圆周运动计算题
- 格式:docx
- 大小:204.35 KB
- 文档页数:6
圆周运动的计算题练习 一、计算题 1.如图所示,AB 是一段光滑的水平支持面(不计支持面厚度),一个质量为m 的小物体P 在支持面上以速度v 0滑到B 点时水平飞出,落在水平地面的C 点,其轨迹如图中虚线BC 所示.已知P 落地时相对于B 点的水平位移OC =l ,重力加速度为g ,不记空气阻力的作用.(1)现于支持面下方紧贴B 点安装一水平传送带,传送带右端E 与B 点相距l/2,先将驱动轮锁定,传送带处于静止状态.使P 仍以v 0离开B 点在传送带上滑行,然后从传送带右端E 水平飞出,恰好仍落在C 点,其轨迹如图中虚线EC 所示,求小物块P 与传送带之间的动摩擦因数μ;(2)若解除锁定,驱动轮以不同的角度ω顺时针匀速转动,仍使P 以v 0从B 点滑上传送带,最后P 的落地点为D (图中未画出).试写出角速度ω对应的OD 的可能值.2.如图所示,水平传送带的长度L=10m,皮带轮的半径R=0.1m,皮带轮以角速度ω顺时针匀速转动.现有一小物体(视为质点)从A 点无初速度滑上传送带,到B 点时速度刚好达到传送带的速度0v ,越过B 点后做平抛运动,落地时物体速度与水平面之间的夹角为045θ=.已知B 点到地面的高度5h m =.(1)小物体越过B 点后经多长时间落地及平抛的水平位移S.(2)皮带轮的角速度ω(3)物体与传送带间的动摩擦因μ3.如图所示,小球从倾斜轨道上静止释放,下滑到水平轨道,当小球通过水平轨道末端的瞬间,前方的圆筒立即开始匀速转动,圆筒下方有一小孔P,圆筒静止时小孔正对着轨道方向.已知圆筒顶端与水平轨道在同一水平面,水平轨道末端与圆筒顶端圆心的距离为d,P孔距圆筒顶端的高度差为h,圆筒半径为R,现观察到小球从轨道滑下后,恰好钻进P孔,小球可视为质点.求:(1)小球从水平轨道滑出时的初速度V0.(2)圆筒转动的角速度ω.4.如图所示的皮带传动装置中,两轮半径之比为1:2,a为小轮边缘一点,b为大轮边缘一点,两轮顺时针匀速转动,皮带不打滑,求:(1)a、b两点的线速度的大小之比;(2)a、b两点的角速度之比;(3)a、b两点的加速度的大小之比;(4)a、b两点的转动周期之比。
第6章圆周运动练习题一、选择题。
1、如图所示的齿轮传动装置中,主动轮的齿数z1=24,从动轮的齿数z2=8,当主动轮以角速度ω顺时针转动时,从动轮的转动情况是()A.顺时针转动,周期为2π3ω B.逆时针转动,周期为2π3ωC.顺时针转动,周期为6πω D.逆时针转动,周期为6πω2、下列关于向心力的说法中正确的是()A.做匀速圆周运动的物体除了受到重力、弹力等力外还受到向心力的作用B.向心力和重力、弹力一样,是性质力C.做匀速圆周运动的物体的向心力即为其所受的合外力D.做圆周运动的物体所受各力的合力一定充当向心力3、如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变4、如图所示,一根轻杆(质量不计)的一端以O点为固定转轴,另一端固定一个小球,小球以O点为圆心在竖直平面内沿顺时针方向做匀速圆周运动。
当小球运动到图中位置时,轻杆对小球作用力的方向可能()A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向5、关于做匀速圆周运动物体的向心加速度的方向,下列说法中正确的是()A.与线速度方向始终相同B.与线速度方向始终相反C.始终指向圆心D.始终保持不变6、(双选)如图所示,光滑水平面上,质量为m的小球在拉力F作用下做匀速圆周运动。
若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法中正确的是()A.若拉力突然变大,小球将沿轨迹Pb做离心运动B.若拉力突然变小,小球将沿轨迹Pb做离心运动C.若拉力突然消失,小球将沿轨迹Pa做离心运动D.若拉力突然变小,小球将沿轨迹Pc做近心运动7、(双选)如图所示,在风力发电机的叶片上有A、B、C三点,其中A、C在叶片的端点,B在叶片的中点。
