牌的可能行是=;C、抽到梅花的可能行是;D、抽到大王的可能性是;则可能性最大的是抽到梅花;故选C.5.如图,在矩形ABCD中,AB=4,AD=3,若以点A为圆心,以4为半径作⊙A,则下列各点在⊙A外的是( )A.点AB.点B C.点C D.点D【考点】点与圆的位置关系;矩形的性质.【分析】根据勾股定理求出AC的长,进而得出点B,C,D与⊙A的位置关系.【解答】解:连接AC,∵在矩形ABCD中,AB=4,AD=3,∴BC=AD=3,∠B=90°,∴AC==5,∵AB=4=4,AC=5>4,AD=3<4,∴点B在⊙A上,点C在⊙A外,点D在⊙A内.故选C.6.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为( )A.1cm B.2cm C.3cm D.4cm【考点】垂径定理的应用;勾股定理.【分析】过点O作OF⊥DE,垂足为F,由垂径定理可得出EF的长,再由勾股定理即可得出OF的长【解答】解:过点O作OF⊥DE,垂足为F,∵OF过圆心,∵DE=8cm,∴EF=DE=4cm,∵OC=5cm,∴OE=5cm,∴OF===3cm.故选C.7.如图,在3×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A.B.C.D.【考点】利用轴对称设计图案;概率公式.【分析】由在3×4正方形网格中,任选取一个白色的小正方形并涂黑,共有9种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有9个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选C.8.如图,已知抛物线y=ax2+bx+c的顶点为(2,﹣1),抛物线与y轴的交点为(0,3),当函数值y<3时,自变量x的取值范围是( )A.0<x<2B.0<x<3C.0<x<4D.1<x<3【考点】二次函数的性质.【分析】首先根据顶点坐标确定对称轴,然后根据对称轴和与y轴的交点坐标确定当y=3时的x的值,从而确定答案.【解答】解:∵抛物线y=ax2+bx+c的顶点为(2,﹣1),∴对称轴为x=2,∵抛物线与y轴的交点为(0,3),∴当y=3时x的值为0或4,∴当函数值y<3时,0<x<4,故选C.9.如图,AB为半圆O的直径,C、D是半圆上的两点,且D是的中点,连接AC,若∠B=70°,则∠DAB的度数为( )A.54°B.55°C.56°D.57°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】连接BD,如图,利用圆周角定理得到∠ABD=∠CBD=ABC═35°,∠ADB=90°,然后利用互余计算∠DAB的度数.【解答】解:连接BD,如图,∵D是的中点,∴=,∴∠ABD=∠CBD=ABC=×70°=35°,∵AB为直角,∴∠ADB=90°,∴∠DAB=90°﹣∠ABD=90°﹣35°=55°.故选B.10.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是( )A.一直不变B.一直减小C.一直增大D.先减小后增大【考点】相似三角形的判定与性质;三角形的面积;含30度角的直角三角形.【分析】设AP=x,则DP=x,则BE=1﹣x,然后再求得点C到AB的距离,从而可可得到S1+S2与x的函数关系,然后依据二次函数的性质求解即可.【解答】解:∵∠ACB=90°,∠A=30°,BC=1,∴AB=2.依据勾股定理可知:AC=.设点C到AB的距离为h,则2h=1×,解得:h=.所以S1+S2=DP•AD+BE•h=×x×x+(1﹣x)×=x2﹣x+.对称轴为x=>1.∵AB=2,PE=1,∴0<x<0,所以S1+S2的值一直减小.故选:B.二、填空题11.已知抛物线y=x2+bx+2的对称轴为直线x=1,则b的值是 ﹣2 .【考点】二次函数的性质.【分析】利用对称轴公式可求得对称轴,再利用条件可得到关于b的方程,可求得答案.【解答】解:∵y=x2+bx+2的对称轴为直线x=1,∴﹣=1,解得b=﹣2,故答案为:﹣2.12.一个不透明的袋子中装有3个红球和若干个白球,它们除颜色外其余都相同.现随机从袋中摸出一个球,若颜色是白色的概率为,则袋中白球的个数是 6 .【考点】概率公式.【分析】设袋子中白球的个数为x,根据白色的概率为,列出关于x的方程,解之可得答案.【解答】解:设袋子中白球的个数为x,则=,解得:x=6,经检验:x=6是原分式方程的解,故答案为:6.13.如图,已知AB和CD是⊙O的两条直径,CE∥AB,若的度数为40°,则的度数为 70° .【考点】圆心角、弧、弦的关系.【分析】接OE,根据的度数为40°求出∠COE的度数,再由等腰三角形的性质求出∠E的度数,根据平行线的性质即可得出结论.【解答】解:连接OE,∵=40°,∴∠COE=40°.∵OC=OE,∴∠E==70°.∵CE∥AB,∴∠AOE=∠E=70°,∴的度数为70°,故答案为:70°.14.如图,经过原点的⊙P与x轴,y轴分别交于A(3,0),B(0,4)两点,点C是上一点,且BC=2,则AC= .【考点】坐标与图形性质.【分析】连接AB,根据90度的圆周角所对的弦是直径可以证得AB是直径,利用勾股定理求得直径AB的长,然后在直角△ABC中利用勾股定理求得BC的长.【解答】解:连接AB.∵∠AOB=90°,∴AB是圆的直径.∵A的坐标是(3,0),B的坐标是(0,4),∴OA=3,OB=4,∴AB===5,∵AB是直径,∴∠C=90°,∴AC===.故答案是:.15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为21m,则能建成的饲养室总占地面积最大为 48 m2.【考点】二次函数的应用.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为21+3﹣3x=24﹣3x,表示出总面积S=x(24﹣3x),最后利用配方法求解即可.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为21+3﹣3x=24﹣3x.则总面积S=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,故饲养室的最大面积为48平方米.故答案为:48.16.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为 (2,﹣1)或(2,2) .【考点】二次函数图象与几何变换.【分析】根据抛物线对称轴解析式设点A坐标为(2,m),作AP⊥y轴于点P,作O′Q⊥直线x=2,证△AOP≌△AO′Q得AP=AQ=2、PO=QO′=m,则点O′坐标为(2+m,m﹣2),将点O′坐标代入抛物线解析式得到关于m的方程,解之可得m的值,即可得答案.【解答】解:∵抛物线y=x2﹣4x对称轴为直线x=﹣=2,∴设点A坐标为(2,m),如图,作AP⊥y轴于点P,作O′Q⊥直线x=2,∴∠APO=∠AQO′=90°,∴∠QAO′+∠AO′Q=90°,∵∠QAO′+∠OAQ=90°,∴∠AO′Q=∠OAQ,又∠OAQ=∠AOP,∴∠AO′Q=∠AOP,在△AOP和△AO′Q中,∵,∴△AOP≌△AO′Q(AAS),∴AP=AQ=2,PO=QO′=m,则点O′坐标为(2+m,m﹣2),代入y=x2﹣4x得:m﹣2=(2+m)2﹣4(2+m),解得:m=﹣1或m=2,∴点A坐标为(2,﹣1)或(2,2),故答案为:(2,﹣1)或(2,2).三、解答题17.已知△ABC顶点都在4×4的正方形网格格点上,如图所示.(1)请画出△ABC的外接圆,并标明圆心O的位置;(2)这个圆中弦BC所对的圆周角的度数是 45°或135° .【考点】作图—复杂作图;圆周角定理.【分析】(1)先根据勾股定理判断出△ABC的形状,进而可画出其外接圆与圆心;(2)由圆周角定理即可得出结论.【解答】解:(1)如图,∵AB=AC=,AC=,∴△ABC是等腰直角三角形,∴⊙O即为所求;(2)∵△ABC是等腰直角三角形,∴∠A=45°,∴∠A′=180°﹣45°=135°.故答案为:45°或135°.18.均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字1234出现的次数16201410(1)计算上述试验中“4朝下”的频率是多少?(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?为什么?【考点】利用频率估计概率.【分析】(1)根据试验中“4朝下”的总次数除以总数即可得出答案;(2)根据在60次试验中,“2朝下”的频率为并不能说明“2朝下”这一事件发生的概率为,即可得出答案.【解答】解:(1)根据图表中数据可以得出:“4朝下”的频率:;答:上述试验中“4朝下”的频率是:;(2)这种说法是错误的.在60次试验中,“2朝下”的频率为并不能说明“2朝下”这一事件发生的概率为.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.19.已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.求证: =.【考点】圆心角、弧、弦的关系.【分析】由OA平分∠BAC 可推得OD=OE,进而推出AB=CD,根据弦与弧之间的关系即可证得结论.【解答】证明:过点O作OD⊥AB于D,OE⊥AC于E,过点O作OD⊥AB于D,OE⊥AC于E,∵OA平分∠BAC,∴OD=OE,∴AB=CD,∴.20.如图,抛物线y=x2﹣bx+3与x轴相交于点A,B,且过点C(4,3).(1)求b的值和该抛物线顶点P的坐标;(2)将该抛物线向左平移,记平移后抛物线的顶点为P′,当四边形AP′PB为平行四边形时,求平移后抛物线的解析式.【考点】二次函数综合题;待定系数法求二次函数解析式.【分析】(1)根据抛物线y=x2﹣bx+3过点C(4,3),代入求出b的值即可,再利用配方法求出顶点坐标即可;(2)首先求出AB的长,再根据四边形AP′PB为平行四边形,得出P′P=AB=2,进而得出P′的坐标,求出解析式即可.【解答】解:(1)当x=4,y=3,代入y=x2﹣bx+3,解得:b=4,∴y=x2﹣4x+3=(x﹣2)2﹣1,∴b的值为4,和该抛物线顶点P的坐标为:(2,﹣1);(2)当y=0时,x2﹣4x+3=0,解得:x1=1,x2=3,∴AB=2,∵四边形AP′PB为平行四边形,∴P′P=AB=2,∴P′的坐标是(0,﹣1),∴抛物线的解析式是:y=x2﹣1.21.为了在校体育节的排球比赛上取得好成绩,甲、乙、丙、丁四人一起训练传接球.传接球规则如下:接球者把球随机传给另外三人中的一人.现由甲开始传球,请回答下列问题(假设每次传球都能接到球):(1)写出第一次接球者是乙的概率;(2)用列表或画树状图的方法求第二次接球者是甲的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式可得;(2)画树状图列出所有等可能结果,再根据概率公式可得.【解答】解:(1)P(第一次接球者是乙)=;(2)画树状图如下:∴P(第二次接球者是甲)==.22.如图是一种窗框的设计示意图,矩形ABCD被分成上下两部分,上部的矩形CDFE由两个正方形组成,制作窗框的材料总长为6m.(1)若AB为1m,直接写出此时窗户的透光面积 m2;(2)设AB=x,求窗户透光面积S关于x的函数表达式,并求出S的最大值.【考点】二次函数的应用.【分析】(1)先依据题意求得窗户的高度,然后利用矩形的面积公式求解即可;(2)用含x的式子表示出AD的长,然后依据矩形的面积公式得到S与x的关系式,最后利用配方法求解即可.【解答】解:(1)∵AB=1,∴AD=(6﹣3﹣0.5)×=,∴窗户的透光面积=AB•AD=×1=.故答案为:.(2)∵AB=x,∴AD==3﹣x.∴S=x(3﹣x)=﹣x2+3x.∵S=﹣x2+3x=﹣(x﹣)2+,∴当x=时,S的最大值=.23.如图,在△ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连接BD,(1)求证:点E是的中点;(2)当BC=12,且AD:CD=1:2时,求⊙O的半径.【考点】圆心角、弧、弦的关系;等腰三角形的性质.【分析】(1)要证明点E是的中点只要证明BE=DE即可,根据题意可以求得BE=DE;(2)根据题意可以求得AC和AB的长,从而可以求得⊙O的半径.【解答】(1)证明:连接AE,DE∵AB是直径,∴AE⊥BC,∵AB=AC,∴BE=EC,∵∠CDB=90°,DE是斜边BC的中线,∴DE=EB,∴,即点E是的中点;(2)设AD=x,则CD=2x,∴AB=AC=3x,∵AB为直径,∴∠ADB=90°,∴BD2=(3x)2﹣x2=8x2,在Rt△CDB中,(2x)2+8x2=122,∴,∴,即⊙O的半径是3.24.如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为 .(直接写出答案)【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)先确定出直线AB解析式,进而得出点D,C的坐标,即可得出CD的函数关系式,即可得出结论;(3)先确定出CD=|﹣x2+3x|,DP=|﹣x+3|,再分两种情况解绝对值方程即可;(4)利用四个点在同一个圆上,得出过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,建立方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(3,0),B(0,3),∴直线AB解析式为y=﹣x+3,∵P(x,0).∴D(x,﹣x+3),C(x,﹣x2+2x+3),∵0<x<3,∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,CD最大=;(3)由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|①当S△PDB=2S△CDB时,∴PD=2CD,即:2|﹣x2+3x|=|﹣x+3|,∴x=±或x=3(舍),②当2S△PDB=S△CDB时,∴2PD=CD,即:|﹣x2+3x|=2|﹣x+3|,∴x=±2或x=3(舍),即:综上所述,x=±或x=±2;(4)直线AB解析式为y=﹣x+3,∴线段AB的垂直平分线l的解析式为y=x,∵过点B,C,P的外接圆恰好经过点A,∴过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,∴,∴x=±,故答案为:2017年2月27日。
2017年中考数学一模试题及答案(精练)A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.10如图723,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物参考答案:1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∴P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∴P(一黑一白)=612=12.图737.258.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∴他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∴P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.方法二,列表格如下:A1B2A2B2B1B2-A1B1A2B1-B2B1A1A2-B1A2B2A2-A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.中考数学一模试题的内容,希望符合大家的实际需要。
2017年浙江省初中毕业升学考试(温州市及答案)数学试题卷姓名: 准考证号: 亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题. 祝你成功!卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.-6的相反数是( ▲ )A .6B .1C .0D .-62.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有( ▲ ) A .75人 B .100人 C .125人 D .200人3.某运动会颁奖台如图所示,它的主视图是( ▲ )4.下列选项中的整数,与17最接近的是( ▲ )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表.表中表示零件个数的数据中,众数是( ▲ )A .5个B .6个C .7个D .8个6.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( ▲ ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D . y 2<0<y 1 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是( ▲ ) A .5米 B .6米 C .6.5米 D .12米零件个数(个) 5 6 7 8人数(人) 3 15 22 10主视方向(第3题) (第7题)A BC D某校学生到校方式情况统计图(第2题)骑自行车25% 其他15% 步行 20%乘公共汽 车40%8.我们知道方程2230x x +-=的解是1213x x ==-,.现给出另一个方程2(2+3)2(2+3)30x x +-=,它的解是( ▲ )A .121,3x x ==B .121,3x x ==-C .121,3x x =-=D .121,3x x =-=- 9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ▲ ) A .12SB .10SC .9SD .8S 10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作90°圆弧¼12PP ,¼23P P ,¼34P P ,…得到斐波那契螺旋线,然后顺次连结12PP ,23P P ,34P P ,…得到螺旋折线(如图).已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点9P 的坐标为( ▲ ) A .(-6,24) B .(-6,25) C .(-5,24) D .(-5,25) 卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:24m m += ▲ .12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是 ▲ . 13.已知扇形的面积为3π,圆心角为120°,则它的半径为 ▲ . 14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程: ▲ .15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC上,且∠AOD =30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应).若AB =1,反比例函数ky x=(k ≠0)的图象恰好经过点A ′,B ,则k 的值为 ▲ .16.小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为 ▲ cm .x yD A'B'B O A C(第15题) (第9题)(第16题)图1 图2 单位:cm141261030H E C AB D (第10题)xyP 3P 2OP 1P 6P 4P 5三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:22(3)(1)⨯-+-(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED .(2)当∠B =140°时,求∠BAE 的度数.19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门). (1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A (2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB ,使点P 的横、纵坐标之和等于点A 的横坐标. (2)在图2中画一个△P AB ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.注:图1,图2在答题纸上.21.(本题10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,⊙O (圆心O 在△ABC 内部)经过B ,C 两点,交AB 于点E ,过点E 作⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形. (2)若BC =3,tan ∠DEF =2,求BG 的值.B(第18题)(第20题)(第19题) 某校七年级部分学生选课巧解故事数独魔方人数22.(本题10分)如图,过抛物线2124y x x =-上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C .已知点A 的横坐标为-2.(1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D .①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.23.(本题12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD ,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/ m 2,面积为S (m 2),区域Ⅱ的瓷砖均价为200元/ m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值. (2)若区域Ⅰ满足AB ﹕BC =2﹕3,区域Ⅱ四周宽度相等.①求AB ,BC 的长.②若甲、丙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5﹕3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(本题14分)如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM .P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和¼CM的度数. (2)求证:AC =AB .(3)在点P 的运动过程中.①当4MP =时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值. ②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积之比.(第24题) NC DEABM P (第23题) (第22题)xyDA BC OP2017年浙江省初中毕业升学考试(温州市卷)数学参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.)4(+m m 12.245或5或265 13.3 14.1602005x x =+ 15.334 16.2824-三、解答题(本题有8小题,共80分) 17.(本题10分)解 (1)原式=61-++5=-+ (5分)(2)原式=2212a a a -+-12.a =- (5分)18.