⼈教版新版⾼中物理必修⼆第六章圆周运动训练题(35)必修⼆第六章圆周运动训练题 (35)⼀、单选题(本⼤题共3⼩题,共12.0分)1.长为L的细绳,⼀端系⼀质量为m的⼩球,另⼀端固定于某点。
当绳竖直时⼩球静⽌,再给⼩球⼀⽔平初速度v0,使⼩球在竖直平⾯内做圆周运动。
关于⼩球的运动下列说法正确的是( )A. ⼩球过最⾼点时的最⼩速度为零B. ⼩球开始运动时绳对⼩球的拉⼒为m v02LC. ⼩球过最⾼点时速度⼤⼩⼀定为√gLD. ⼩球运动到与圆⼼等⾼处时向⼼⼒由细绳的拉⼒提供2.如图所⽰,⼀质量为m的⼩球⽤长度为l的细线悬挂于O点,已知细线能够承受的最⼤张⼒为7mg重⼒加速度为g,在最低点给⼩球⼀个初速度,让⼩球在竖直平⾯内绕O点做完整的圆周运动,下列说法正确的是A. ⼩球通过最低点的最⼩速度为√7glB. ⼩球通过最低点的最⼤速度为√7glC. ⼩球通过最⾼点的最⼤速度为√2glD. ⼩球通过最⾼点的最⼩速度为03.如图所⽰,某两相邻匀强磁场区域B1、B2以MN为分界线,⽅向均垂直于纸⾯。
有甲、⼄两个电性相同的粒⼦同时分别以速率v1和v2从边界的a、c点垂直于边界射⼊磁场,经过⼀段时间后甲、⼄粒⼦恰好在b相遇(不计重⼒及两粒⼦间的相互作⽤⼒),o1和o2分别位于所在圆的圆⼼,其中R1=2R2则()A. B1、B2的⽅向相反B. v2=2v1C. 甲、⼄两粒⼦做匀速圆周运动的周期不同D. 若B1=B2,则甲、⼄两粒⼦的荷质⽐相同⼆、多选题(本⼤题共3⼩题,共12.0分)4.若宇航员在⽉球表⾯附近⾃⾼h处以初速度v0⽔平抛出⼀个⼩球,测出⼩球的⽔平射程为L.已知⽉球半径为R,万有引⼒常量为G.则下列说法正确的是()A. ⽉球表⾯的重⼒加速度g⽉=2?v02L2B. ⽉球的质量m⽉=2?R2v02GL2C. ⽉球的⾃转周期T=2πRv0D. ⽉球的平均密度ρ=3?v022πGL25.质量为m的⼩球由轻绳a和b分别系于⼀轻质细杆的A点和B点,如图所⽰,绳a与⽔平⽅向成θ⾓,绳b在⽔平⽅向且长为l.当轻杆绕轴AB以⾓速度ω匀速转动时,⼩球在⽔平⾯内做匀速圆周运动.下列说法正确的是(重⼒加速度为g)()A. a绳的张⼒不可能为零B. a绳的张⼒随⾓速度ω的增⼤⽽增⼤C. 当⾓速度ω>√g,b绳中将出现张⼒ltan?θD. 若b绳突然被剪断,则a绳的张⼒⼀定发⽣变化6.如图所⽰如图,A、B、C三个物体放在旋转圆台上,它们与圆台之间的动摩擦因数均为µ,A的质量为2m,B、C质量均为m,A、B离轴⼼距离为R,C离轴⼼2R,则当圆台旋转时(设A、B、C都没有滑动)A. 物体C的向⼼加速度最⼤B. 物体B受到的静摩擦⼒最⼤C. ω=√µg是C开始滑动的临界⾓速度2RD. 当圆台转速增加时,B⽐A先滑动三、填空题(本⼤题共1⼩题,共4.0分)7.有关圆周运动的基本模型,回答下列问题(1)如图a,汽车通过拱桥的最⾼点处于_______ (填“超重”或“失重”)状态(2)如图b所⽰是两个圆锥摆,增⼤θ,但保持圆锥的⾼度不变,则圆锥摆的⾓速度________(填“不变”、“增⼤”或“减⼩”)(3)如图c,同⼀⼩球在光滑⽽固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A、B两位置⼩球的⾓速度ωA_____ωB(填>、=、<)四、计算题(本⼤题共13⼩题,共130.0分)8.如图所⽰,长度为L的绝缘细线将质量为m、电荷量为q的带正电⼩球悬挂于O点,整个空间(其中g为重⼒加速度)的匀强电场,⼩球可视为质点。
第1页 共8页 ◎ 第2页 共8页绝密★启用前圆周运动月考卷一、选择题(题型注释)1.质量为m的小球在竖直平面内的光滑圆轨道内侧做圆周运动。