(本题8分)(1)证明 ∵AC =AD ,∴∠ACD =∠ADC .∵∠BCD =∠EDC =90°, ∴∠ACB =∠ADE .∵BC =ED ,∴△ABC ≌△AED (SAS ). (4分)(2)解 由(1)得△ABC ≌△AED ,∴∠B =∠E =140°.∵五边形ABCDE 的内角和为540°,∴∠BAE=()=︒+︒⨯-︒90140254080°. (4分) 19.(本题8分)解 (1)903618271518480=+++⨯(人).答:估计该校七年级学生选“数学故事”的人数为90人. (4分)(2)画树状图如下:∴1.3P =(同班) (4分) 20.(本题8分)解 (1)如图1或图2.(4分) (2)如图3或图4.(4分)A B CB C A CB 小慧小聪(第20题)21.(本题 10分)解 (1)连结OE .∵AC=BC ,∠ACB =90°,∴∠B =45°,∴∠COE =90°.∵EF 与⊙O 相切, ∴∠FEO =90°, ∴∠COE +∠FEO =180°,∴EF ∥CO . ∵DE ∥CF ,∴四边形CDEF 是平行四边形. (5分)(2)过点G 作GH ⊥CB 于点H .∵∠ACB =90°, ∴AC ∥GH ,∴∠FCD =∠CGH .在□CDEF 中,∠DEF =∠FCD ,∴∠DEF =∠CGH , ∴tan ∠CGH =tan ∠DEF =2,∴CH GH=2.∵∠B =45°,∴GH =BH ,∴CH =2BH .∵BC =3,∴BH =GH =1,∴BG(5分)22.(本题10分)解 (1)对称轴是直线=2b x a-2124-=-⨯=4. ∵点A ,B 关于直线x =4对称,点A 的横坐标为-2, ∴点B 的横坐标为10. 当x =10时,y =5,∴点B 的坐标为(10,5).(4分)(2)①如图1,连结OD ,OB . ∵点C ,D关于直线OP 对称, ∴OD =OC =5. ∵OD +BD ≥OB ,∴BD ≥OB -OD 5=-, ∴当点D 在线段OB 上时,BD 有最小值5. (2分)②如图2,设抛物线的对称轴交x 轴于点F ,交BC 于点H . ∵ OD =5,OF =4 ,∴DF =3, ∴D (4,3),DH =HF -DF =2. 设CP =a ,则PD =PC =a ,PH =4-a , 在Rt △PHD 中,(4-a )2+22=a 2, ∴a =52,∴5 52P (,).设直线PD 的函数表达式为 y =kx +b (k ≠0),∴5=524=3.k b k b ⎧+⎪⎨⎪+⎩, 解得4325.3k b ⎧=-⎪⎪⎨⎪=⎪⎩, (第22题) 图2 图1∴直线PD 的函数表达式为425.33y x =-+ (4分)23.(本题12 分)解 (1)由题意得3002004812000S S +-()≤,∴S ≤24,∴S 的最大值为24. (4分) (2)①设AB =2a (m ),则BC =3a (m ),由题意得6-2a =8-3a ,∴a =2,∴AB =4m ,BC =6m . (4分)②解法一:设丙瓷砖的单价为3x 元/m 2,乙的面积为S (m 2).由PQ ∥AD 得甲的面积为12m 2,∴()()12300353124800x xS x S -++-=,∴600.x S= ∵012S <<,∴50x >,∴3150x >.又∵3300x <,∴1503300x <<,∴丙瓷砖单价大于150元/m 2且小于300元/m 2. (4分)解法二:设丙瓷砖的单价为x 元/m 2,丙的面积为S (m 2). 由题意得()()5123001248003x x S xS -+-+=,∴180012x S=-.∵012S <<,∴150x >.又∵300x <,∴150300x <<. 24.(本题14分)解 (1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B . ∵∠APB =28°,∴∠B =76°.如图1,连结MD .∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°, ∴¼m CM 2∠MDB =56°. (4分)(2)∵∠BAC =∠MDC =∠APB ,又 ∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB . ∵∠BAP =∠B , ∴∠B =∠ACB , ∴AC =AB . (4分) (3)①如图2,记MP 与圆的另一个交点为R .∵MD 是Rt △MBP 的中线, ∴DM =DP ,∴∠DPM =∠DMP =∠RCD ,∴RC =RP . 图1∵∠ACR =∠AMR =90°,∴22222AM MR AR AC CR +==+. ∴22221+=2+MR PR ,∴22221+=2+PR PR (4-),∴138PR =,∴MR =198.Ⅰ.当∠ACQ =90°时,AQ 为圆的直径,∴Q 与R 重合,∴MQ =MR =198. Ⅱ.如图3,当QCD ∠=90°时,在Rt △QCP 中,1324PQ PR ==, ∴34MQ =. Ⅲ.如图4,当QDC ∠=90°时,∵BM=1,MP=4,∴,∴DP = ∵cos MP DPMPB PB PQ∠==, ∴178PQ =,∴158MQ =.Ⅳ.如图5,当AEQ ∠=90°时, 由对称性得∠AEQ =∠BDQ =90°, ∴158MQ =.综上所述,MQ 的值为198或34或158. (4分)(2分)提示:如图6,∵ DM ∥AF ,∴DF=AM=DE =1,可得△DEG 为正三角形. 易得∠GMD =∠GDM =15°,得MG=DG =1. 作CH ⊥AB 于点H ,由∠BAC =30°得CH =1=MG ,CG=MH -1,∴S △ACG∵S △DEG ,∴S △ACG ﹕S △DEG图5图3图6 (第24题)。
2017年浙江省温州市中考数学试卷满分:150分 版本:浙教版一、选择题(每小题4分,共10小题,合计40分) 1.(2017浙江温州)-6的相反数是 A .6B .1C .0D .-6答案:A ,解析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数.2.(2017浙江温州)某校学生到校方式情况的统计图如图所示. A .75人 B .100人 C .125人 D .200人答案:D ,解析:数据统计,由题意可计算该校总人数为100÷20%=500人,则乘公共汽车到校的学生有500×40%=200人.3.(2017浙江温州)某运动会颁奖台如图所示,它的主视图是A .B .C .D .答案:C ,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的4. A .3B .4C .5D .6答案:B ,解析: ∵4.1<√17<4.2, ∴ √17最接近的是4.5.(2017浙江温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表A .5个答案:C ,解析: 众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.6.(2017浙江温州)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是A .0<y 1<y 2 B .y 1<0< y 2 C .y 1<y 2 <0 D .y 2<0<y 1(第3题)主视方向步行20%骑自行车25%某校学生到校方式情况统计图(第2题)其他15%乘公共汽车40%答案:B ,解析:∵当x =-1时,得y 1=-5;当x =4时,得y 2=10.∴y 1<0< y 27.(2017浙江温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是A .5米B .6米C .6.5米D .12米答案:A ,解析:如图示,在直角三角形中,小车水平行驶的距离为13×cos α =12米,则由勾股定理得到其上升的高度为2−122=5.8.(2017浙江温州)我们知道方程x 2+2x −3=0的解是 x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是 A .x 1=1, x 2=3 B .x 1=1, x 2=-3 C .x 1=-1, x 2=3 D .x 1=-1, x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1, x 2=-3. 9.(2017浙江温州)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为 A .12S B .10S C .9S D .8S 答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =√S , 4个白色的矩形全等,且矩形的长均为√2S ,宽为(√2S −√S ),则直角三角形的短直角边长为:√S .由勾股定理得AB =√BM 2+AM 2=√S +8S =3√S , 所以正方形ABCD 的面积为9S . 10.(2017浙江温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P 1P 2,P 2P 3,P 3P 4,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点P 9的坐标 A .(-6,24) B .(-6,25)C .(-5,24)D .(-5,25)P 6M第9题HGFED答案:B ,解析:找准图形规律,依次可得P 6(-6,-1),P 7(2,-9),P 8(15,4),P 9(-6,25), . 二、填空题:(每小题5分,共6小题,合计30分) 11.(2017浙江温州)分解因式m 2+4m =_________. 答案:m (m +4),解析:提公因式法因式分解.12.(2017浙江温州) 数据1,3,5,12,a 其中整数a 是这组数据中的中位数,则该组数据的平均数是_________.答案:4.8或5或5.2,解析:中位数指的是,一组按大小顺序排列起来的数据中处于中间位置的数.当有奇数个(如17个)数据时,中位数就是中间那个数(第9个);当有偶数个(如18个)数据时,中位数就是中间那两个数的平均数(第九个和第十个相加除以二).由中位数的性质分类讨论得a =3, 则平均数=1+3+3+5+125=4.8; a =4, 则平均数=1+3+4+5+125=5; a =5, 则平均数=1+3+5+5+125=5.2.13.(2017浙江温州)已知扇形的面积为3π,圆心角为120°,则它的半径为_________.答案:3,解析:设扇形的半径为r ,由扇形的面积公式S =120πr 2360=3π,得r =3.14.(2017浙江温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,己知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_______.答案:160x=200x +5,解析:分式方程的应用,根据甲乙两人铺设任务的时间相同.15.(2017浙江温州)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA ′B ′D ′与四边形OABD 关于直线OD 对称(点A ′和A ,B 和B ′分别对应),若AB =1,反比例函数y =kx (k ≠0)的图象恰好经过点A ′,B ,则k 的值为______.答案:4√33, 解析:由点B 在反比例函数上且AB =1,可得OA =k , 由对称性质可知OA ′=OA =k ,∠AOA ′=2∠AOD =60° ∴点A ′的坐标为( 12k ,√32k ), 它在反比例函数上,得: 12k ×√32k =k ,∴k =4√3316.(2017浙江温州)小明家的洗手盆上装有一种拾启式水龙头,完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图所示.现用高10.2cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为________cm .答案:24-8√2,解析:以O 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系.得到A (8,36), B (12,24), D (0,24), 利用待定系数法求得直线AB 的解析式为:y =3x +60,∴C (20,0).过B , D , C 三点的抛物线解析式为:y =- 320(x +8)(x -20),当y =10.2时,得x E =6+8√2, ∴ EH =30-(6+8√2)= 24-8√2三、解答题:本大题共8个小题,满分80分. 17.(2017浙江温州)(本小题满分10分) (1)计算:2×(-3)+(−1)2+√8. (2)化简:(1+a )(1-a )+a (a -2) (1)思路分析:实数的混合运算,解:原式=-6+1+2√2=2√2-5.(2)思路分析:平方差公式,整式的混合运算, 解:原式=1-a 2+a 2−2a =1−2a 18.(2017浙江温州)(本小题满分8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D.(2)当∠B =140°时,求∠BAE 的度数.思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°. 19.(2017浙江温州)(本小题满分8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事"的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班.小 聪、小慧都选择了“数学故事”.己知小聪不在A 班,求他和小慧被分到同一个班的概率(要求列表或画树状图)思路分析:考点条形统计图及列表法或树状图求概率,(1)计算出调查人数中选“数学故事”的比例,然后求总人数中选“数学故事”的人数. (2)通过列表法,列举出所有可能出现的分班情况,求出小聪与小慧分到同一个班的概率.解:(1)选“数学故事”的人数为:480×1815+27+18+36=90(人)(2)列表法:第18题EDB(第19题)趣题巧解数学故事魅力数独神奇魔方课程由该表可知,小聪和小慧在同一个班的概率为26=1320.(2017浙江温州)(本小题满分8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整数的三角形为整点三角形.如图,已知整点A (2,3), B (4,4)请在所给网格区域(含边界)上按要求画整点三角形. (1)在图1中画一个△P A B ,使点P 的横、纵坐标之和等于点A 的横坐标.(2)在图2中画一个△P A B ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.思路分析:考点直角坐标系中点的位置坐标,根据点的横纵坐标的关系分类讨论符合情况的点的个数.解:.21.(2017浙江温州)(本小题满分10分)如图,在△ABC 中,AC =BC ,∠ACB =90°, ⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,经过点E 做⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形; (2)若BC =3,tan ∠DEF =2,求BG 的值.(2)(1)(第20题)思路分析:考点平行四边形的判定,切线的性质,圆周角定理及锐角三角比,(1)由切线的性质,圆周角定理判定一组同旁内角∠FEO +∠COE =180°,得到EF ∥CD ,由两组对边平行的四边形判定四边形CDEF 是平行四边形.(2)由平行线的性质,得内错角相等,由等量代换得tan ∠2=CH GH=CHBH =2,在直角三角形中由锐角三角比求出CH =2,BH =1,再由勾股定理求出BG =√2.解:(1)证明:连接OE ∵ AC =BC , ∠ACB =90° ∴ ∠B =45° ∴∠COE =2∠B =90° ∵ EF 是⊙O 的切线 ∴OE ⊥EF ∴∠FEO =90°∴∠FEO +∠COE =180° ∴EF ∥CD 又∵ED ∥A C∴四边形CDEF 是平行四边形. (2)过点G 作GH ⊥BC ,垂足为点H ∵四边形CDEF 是平行四边形 ∴∠DEF =∠1 又∵GH ⊥BC∴∠GHB =∠ACB =90° ∴AC ∥GH ∴∠1=∠2 ∴∠DEF =∠2在Rt △CHG 中,tan ∠2=CH GH=2在Rt △BHG 中,∠B =45°(第21题)(第21题)∴ GH =BH ∴tan ∠2=CH GH=CHBH =2 又∵BC =3 ∴ CH =2,BH =1在Rt △BHG 中,由勾股定理得BG =√2.22.(2017浙江温州)(本小题满分10分)如图,过抛物线y =14x 2−2x 上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为-2. (1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D. ①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.思路分析:考点二次函数与一次函数的综合应用, (1)知道抛物线的解析式,求对称轴:直线x =−b 2a=4,用待定系数法求出A (-2, 5),B(10, 5)(2)利用三角形三边关系可知当且仅当点O 、D 、B 三点共线时,BD 取得最小值; 分类讨论点D 的位置,利用待定系数法求出直线PD 的函数表达式.解:(1)由抛物线的解析式y =14x 2−2x , 得对称轴:直线x =−b 2a=4由题意知点A 的横坐标为-2,代入解析式求得y =14(−2)2−2×(−2)=5,当 14x 2−2x =5时, x 1=10, x 2=-2A (-2, 5),B (10, 5)(2)①连结OD 、OB 、BD ,利用三角形三边关系可得BD ≥OB -OD ,所以当且仅当点O 、D 、B 三点共线时,BD 取得最小值. 由题意知OC =OD =5OB =√102+52=5√5, BD = OB - OD = 5√5-5②(i ) 点P在对称轴左侧时,连结OD在Rt △ODN 中,DN =√52−42=3,D (4,3), DM =2;设P (x ,5) 在Rt △PMD 中,(4−x)2+22=x 2, 得x = 52,P (52,5)设直线PD 的函数表达式为y =kx +b ,利用待定系数法 3=4 k + b 得, k =−435=52k +b b =253∴直线PD 的函数表达式为y =−43x +253(ii ) 点P 在对称轴右侧时,如图所示,点D 在x 轴下方,不符合要求,舍去.综上所述,直线PD 的函数表达式为y =−43x +25323.(2017浙江温州)(本小题满分12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域I (阴影部分)和一个环形区域II (空白部分),其中区域I 用甲、乙、丙三种瓷砖铺设.且满足PQ ∥A D .如图所示.(1)若区域I 的三种瓷砖均价为300元/m 2,面积为S (m 2):区域II 的瓷砖均价为200元/m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值.(2)若区域I 满足AB :BC =2:3,区域II 四周宽度相等, ①求A B ,BC 的长.②若甲、乙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5:3.且区域I 的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.思路分析:考点一元一次方程,一元一次不等式及不等式组的应用,(1)根据两区域的瓷砖总价不超过12000,列出一元一次不等式方程求解;(2)根据各个边的关系求出AB =4m , BC =6m ,再设各个瓷砖的单价,列一元一次不等式组求出丙瓷砖单价的取值范围.解:(1)由题意可得300S +200(6×8-S )≤12000,解得S ≤24, ∴S 的最大值为24(2)①设AB =2x ,则BC =3x ,由题意列方程6-2x =8-3x ,解得x =2, ∴AB =4m , BC =6m②设乙瓷砖单价为5x 元,则丙瓷砖单价为3x 元,甲瓷砖单价为(300-3x )元.如图所示,PQ ∥AD ,所以S 甲=4×6×12=12m 2 , S 乙+S 丙=12 m 2.由题意列不等式组 300-3x >03x <4800−12(300−3x )12<5x解得, 50 <x <100 则 150 <3x <300∴丙瓷砖单价的取值范围为:150 <3x <300.24.(2017浙江温州)(本小题满分14分)如图,已知线段A =2, MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E 、D 分别是P A 、PB 的中点,过点A 、M 、D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC 、DE .(1)当∠APB =28°时,求∠B 和¼CM的度数. (2)求证:AC =A B.(3)在点P 的运动过程中.(第23题)6m8m丙乙乙甲甲QP CB①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值.②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G , 当点G 恰好落在MN 上,连结AG 、CG 、DG 、EG ,直接写出△ACG 与△DEG 的面积比.思路分析:考点圆、等腰三角形、直角三角形、锐角三角比、垂直平分线的性质等知识的综合应用,(1) 由垂直平分线的性质得到等腰△P A B ,由三线合一得 ∠APM =∠BPM = 12∠APB =14°,∠B =90°-∠BPM =90°-14°= 76°,再利用直角三角形斜边上的中线等于斜边的一半,得∠MDB =∠BAC =2∠DPM =28°,以此求得弧CD 的度数=2∠MDB =56°.(2)由同角的余角相等,得 ∠ACB =∠B ,AC =AB(3)由垂直分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1) 如图1,连结M D . ∵AB ⊥MN ,AM =BM∴PM 垂直平分线段AB∴PA =PB在等腰△P AB 中,∠APB =28°,由三线合一得 ∠APM =∠BPM = 12∠APB =14°∴∠B =90°-∠BPM =90°-14°= 76° 在Rt △MPB 中,点D 为斜边BP 的中点 ∴DM =DP ∠MPD =∠DMP =14° ∴∠MDB =∠BAC =2∠DPM =28° ∴弧CD 的度数=2∠MDB =56°.