圆半径为R ,小球经过圆环内侧最高点时刚好不脱离圆环,则其通过最高点时不正确的是( ) A. 重力mg充当小球做圆周运动所需的向心力 C.小球的向心加速度大小等于g2.一艘小船在静水中的速度为4 m/s ,渡过一条宽200 m ,水流速度为5 m/s的河流,则该小船A .能到达正对岸B .以最短位移渡河时,位移大小为200mC .渡河的时间可能少于50 sD .以最短时间渡河时,沿水流方向的位移大小为250 m3.一质点在某段时间内做曲线运动,则在这段时间内( ) A.速度一定在不断改变,加速度也一定不断改变 B.速度可以不变,但加速度一定不断改变 C.质点不可能在做匀变速运动D.质点在某点的速度方向一定是曲线上该点的切线方向 4.关于曲线运动,以下说法正确的是( )A 、曲线运动的速度一定是变化的B 、曲线运动的加速度一定是变化的C 、曲线运动有可能是匀速运动D 、曲线运动不可能是匀变速运动5.如图所示,用长为l 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则下列说法中正确..的是( )A .小球在圆周最高点时所受的向心力一定为重力B .小球在最高点时绳子的拉力不可能为零CD .小球过最低点时绳子的拉力一定大于小球重力6.洗衣机的甩干筒在旋转时有衣服附在筒壁上,则此时( )A.衣服受重力、筒壁的弹力和摩擦力及离心力作用B. 脱水桶高速运转时,水受到与运动方向一致的合外力作用飞离衣物C.筒壁对衣服的摩擦力随转速的增大而增大D.筒壁对衣服的弹力随着衣服含水量的减少而减少7.如图,在一半经为R 的球面顶端放一质量为m 的物块,现给物块一初速度v 0,,则A A BC A 点为RD A 点至少为2R8.如图所示两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为 ( ).B ..3mg D .4mg9.如图所示,长为L 的细绳一端固定,另一端系一质量为m 的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是( )第3页 共8页 ◎ 第4页 共8页A .小球受重力、绳的拉力和向心力作用B .小球做圆周运动的半径为LC .θ越大,小球运动的速度越大D .θ越大,小球运动的周期越大 10.在加拿大城市温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛落下帷幕,中国选手申雪、赵宏博获得冠军.如图所示,如果赵宏博以自己为转动轴拉着申雪做匀速圆周运动.若赵宏博的转速为30r/min ,手臂与竖直方向夹角为60°,申雪的质量是50kg ,她触地冰鞋的线速度为4.7m/s ,则下列说法正确的是( )A .申雪做圆周运动的角速度为π rad/sB .申雪触地冰鞋做圆周运动的半径约为2mC .赵宏博手臂拉力约是850ND .赵宏博手臂拉力约是500N11.在匀速转动的水平转盘上,有一个相对盘静止的物体随盘一起转动,关于它的受力情况,下列说法中正确的是( )A .只受到重力和盘面的支持力的作用B .只受到重力、支持力和静摩擦力的作用C .因为两者是相对静止的,转盘与物体之间无摩擦力D .受到重力、支持力、静摩擦力和向心力的作用12.物体在做匀速圆周运动的过程中,保持不变的物理量为( ) A .线速度 B .角速度 C .向心力 D .向心加速度第5页 共8页 ◎ 第6页 共8页二、填空题(题型注释)13.司机要能够控制行驶中的汽车,汽车对地面的压力一定要大于零,在高速公路所建的高架桥的顶部可以看做是一个圆弧,若高速公路上汽车的设计时速为180 km/h ,则高架桥顶部的圆弧半径至少应为________.(g =10 m/s 2) 14.(18分)半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点,在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示,若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度为h = ,圆盘转动的角速度大小为三、实验题(题型注释) 15.图甲是“研究平抛物体的运动”实验装置图(1) 在实验前应( )A .将斜槽的末端切线调成水平B .将木板校准到竖直方向,并使木板平面与小球下落的竖直平面平行C .在白纸上记录斜槽末端槽口的位置O ,作为小球做平抛运动的起点和所建坐标系的原点D .测出平抛小球的质量(2)图乙是正确实验取得的数据,其中O 为抛出点,则此小球作平抛运动的初速度为________m/s ;(3)在另一次实验中将白纸换成方格纸,每小格的边长L =5cm ,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为_______m/s ;B 点的竖直分速度为_______m/s 。