(2)由(1)可得∠B =90°-∠BPM =90°-12∠BAC 在△ABC 中,∠ACB =180°-∠B -∠BAC=180°-(90°- 12∠BAC )-∠BAC =90°- 12∠BAC∴∠ACB =∠B ∴AC =AB⑶①若要满足题意,则点Q 必为过点A 、C 、E 、D 的垂线与线段MN 的交点,分析图形可得只有过点C 、E 、D 的垂线与线段MN 的交点满足题意. (i )若CQ ⊥CP (如图2点Q 1)AM =BM =1, MP =4,由勾股定理得BP =√12+42√17由(1)(2)可得∠BAC =∠AP B ,又∵∠B =∠B∴△ABC ∽△PBA ∴AB BC=BPAB,得BC = 4√1717. ∴CP =13√1717由△PCQ 1∽△PM B , 得CPMP = PQ1PB ,解得PQ 1=4-PQ 1= 34(ii )若QD ⊥BP ,由EP =DP 可知△EPQ 2≌△DPQ 2(如图2点Q 2),∴ EQ 2⊥EP . (即过点E 、D 的垂线与线段MN 的交点重合)∵ 点D 为线段AP 的中点,且Q 2D ⊥BP ∴Q 2D 垂直平分线段BP ,则Q 2P =Q 2B 设Q 2M =x ,则Q 2B =Q 2P =4-x由勾股定理BM 2+MQ 22=BQ 22, 得12+x 2=(4−x)2,解得x =158(iii )若AC ⊥CQ (如图2点Q 3)∵∠ACQ 3=90°, ∴Q 3A 为该圆的直径 ∴点Q 3为MP 与圆的交点∵∠MAC =∠MQ 3C =2∠MPC , ∠MQ 3C =∠MPC +∠Q 3CP ∴PQ 3= CQ 3设MQ 3=x ,则PQ 3=4-x ,AC =AB =2∵AQ 32=AM 2+MQ 32=AC 2+CQ 32∴12+x 2=22+(4−x)2, 解得x = 198综上所述,MQ 的值为 34或158或198.③如图3过点E 作AP 的中垂线,交MP 于点K .过点C 作CJ ⊥AB 于点J ,连结AK ,KE∵点M 、D 分别为AB 、BP 的中点 ∴MD 为△ABP 的中位线 ∴MD ∥AP ,AM =DF 又∵ AM ∥ED∴四边形MADE 为平行四边形 ∴AM =DE ,∠MDE =∠MAP ∴DE =DF ∵△GHE ≌△GHD , ∴ GE =GD∴GE =GD =DE =DF ,则△GDE 为正三角形,∠GDE =60°∵∠EDF =90°-60°-30°∴∠DEF = 12(180°-∠EDF )=75° ∴∠APM =15°,则∠AKM =2∠APM =30°∴MK =√3, AK =KP =2, tan 75°= tan ∠MAP =PM MA=2+√31=2+√3∴tan ∠MAP = tan ∠HEP = tan 75°=2+√3,MP =2+√3∵EH 为△AMP 的中位线,∴EH = 12, GH =√32∴tan ∠HEP = PHEH =2+√3, HP = 12(2+√3) ,∴ MG =1 ∵∠MAC =2∠MPA =30°,AM =1,CJ = 12AC = 12AB =1 ∴MI = √33, IG =1- √33, AJ =√3 ∴S △ACG = 12IG ×AJ = 12×(1- √33)×√3= √3−12S △GED = 12ED ×GH = 12×1×√32=√34∴S △ACG S △GED√3−12√46−2√33B。
主视方向最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改2017年浙江省温州市初中毕业生学业考试数学试题卷一、选择题(共10小题,每小题4分,共40分)1.6-的相反数是( )A .6B .1C .0D .6-2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A .75人B .100人C .125人D .200人乘公共 汽车40%步行20%其他15%骑自行车25%3.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .417最接近的是( ) A .3 B .4 C .5 D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是( )A .5个B .6个C .7个D .8个6.已知点(1-,1y ),(4,y2)在一次函数32y x =-的图象上,则1y ,2y ,0的大小关系是( )A .120y y <<B .120y y <<C .120y y <<D .210y y << 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是( )A .5米B .6米C .6.5米D .12米 α8.我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =- ,23x =D .11x =-,23x =-9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM=22EF ,则正方形AB CD 的面积为( )D B M AH EF GA .12sB .10sC .9sD .8s10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP ,23PP ,34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )x yP 6P 5P 2P 4P 3P 1OA .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) 二、填空题(共6小题,每小题5分,共30分):11.分解因式:24m m +=_______________.12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________.13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_____________________.15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC上,且∠AOD=30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点 A ′,B ,则k 的值为_________.y B 'A 'C A O B第15题图 第16题图16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为_________cm .三、解答题(共8小题,共80分):17.(本题10分)(1)计算:22(3)(1)8⨯-+-+;(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.EC D B19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数。
2017年浙江省温州市中考数学试卷满分:150分 版本:浙教版一、选择题(每小题4分,共10小题,合计40分) 1.(2017浙江温州)-6的相反数是 A .6B .1C .0D .-6答案:A ,解析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数.2.(2017浙江温州)某校学生到校方式情况的统计图如图所示. A .75人 B .100人 C .125人 D .200人答案:D ,解析:数据统计,由题意可计算该校总人数为100÷20%=500人,则乘公共汽车到校的学生有500×40%=200人.3.(2017浙江温州)某运动会颁奖台如图所示,它的主视图是A .B .C .D .答案:C ,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的4. A .3B .4C .5D .6答案:B ,解析: ∵4.1<√17<4.2, ∴ √17最接近的是4.5.(2017浙江温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表A .5个答案:C ,解析: 众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.6.(2017浙江温州)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是A .0<y 1<y 2 B .y 1<0< y 2 C .y 1<y 2 <0 D .y 2<0<y 1(第3题)主视方向步行20%骑自行车25%某校学生到校方式情况统计图(第2题)其他15%乘公共汽车40%答案:B ,解析:∵当x =-1时,得y 1=-5;当x =4时,得y 2=10.∴y 1<0< y 27.(2017浙江温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是A .5米B .6米C .6.5米D .12米答案:A ,解析:如图示,在直角三角形中,小车水平行驶的距离为13×cos α =12米,则由勾股定理得到其上升的高度为√132−122=5.8.(2017浙江温州)我们知道方程x 2+2x −3=0的解是 x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是 A .x 1=1, x 2=3 B .x 1=1, x 2=-3 C .x 1=-1, x 2=3 D .x 1=-1, x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1, x 2=-3. 9.(2017浙江温州)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为 A .12S B .10S C .9S D .8S 答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =√S , 4个白色的矩形全等,且矩形的长均为√2S ,宽为(√2S −√S ),则直角三角形的短直角边长为:√S .由勾股定理得AB =√BM 2+AM 2=√S +8S =3√S , 所以正方形ABCD 的面积为9S . 10.(2017浙江温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P 1P 2,P 2P 3,P 3P 4,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点P 9的坐标 A .(-6,24) B .(-6,25)C .(-5,24)D .(-5,25)P 6M第9题HGFED答案:B ,解析:找准图形规律,依次可得P 6(-6,-1),P 7(2,-9),P 8(15,4),P 9(-6,25), . 二、填空题:(每小题5分,共6小题,合计30分) 11.(2017浙江温州)分解因式m 2+4m =_________. 答案:m (m +4),解析:提公因式法因式分解.12.(2017浙江温州) 数据1,3,5,12,a 其中整数a 是这组数据中的中位数,则该组数据的平均数是_________.答案:4.8或5或5.2,解析:中位数指的是,一组按大小顺序排列起来的数据中处于中间位置的数.当有奇数个(如17个)数据时,中位数就是中间那个数(第9个);当有偶数个(如18个)数据时,中位数就是中间那两个数的平均数(第九个和第十个相加除以二).由中位数的性质分类讨论得a =3, 则平均数=1+3+3+5+125=4.8; a =4, 则平均数=1+3+4+5+125=5; a =5, 则平均数=1+3+5+5+125=5.2.13.(2017浙江温州)已知扇形的面积为3π,圆心角为120°,则它的半径为_________.答案:3,解析:设扇形的半径为r ,由扇形的面积公式S =120πr 2360=3π,得r =3.14.(2017浙江温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,己知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_______.答案:160x=200x +5,解析:分式方程的应用,根据甲乙两人铺设任务的时间相同.15.(2017浙江温州)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA ′B ′D ′与四边形OABD 关于直线OD 对称(点A ′和A ,B 和B ′分别对应),若AB =1,反比例函数y =kx (k ≠0)的图象恰好经过点A ′,B ,则k 的值为______.答案:4√33, 解析:由点B 在反比例函数上且AB =1,可得OA =k , 由对称性质可知OA ′=OA =k ,∠AOA ′=2∠AOD =60° ∴点A ′的坐标为( 12k ,√32k ), 它在反比例函数上,得: 12k ×√32k =k ,∴k =4√3316.(2017浙江温州)小明家的洗手盆上装有一种拾启式水龙头,完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图所示.现用高10.2cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为________cm .答案:24-8√2,解析:以O 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系.得到A (8,36), B (12,24), D (0,24), 利用待定系数法求得直线AB 的解析式为:y =3x +60,∴C (20,0).过B , D , C 三点的抛物线解析式为:y =- 320(x +8)(x -20),当y =10.2时,得x E =6+8√2, ∴ EH =30-(6+8√2)= 24-8√2三、解答题:本大题共8个小题,满分80分. 17.(2017浙江温州)(本小题满分10分) (1)计算:2×(-3)+(−1)2+√8. (2)化简:(1+a )(1-a )+a (a -2) (1)思路分析:实数的混合运算,解:原式=-6+1+2√2=2√2-5.(2)思路分析:平方差公式,整式的混合运算, 解:原式=1-a 2+a 2−2a =1−2a 18.(2017浙江温州)(本小题满分8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D.(2)当∠B =140°时,求∠BAE 的度数.思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°. 19.(2017浙江温州)(本小题满分8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事"的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班.小 聪、小慧都选择了“数学故事”.己知小聪不在A 班,求他和小慧被分到同一个班的概率(要求列表或画树状图)思路分析:考点条形统计图及列表法或树状图求概率,(1)计算出调查人数中选“数学故事”的比例,然后求总人数中选“数学故事”的人数. (2)通过列表法,列举出所有可能出现的分班情况,求出小聪与小慧分到同一个班的概率.解:(1)选“数学故事”的人数为:480×1815+27+18+36=90(人)(2)列表法:第18题EDB(第19题)趣题巧解数学故事魅力数独神奇魔方课程由该表可知,小聪和小慧在同一个班的概率为26=1320.(2017浙江温州)(本小题满分8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整数的三角形为整点三角形.如图,已知整点A (2,3), B (4,4)请在所给网格区域(含边界)上按要求画整点三角形. (1)在图1中画一个△P A B ,使点P 的横、纵坐标之和等于点A 的横坐标.(2)在图2中画一个△P A B ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.思路分析:考点直角坐标系中点的位置坐标,根据点的横纵坐标的关系分类讨论符合情况的点的个数.解:.21.(2017浙江温州)(本小题满分10分)如图,在△ABC 中,AC =BC ,∠ACB =90°, ⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,经过点E 做⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形; (2)若BC =3,tan ∠DEF =2,求BG 的值.(2)(1)(第20题)思路分析:考点平行四边形的判定,切线的性质,圆周角定理及锐角三角比,(1)由切线的性质,圆周角定理判定一组同旁内角∠FEO +∠COE =180°,得到EF ∥CD ,由两组对边平行的四边形判定四边形CDEF 是平行四边形.(2)由平行线的性质,得内错角相等,由等量代换得tan ∠2=CH GH=CHBH =2,在直角三角形中由锐角三角比求出CH =2,BH =1,再由勾股定理求出BG =√2.解:(1)证明:连接OE ∵ AC =BC , ∠ACB =90° ∴ ∠B =45° ∴∠COE =2∠B =90° ∵ EF 是⊙O 的切线 ∴OE ⊥EF ∴∠FEO =90°∴∠FEO +∠COE =180° ∴EF ∥CD 又∵ED ∥A C∴四边形CDEF 是平行四边形. (2)过点G 作GH ⊥BC ,垂足为点H ∵四边形CDEF 是平行四边形 ∴∠DEF =∠1 又∵GH ⊥BC∴∠GHB =∠ACB =90° ∴AC ∥GH ∴∠1=∠2 ∴∠DEF =∠2在Rt △CHG 中,tan ∠2=CH GH=2在Rt △BHG 中,∠B =45°(第21题)(第21题)∴ GH =BH ∴tan ∠2=CH GH=CHBH =2 又∵BC =3 ∴ CH =2,BH =1在Rt △BHG 中,由勾股定理得BG =√2.22.(2017浙江温州)(本小题满分10分)如图,过抛物线y =14x 2−2x 上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为-2. (1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D. ①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.思路分析:考点二次函数与一次函数的综合应用, (1)知道抛物线的解析式,求对称轴:直线x =−b 2a=4,用待定系数法求出A (-2, 5),B(10, 5)(2)利用三角形三边关系可知当且仅当点O 、D 、B 三点共线时,BD 取得最小值; 分类讨论点D 的位置,利用待定系数法求出直线PD 的函数表达式.解:(1)由抛物线的解析式y =14x 2−2x , 得对称轴:直线x =−b 2a=4由题意知点A 的横坐标为-2,代入解析式求得y =14(−2)2−2×(−2)=5,当 14x 2−2x =5时, x 1=10, x 2=-2A (-2, 5),B (10, 5)(2)①连结OD 、OB 、BD ,利用三角形三边关系可得BD ≥OB -OD ,所以当且仅当点O 、D 、B 三点共线时,BD 取得最小值. 由题意知OC =OD =5OB =√102+52=5√5, BD = OB - OD = 5√5-5②(i ) 点P在对称轴左侧时,连结OD在Rt △ODN 中,DN =√52−42=3,D (4,3), DM =2;设P (x ,5) 在Rt △PMD 中,(4−x)2+22=x 2, 得x = 52,P (52,5)设直线PD 的函数表达式为y =kx +b ,利用待定系数法 3=4 k + b 得, k =−435=52k +b b =253∴直线PD 的函数表达式为y =−43x +253(ii ) 点P 在对称轴右侧时,如图所示,点D 在x 轴下方,不符合要求,舍去.综上所述,直线PD 的函数表达式为y =−43x +25323.(2017浙江温州)(本小题满分12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域I (阴影部分)和一个环形区域II (空白部分),其中区域I 用甲、乙、丙三种瓷砖铺设.且满足PQ ∥A D .如图所示.(1)若区域I 的三种瓷砖均价为300元/m 2,面积为S (m 2):区域II 的瓷砖均价为200元/m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值.(2)若区域I 满足AB :BC =2:3,区域II 四周宽度相等, ①求A B ,BC 的长.②若甲、乙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5:3.且区域I 的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.思路分析:考点一元一次方程,一元一次不等式及不等式组的应用,(1)根据两区域的瓷砖总价不超过12000,列出一元一次不等式方程求解;(2)根据各个边的关系求出AB =4m , BC =6m ,再设各个瓷砖的单价,列一元一次不等式组求出丙瓷砖单价的取值范围.解:(1)由题意可得300S +200(6×8-S )≤12000,解得S ≤24, ∴S 的最大值为24(2)①设AB =2x ,则BC =3x ,由题意列方程6-2x =8-3x ,解得x =2, ∴AB =4m , BC =6m②设乙瓷砖单价为5x 元,则丙瓷砖单价为3x 元,甲瓷砖单价为(300-3x )元.如图所示,PQ ∥AD ,所以S 甲=4×6×12=12m 2 , S 乙+S 丙=12 m 2.由题意列不等式组 300-3x >03x <4800−12(300−3x )12<5x解得, 50 <x <100 则 150 <3x <300∴丙瓷砖单价的取值范围为:150 <3x <300.24.(2017浙江温州)(本小题满分14分)如图,已知线段A =2, MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E 、D 分别是P A 、PB 的中点,过点A 、M 、D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC 、DE .(1)当∠APB =28°时,求∠B 和CM 的度数. (2)求证:AC =A B.(3)在点P 的运动过程中.(第23题)6m8m丙乙乙甲甲QP DCBA①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值.②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G , 当点G 恰好落在MN 上,连结AG 、CG 、DG 、EG ,直接写出△ACG 与△DEG 的面积比.思路分析:考点圆、等腰三角形、直角三角形、锐角三角比、垂直平分线的性质等知识的综合应用,(1) 由垂直平分线的性质得到等腰△P A B ,由三线合一得 ∠APM =∠BPM = 12∠APB =14°,∠B =90°-∠BPM =90°-14°= 76°,再利用直角三角形斜边上的中线等于斜边的一半,得∠MDB =∠BAC =2∠DPM =28°,以此求得弧CD 的度数=2∠MDB =56°.(2)由同角的余角相等,得 ∠ACB =∠B ,AC =AB(3)由垂直分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1) 如图1,连结M D . ∵AB ⊥MN ,AM =BM∴PM 垂直平分线段AB∴PA =PB在等腰△P AB 中,∠APB =28°,由三线合一得 ∠APM =∠BPM = 12∠APB =14°∴∠B =90°-∠BPM =90°-14°= 76° 在Rt △MPB 中,点D 为斜边BP 的中点 ∴DM =DP ∠MPD =∠DMP =14° ∴∠MDB =∠BAC =2∠DPM =28° ∴弧CD 的度数=2∠MDB =56°.