高三物理圆周运动单元测试题组题:于忠慈一、选择题:1、金星绕太阳公转的周期小于地球绕太阳公转的周期,它们绕太阳的公转均可看做匀速圆周运动,那么可判定〔〕A.金星到太阳的距离大于地球到太阳的距离B.金星运动的速度小于地球运动的速度C.金星的向心加速度大于地球的向心加速度D.金星的质量大于地球的质量2、一物体在地球外表重16N,它在以5m/s2的加速度加速上升的火箭中的视重为9N,那么此火箭离开地球外表的距离是地球半径的〔〕A.1倍B.2倍C.3倍D.4倍3、如下图,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,那么〔〕A.经过时间t=T1+T2两行星再次相距最近B.经过时间t=T1T2/(T2-T1),两行星再次相距最近C.经过时间t=(T1+T2 )/2,两行星相距最远D.经过时间t=T1T2/2(T2-T1) ,两行星相距最远4、在载人航天飞船返回地球外表的过程中有一段时间航天飞船会和地面失去无线电联系,这一阶段称为“黑障〞阶段,以下哪个说法最确切〔〕A.加速度太大、减速太快B.外表温度太高C.和空气摩擦产生高温使易熔金属和空气形成等离子体层,形成电磁屏蔽D.为下落平安关闭无线电通讯系统5、关于人造地球卫星及其中物体的超重、失重问题,以下说法中正确的选项是〔〕A、在发射过程中向上加速时产生超重现象B、在降落过程中向下减速产生失重现象C、进入轨道时作匀速圆周运动,产生失重现象D、失重是由于地球对卫星内物体作用力减小而引起的6、地球的第一宇宙速度为7.9km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,那么此行星的第一宇宙速度约为〔〕A.15.8km/sB.31.6km/sC.4km/sD.2km/s7、太阳从东边升起,西边落下,是地球上的自然现象,但在某些条件下,在纬度较高地区上空飞行的飞机上,旅客可以看到太阳从西边升起的奇妙现象.这些条件是〔〕A.时间必须是在清晨,飞机正在由东向西飞行,飞机的速度必须较大B.时间必须是在清晨,飞机正在由西向东飞行,飞机的速度必须较大C.时间必须是在黄昏,飞机正在由东向西飞行,飞机的速度必须较大D.时间必须是在黄昏,飞机正在由西向东飞行,飞机的速度不能太大8、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.火卫一的周期为7小时39分.火卫二的周期为30小时18分,那么两颗卫星相比〔〕A.火卫一距火星外表较近B.火卫二的角速度较大C.火卫一的运动速度较大D.火卫二的向心加速度较大9、据报道,最近在太阳系外发现了首颗“宜居〞行星,其质量约为地球质量的6.4倍,一个在地球外表重量为600N的人在这个行星外表的重量将变为960N.由此可推知,该行星的半径与地球半径之比约为〔〕A、0.5B、2C、3.2D、410、2022年4月24日,欧洲科学家宣布在太阳之外发现了一颗可能适合人类居住的类地行星Gliese581c.这颗围绕红矮星Gliese581运行的星球有类似地球的温度,外表可能有液态水存在,距离地球约为20光年,直径约为地球的1.5倍 ,质量约为地球的5倍,绕红矮星Gliese581运行的周期约为13天.假设有一艘宇宙飞船飞临该星球外表附近轨道,以下说法正确是A.飞船在Gliese581c外表附近运行的周期约为13天B.飞船在Gliese581c外表附近运行时的速度大于7.9km/sC.人在Gliese581c上所受重力比在地球上所受重力大D.Gliese581c的平均密度比地球平均密度小11、假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,那么以下物理量变化正确的选项是A、地球的向心力变为缩小前的一半B、地球的向心力变为缩小前的161C、地球绕太阳公转周期与缩小前的相同D、地球绕太阳公转周期变为缩小前的一半二、填空题:12、假设某行星半径是R,平均密度是ρ,引力常量是G,那么在该行星外表附近运动的人造卫星的角速度大小是.13、物体在一行星外表自由落下,第1s内下落了9.8m,假设该行星的半径为地球半径的一半,那么它的质量是地球的倍.14、地球绕太阳公转的周期为T1,轨道半径为R1,月球绕地球公转的周期为T2,轨道半径为R2,那么太阳的质量是地球的质量的倍.15、某行星上一昼夜的时间为T=6h,在该行星赤道处用弹簧秤测得一物体的重力大小比在该行星两极处小10%,那么该行星的平均密度是.16、如果发现一颗小行星,它离太阳的距离是地球离太阳距离的8倍,那么它绕太阳一周的时间应是年.17、假设站在赤道某地上的人,恰能在日落后4h,观察到一颗自己头顶上空被阳光照亮的人造地球卫星,假设该卫星是在赤道所在平面内做匀速园周运动,地球的同步卫星绕地球运行的轨道半径约为地球半径的6.6倍,试估算此人造地球卫星绕地球运行的周期为s18、如下图,某种变速自行车有三个链轮和六个飞轮,链轮和飞轮的齿数如下表所示.该自行车的前后轮周长为2m,人脚踩踏板的转速为每秒钟1.5转.假设采用的链轮和飞轮齿数分别为48和24,那么该种组合下自行车行驶时的速度为__________m/s;在踏板的转速不变的情况下,通过选择不同的链轮和飞轮,该自行车行驶的最大和最小速度之比为____________.后轮飞轮链条链轮踏板19、如下图,完全啮合的齿轮A、B的圆心在同一水平高度,A轮的半径是B轮的2倍,固定在B轮上的箭头方向竖直向上.A轮被固定不能转动,当B轮绕A轮逆时针匀速转动到A轮的正上方时〔齿轮A、B的圆心在同一竖直线上〕,B轮上的箭头方向向_________(填上或下、左、右);B轮绕A轮〔公转〕的角速度与B轮自身〔自转〕的角速度之比为_____________.〔完全啮合的齿轮的齿数与齿轮的周长成正比〕20、如图,电风扇在暗室中频闪光源照射下运转,电风扇有3个叶片,互成120º,光源每秒闪光30次,那么光源闪光周期是秒;该风扇的转速不超过500转/分,现观察者感觉叶片有6个,那么电风扇的转速是转/分.三、计算题21、据美联社2022年10月7日报道,天文学家在太阳系的9大行星之外,又发现了一颗比地球小得多的新行星,而且还测得它绕太阳公转的周期约为288年. 假设把它和地球绕太阳公转的轨道都看作圆,问它与太阳的距离约是地球与太阳距离的多少倍. 〔最后结果可用根式表示〕22、宇航员在地球外表以一定初速度竖直上抛一小球,经过时间t小球落回原处;假设他在某星球外表以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处.〔取地球外表重力加速度g=10m/s2,空气阻力不计〕〔1〕求该星球外表附近的重力加速度g’;〔2〕该星球的半径与地球半径之比为R星:R地=1:4,求该星球的质量与地球质量之比M 星:M地.23、土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动.其中有两个岩石颗粒A和B与土星中央距离分别位r A=8.0×104km和r B=1.2×105km.忽略所有岩石颗粒间的相互作用.〔结果可用根式表示〕〔1〕求岩石颗粒A 和B 的线速度之比.〔2〕求岩石颗粒A 和B 的周期之比.〔3〕土星探测器上有一物体,在地球上重为10N,推算出他在距土星中央3.2×105km 处受到土星的引力为0.38N.地球半径为6.4×103km,请估算土星质量是地球质量的多少倍?参考答案一、选择题1、 C2、C3、BD4、C5、AC6、A7、C8、A 、C9、B10、BC11、BC二、填空题12、13、 14、21322231T R T R15、3027 kg/ m316、17、1.44×104 S18、6,16:519、右,1:320、1/30 、 300三、计算题21、设太阳的质量为M ;地球的质量为m 0,绕太阳公转周期为T 0,与太阳的距离为R 0,公转角速度为ω0;新行星的质量为m ,绕太阳公转周期为T ,与太阳的距离为R ,公转角速度为ω.