(2)由(1)可得∠B =90°-∠BPM =90°-12∠BAC 在△ABC 中,∠ACB =180°-∠B -∠BAC=180°-(90°- 12∠BAC )-∠BAC =90°- 12∠BAC∴∠ACB =∠B ∴AC =AB⑶①若要满足题意,则点Q 必为过点A 、C 、E 、D 的垂线与线段MN 的交点,分析图形可得只有过点C 、E 、D 的垂线与线段MN 的交点满足题意. (i )若CQ ⊥CP (如图2点Q 1)AM =BM =1, MP =4,由勾股定理得BP =√12+42√17由(1)(2)可得∠BAC =∠AP B ,又∵∠B =∠B∴△ABC ∽△PBA ∴AB BC=BPAB,得BC = 4√1717. ∴CP =13√1717由△PCQ 1∽△PM B , 得CPMP = PQ1PB ,解得PQ 1=4-PQ 1= 34(ii )若QD ⊥BP ,由EP =DP 可知△EPQ 2≌△DPQ 2(如图2点Q 2),∴ EQ 2⊥EP . (即过点E 、D 的垂线与线段MN 的交点重合)∵ 点D 为线段AP 的中点,且Q 2D ⊥BP ∴Q 2D 垂直平分线段BP ,则Q 2P =Q 2B 设Q 2M =x ,则Q 2B =Q 2P =4-x由勾股定理BM 2+MQ 22=BQ 22, 得12+x 2=(4−x)2,解得x =158(iii )若AC ⊥CQ (如图2点Q 3)∵∠ACQ 3=90°, ∴Q 3A 为该圆的直径 ∴点Q 3为MP 与圆的交点∵∠MAC =∠MQ 3C =2∠MPC , ∠MQ 3C =∠MPC +∠Q 3CP ∴PQ 3= CQ 3设MQ 3=x ,则PQ 3=4-x ,AC =AB =2∵AQ 32=AM 2+MQ 32=AC 2+CQ 32∴12+x 2=22+(4−x)2, 解得x = 198综上所述,MQ 的值为 34或158或198.③如图3过点E 作AP 的中垂线,交MP 于点K .过点C 作CJ ⊥AB 于点J ,连结AK ,KE∵点M 、D 分别为AB 、BP 的中点 ∴MD 为△ABP 的中位线 ∴MD ∥AP ,AM =DF 又∵ AM ∥ED∴四边形MADE 为平行四边形 ∴AM =DE ,∠MDE =∠MAP ∴DE =DF ∵△GHE ≌△GHD , ∴ GE =GD∴GE =GD =DE =DF ,则△GDE 为正三角形,∠GDE =60°∵∠EDF =90°-60°-30°∴∠DEF = 12(180°-∠EDF )=75° ∴∠APM =15°,则∠AKM =2∠APM =30°∴MK =√3, AK =KP =2, tan 75°= tan ∠MAP =PM MA=2+√31=2+√3∴tan ∠MAP = tan ∠HEP = tan 75°=2+√3,MP =2+√3∵EH 为△AMP 的中位线,∴EH = 12, GH =√32∴tan ∠HEP = PHEH =2+√3, HP = 12(2+√3) ,∴ MG =1 ∵∠MAC =2∠MPA =30°,AM =1,CJ = 12AC = 12AB =1 ∴MI = √33, IG =1- √33, AJ =√3 ∴S △ACG = 12IG ×AJ = 12×(1- √33)×√3= √3−12S △GED = 12ED ×GH = 12×1×√32=√34∴S △ACG S △GED√3−12 √346−2√33B。
2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。
下文为大家准备了中考数学一模测试卷的内容。
A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。
2017年浙江省温州市瑞安市五校联考中考数学一模试卷一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B. C.﹣D.0.32.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A. B. C. D.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<24.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值25.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):成绩(分)14 15 16 17 18 19 20人数(人) 1 3 2 2 1 2 2这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A. B. C. D.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26° B.28° C.30° D.32°8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C. D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大 B.一直变小 C.先变小再变大 D.先变大再变小10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A. B. C. D.二、填空题11.因式分解:9x2﹣4= .12.函数y=﹣3x+6的图象与x轴的交点坐标为.13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为cm2.15.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为元.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为;(2)当BE与⊙O相切时,AE的长为.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值(写出满足的一个即可).19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,电量(度)电费(元)A 240B合计90(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n= .(直接写出答案)24.如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y=x交AB于点D,点P是直线y=x位于第一象限上的一点,连接PA,以PA为半径作⊙P,(1)连接AC,当点P落在AC上时,求PA的长;(2)当⊙P经过点O时,求证:△PAD是等腰三角形;(3)设点P的横坐标为m,①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;②如图2,记⊙P与直线y=x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足<<3时,求m的取值范围.(请直接写出答案)2017年浙江省温州市瑞安市五校联考中考数学一模试卷参考答案与试题解析一、选择题1.给出四个数0,,﹣,0.3,其中属于无理数的是()A.0 B. C.﹣D.0.3【考点】26:无理数.【分析】根据无理数的定义即可判定选择项.【解答】解:是无理数,0,﹣,0.3是有理数,故选:B.2.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】找到从几何体的正面看所得到的图形即可.【解答】解:从几何体的正面看所得到的图形是,故选:A.3.不等式组的解集是()A.﹣2≤x<1 B.x≥﹣2 C.x>1 D.﹣1≤x<2【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2≥0,得:x≥﹣2,解不等式x﹣1>0,得:x>1,∴不等式组的解集为x>1,故选:C.4.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,﹣3),那么该抛物线有()A.最小值﹣3 B.最大值﹣3 C.最小值2 D.最大值2【考点】H7:二次函数的最值.【分析】根据抛物线开口向下和其顶点坐标为(2,﹣3),可直接做出判断.【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值﹣3.故选B.5.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):成绩(分)14 15 16 17 18 19 20人数(人) 1 3 2 2 1 2 2这13名学生听力测试成绩的中位数是()A.16分B.17分C.18分D.19分【考点】W4:中位数.【分析】按从小到大的顺序排列后,第7个数即为中位数.【解答】解:由题意,可得按从小到大的顺序排列后,第7个数据是17分,所以中位数为17分.故选B.6.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是()A. B. C. D.【考点】T1:锐角三角函数的定义.【分析】利用勾股定理求得AC的长,然后根据正弦的定义求解.【解答】解:在Rt△ABC中,AC===12,则sinB==.故选C.7.P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为()A.26° B.28° C.30° D.32°【考点】M4:圆心角、弧、弦的关系.【分析】先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P 的度数即可.【解答】解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠P=44°﹣16°=28°.故选B.8.要使关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则下列k的取值正确的是()A.1 B.2 C. D.【考点】AA:根的判别式.【分析】先利用判别式的意义得到△=(﹣2)2﹣4•3k>0,再解不等式求出k的范围,然后对各选项进行判断.【解答】解:根据题意得△=(﹣2)2﹣4•3k>0,解得k<.故选D.9.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A.一直变大 B.一直变小 C.先变小再变大 D.先变大再变小【考点】E7:动点问题的函数图象.【分析】根据题意和函数图象可以得到ABD的面积大小变化情况,从而可以解答本题.【解答】解:设PC=x,则PD=2x,PB=x+1,则S△ABD=S梯形ADPC+S△ACB﹣S△PBD==,∴△ABD的面积随x的增大而减小,故选B.10.如图,反比例函数y=(x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为()A. B. C. D.【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x, x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x, x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=2,x2=0(舍去),故k=x2=×4=4.故选A.二、填空题11.因式分解:9x2﹣4= (3x﹣2)(3x+2).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).12.函数y=﹣3x+6的图象与x轴的交点坐标为(2,0).【考点】F8:一次函数图象上点的坐标特征.【分析】令y=0,可求得与x轴交点横坐标,进而求出与x轴交点坐标.【解答】解:把y=0代入y=﹣3x+6得,x=2,于是图象与y轴的交点坐标为(2,0).故答案为:(2,0).13.如图,将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,分别延长AB、CA′相交于点D,若∠A=70°,∠D=30°,则∠BCD的度数为50°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】直接利用平行线的性质结合旋转的性质得出∠ACB的度数,进而得出答案.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C′,且AB∥B′C′,∠A=70°,∠D=30°,∴∠B′CD=∠D=∠ACB=30°,且∠A+∠B′CA=180°,∴∠BCD的度数为50°.