那么根据万有引力定律合牛顿定律,得,0200200R m R GMm ω=,222R m R GMm ω=,002ωπ=T ,ωπ2=T ,由以上各式得3200⎪⎪⎭⎫ ⎝⎛=T T R R ,T =288年,T 0=1年,得32028844或=R R22、〔1〕t =2v 0g ,所以g ’=15g =2m/s 2, 〔2〕g =GM R 2 ,所以M =gR 2G,可解得:M 星:M 地=1⨯12:5⨯42=1:80,23、解:〔1〕设土星质量为M 0,颗粒质量为m ,颗粒距土星中央距离为r ,线速度为v,根据牛顿第二定律和万有引力定律:rmv r m GM 220= ① 解得:r GM v 0=. 对于A 、B 两颗粒分别有: A A r GM v 0=和B B r GM v 0=,得:26=B A v v ② 〔2〕设颗粒绕土星作圆周运动的周期为T ,那么:v r T π2=③ 对于A 、B 两颗粒分别有: A A A v r T π2=和B B B v r T π2= 得: 962=B A T T ④ 〔3〕设地球质量为M ,地球半径为r 0,地球上物体的重力可视为万有引力,探测器上物体质量为m 0,在地球外表重力为G 0,距土星中央r 0/=5102.3⨯km 处的引力为G 0’,根据万有引力定律: 2000r GMm G = ⑤ 2'000'0r m GM G = ⑥ 由⑤⑥得:950=M M (倍) ⑦。
第六章圆周运动章节复习题一、单选题(下列各题均有4个选项,其中只有一个是正确的,请将正确选项的字母代号写在答题卷的相应位置,多选、错选或不选,该小题不得分,每小题3分,共24分)1、下列关于圆周运动的说法中正确的是()A.向心加速度的方向始终指向圆心B.匀速圆周运动是匀变速曲线运动C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,线速度和角速度是不变的2、如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑。
下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.A的角速度是C的2倍 D.A与B角速度大小相等3、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受重力和向心力的作用D.摆球A受拉力和重力的作用4、如图四幅图中,做圆周运动的物体,描述正确的是()A.图甲中,汽车通过拱形桥最高点时,车速越大,车对桥面的压力越大B.图乙中,做圆锥摆运动的物体,转速越大,摆线与竖直方向的夹角越大C.图丙中,火车转弯速度较大时,火车内侧的车轮轮缘挤压内轨D.图丁中,洗衣机脱水时衣物附着在桶内壁上,转速越大,衣物所受筒壁的静摩擦力越大5、如图所示,半径为r的圆筒,绕竖直中心轴OO'转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使小物块a不下滑,则圆筒转动的角速度ω至少为()A.grμB.gμ C.grDgrμ6、如图,A、B两小球沿倒置的光滑圆锥内侧在水平面内做匀速圆周运动。
则()A.A球质量大于B球 B.A球线速度大于B球C.A球转动周期小于B球 D.A球向心加速度小于B球7、智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆(大小忽略不计)穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示,可视为质点的配重质量为0.5kg,绳长为0.5m,悬挂点P到腰带中心点O的距离为0.2m,水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看成不动,重力加速度g取10m/s2,下列说法正确的是()A.若使用者觉得锻炼不够充分,决定增大转速,腰带受到的合力变大B.当使用者掌握好锻炼节奏后能够使θ稳定在37°,此时配重的角速度为5rad/s C.使用者使用一段时间后成功减肥,再次使用时将腰带调小,若仍保持转速不变则θ变小D.当用力转动使θ从37°增加到53°时,配重运动的周期变大8、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r。