故答案为:50°.14.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为 6 cm2.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【分析】根据BP=PQ=QC,由相似三角形的性质可得△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,根据三角形的面积公式和已知条件即可求得△PQR的面积.【解答】解:∵四边形ABCD是正方形,∴AD∥BC,∴△PRQ∽△DRA,∵BP=PQ=QC,∴△PQR的底边=正方形ABCD边长的,高是正方形ABCD边长的,∴△PQR的面积=××正方形ABCD的面积=×144=6(cm2).故答案为:615.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为150 元.【考点】B7:分式方程的应用.【分析】设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x﹣10)元,根据“两次所买植物的盆数相同”列出方程并解答.【解答】解:设第一批绿植的价格是每盆x元,则第二批绿植的价格是每盆(x﹣10)元,依题意得: =,解得x=160.经检验,x=160是所列方程的解.则x﹣10=160﹣10=150(元).故答案是:150.16.如图,在菱形ABCD中,AB=4,取CD中点O,以O为圆心OD为半径作圆交AD于E,交BC的延长线交于点F,(1)若cos∠AEB=,则菱形ABCD的面积为8 ;(2)当BE与⊙O相切时,AE的长为6﹣2 .【考点】MC:切线的性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)作BG⊥AD于G,连接CE,根据圆周角定理得出∠CED=90°,即CE⊥AD,进而证得四边形BCEG是矩形,得出GE=BC=4,解直角三角形求得BE=6,然后根据勾股定理求得BG,根据四边形的面积公式即可求得菱形的面积;(2)连接OE,根据切线的性质得出FE⊥BE,即可得出∠BEG=∠CEO,进而求得∠ECD=∠GEB,通过解直角三角形得出=,由GE=AD,得出AG=ED,设BG=CE=a,得出=,通过变形得出AE2﹣12AE+16=0,解一元二次方程求得即可.【解答】解:(1)作BG⊥AD于G,连接CE,∵四边形ABCD是菱形,∴AB=AD=BC=CD=4,AD∥BC,∵CD是直径,∴∠CED=90°,∴CE⊥AD,∴BG∥CE,∴四边形BCEG是矩形,∴GE=BC=4,∵cos∠AEB=,∴=,∴BE=×4=6,∴BG===2,∴菱形ABCD的面积=AD•BG=4×2=8;故答案为8;(2)连接OE,∵BE与⊙O相切,∴FE⊥BE,∴∠BEG=∠CEO,∵OE=OC,∴∠DCE=∠CEO,∴∠ECD=∠GEB,∴=,∵GE=AD,∴AG=ED,设BG=CE=a,∴=,∴16﹣a2=4AE,∴AG2=4AE,即(4﹣AE)2=4AE,∴AE2﹣12AE+16=0,解得AE=6﹣2或AE=6+2(不合题意,舍去),故答案为6﹣2.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣2)3﹣(﹣1)0(2)化简:(m+3)2﹣m(m﹣4).【考点】4A:单项式乘多项式;4C:完全平方公式;6E:零指数幂.【分析】(1)根据二次根式的性质、乘方法则、零指数幂的性质计算即可;(2)根据完全平方公式、单项式乘多项式的法则、合并同类项法则计算即可.【解答】解:(1)原式=3﹣8﹣1=3﹣9;(2)原式=m2+6m+9﹣m2+4m=10m+9.18.△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标(1,1).若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值2<h<3.5 (写出满足的一个即可).【考点】R8:作图﹣旋转变换;P5:关于x轴、y轴对称的点的坐标;Q3:坐标与图形变化﹣平移.【分析】(1)根据图形旋转的性质画出△A1B1C1即可;(2)根据关于y轴对称的点的坐标特点得出点B2的坐标,再由△A1B1C1各点的坐标即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)∵B(﹣1,1),∴B2(1,1);∵B2(1,﹣1),H(﹣1,﹣2.5),∴2<h<3.5.故答案为:(1,1),2<h<3.5.19.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.【考点】KM:等边三角形的判定与性质;KQ:勾股定理;T7:解直角三角形.【分析】(1)根据∠EDC=60°,DE=DC,运用有一个角是60°的等腰三角形是等边三角形进行判断即可.(2)过点E作EH⊥BC于H,构造直角三角形,先求得EH=EC•sin60°=2×=,CH=EC•cos60°=1,进而得到.【解答】解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE∥BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=AC=AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC•sin60°=2×=,CH=EC•cos60°=1,∴.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查1400 人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数,进而可补全条形统计图并标出相应数据;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.【解答】解:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)900×(1﹣0.3﹣0.1﹣0.15﹣0.2)=225(万)答:估计最关注教育问题的人数约为225万人.(3)画树形图得:则P(抽取的两人恰好是甲和乙)=P=.21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.【解答】证明:(1)连结OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥CE,∴AD∥OC,∵OA=OC,∴∠DAC=∠ACO=∠CAO,∴AC平分∠BAD;(2)解:∵AD⊥CE,tan∠CAD=,AD=8,∴CD=6,∴AC=10,∵AB是⊙O的直径,∴∠ACB=90°=∠D,∵∠DAC=∠CAO,∴△ACD∽△ABC,∴AB:AC=AC:AD,∴AB=.22.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,电量(度)电费(元)A 58 240B 32 128合计90 368(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?【考点】95:二元一次方程的应用.【分析】(1)根据收费标准和电费=相应段的收费标准×用电量进行计算;(2)设3月份C用户用电x度,D用户用电y度.结合(1)中求得的相关数据得到:x>50,y≤50,200+5(x﹣50)﹣4y=38,求x、y的整数解即可.【解答】解:(1)设A用户用电量为x度,则4×50+5(x﹣50)=240,解得x=58;B用户的用电量:90﹣58=32(度).B用户的电费:32×4=128(元)A、B用户的电费:240+128=368(元),故答案是:电量(度)电费(元)A 58 240B 32 128合计90 368(2)设3月份C用户用电x度,D用户用电y度.∵38不能被4和5整除,∴x>50,y≤50,∴200+5(x﹣50)﹣4y=38∴5x﹣4y=88,∴.∵,∴50<x≤57.6.又∵x是4的倍数,∴x=52,56 C用户可能缴的缴电费为210元或230元.23.如图,抛物线y=x2﹣3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n= .(直接写出答案)【考点】HF:二次函数综合题.【分析】(1)将x=﹣,y=a代入抛物线的解析式可求得a的值,求得方程x2﹣3x=0的解可得到点A的横坐标;(2)过D作DG⊥y轴于G,BH⊥x轴于H.先证明△ABH≌△DCG,从而得到CG=BH=,DG=AH ═,然后由x D=OF+DG可求得点D的横坐标,然后将x=5代入抛物线的解析式可求得点D的纵坐标,最后由点D的坐标可得到点C的纵坐标;(3)连结AC,过点B作BH⊥OA,垂足为H.先证明△AFG∽△ABH,依据相似三角形的性质可求得GF=,则CF=n﹣,然后依据S△ABC=FC•AH=7可得到关于n的方程,从而可求得n的值.【解答】解:(1)当x=﹣时,a=(﹣)2﹣3×(﹣)=.∴B(﹣,).由x2﹣3x=0,得x1=0(舍去),x2=3.∴A(3,0).(2)如图1所示:过D作DG⊥y轴于G,BH⊥x轴于H.∵ABCD为平行四边形,∴CD∥AB,CD=AB.∴∠DCG=∠AEF.∵BH∥EF,∴∠HBA=∠FEA.∴∠HBA=∠DCG.在△ABH和△DCG中,∴△ABH≌△DCG.∴CG=BH=,DG=AH=+3=.∴x D=OF+DG=+=5.将x=5代入抛物线的解析式得:y=10.∴n=10+=.(3)如图2所示:连结AC,过点B作BH⊥OA,垂足为H.∵DC∥BA,∴S△ABE=S△BAC.由(2)可知:AG=,AH=,BH=.∵GF∥BH,∴△AFG∽△ABH.∴=,即=,解得:GF=.∴CF=n﹣.∵S△ABE=S△ABC=FC•AH,∴×(n﹣)×=7,解得n=.故答案为:.24.如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线y=x交AB于点D,点P是直线y=x位于第一象限上的一点,连接PA,以PA为半径作⊙P,(1)连接AC,当点P落在AC上时,求PA的长;(2)当⊙P经过点O时,求证:△PAD是等腰三角形;(3)设点P的横坐标为m,①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;②如图2,记⊙P与直线y=x的两个交点分别为E,F(点E在点P左下方),当DE,DF满足<<3时,求m的取值范围.(请直接写出答案)【考点】MR:圆的综合题.【分析】(1)由△OPC∽△ADP,可得,求出AC、AD即可解决问题;(2)只要证明∠PDA=∠DAP即可.(3)①分三种情形分别求解即可ⅰ)如图2中,交点M是OC中点,PM=PA;ⅱ)如图3中,交点M是OA中点,PM=PA;ⅲ)如图4中,交点M是AB中点,PM=PA;ⅳ)如图5中,交点M是BC中点,PM=PA;②如图6中,当DE=3DF时,易知PA=2PD.由此列出方程即可解决问题.【解答】解:(1)如图1中,∵B(3,4)∴BC=3,AB=4∵∠B=90°∴AC=5∵OC∥AB,∴△OPC∽△ADP,∴,即∴.(2)∵⊙P经过点O,∴OP=AP∴∠POA=∠PAO,∵∠PDA+∠POA=∠DAP+∠PAO,∴∠PDA=∠DAP,∴△PAD是等腰三角形.(3)①分4种情形讨论:ⅰ)如图2中,交点M是OC中点,PM=PA则,解得.ⅱ)如图3中,交点M是OA中点,PM=PA∴MG=GA=,∴.ⅲ)如图4中,交点M是AB中点,PM=PA∴PG=AM=1,∴PH=2DH=2×=1,∴m=2.ⅳ)如图5中,交点M是BC中点,PM=PA则,解得.综上所述,满足要求的m值为或或2或.②如图6中,当DE=3DF时,易知PA=2PD.设P(m,),则=2,解得m=或4,当m=4时,ED=DF,综上可知,当DE,DF满足<<3时,m的取值范围为<m<4.。