学考计算题第二题1.如图所示,倾角为45°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相接,O为轨道圆心,BC为圆轨道直径且处于竖直平面内,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O等高的D 点,g取10m/s2.求:(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C点,求滑块至少从离地多高处由静止开始下滑;(3)若滑块离开C处后恰能垂直打在斜面上,求滑块经过C点时对轨道的压力.:2.如图所示,竖直平面内的圆弧形光滑管道半径略大于小球半径,管道中心到圆心距离为R,A端与圆心O等高,AD为水平面,B端在O的正下方,小球自A点正上方由静止释放,自由下落至A点时进入管道,当小球到达B点时,管壁对小球的弹力大小为小球重力大小的9倍.求:(1)释放点距A点的竖直高度;(2)落点C与A的水平距离.)3.如图所示,一个小球(视为质点)从H高处,由静止开始沿光滑弯曲轨道AB,进入半径R=4m的竖直光滑圆轨道内侧,当到达圆轨道顶点C时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入弧形轨道BD,到达高度为h=H/2的D点时速度为零,则(1)H为多高?(2)若从D下滑,至少多大的初速度才可到达圆轨道顶点?(假设再次克服阻力做功大小不变)~4.如图是翻滚过山车的模型,光滑的竖直圆轨道半径为R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数均为μ=0.5。
加速阶段AB的长度为l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,g取10 m/s2,试问:](1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车沿着出口平轨道CD滑行多远的距离?(3)要使小车不脱离轨道,平直轨道BC段的长度范围?[5.如图所示的“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,放置在竖直平面内,轨道弯曲部分是由两个半径相等的半圆对接而成,圆半径比细管内径大得多,轨道底端与水平地面相切,轨道在水平面上不可移动。
1、如图所示一辆质量为500kg的汽车静止在一座半径为40m
的圆弧形拱桥顶部.
(1)此时汽车对圆弧形拱桥的压力是多大?
(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?
(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?
2、如下图所示,一根原长l=0.1 m的轻弹簧,一端挂质量m=0.5 kg的小球,以另一端为圆心在
光滑水平面上做匀速圆周运动,角速度ω=10 rad/s.已知弹簧的劲度k=100
N/m,求小球受到的向心力大小.
3、如图所示,质量为m =1kg的小球用细线拴住,线长l=0.5m,细线所受拉力大
到F=18N时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线
恰好被拉断. 若此时小球距水平地面的高度h=5m,重力加速度g取10m/s2,
则小球落地处距地面上P点多远?(P点在悬点的正下方)
4、一根长1.6m的软绳(没有弹性)两端各拴一个透明的玻璃小桶,桶中盛
有带颜色的水,杂技演员用手握住软绳中央并使桶和绳子在竖直平面内转动
起来,这就是“水流星”,如图2所示.要想使小桶转到最高点时水刚好不从桶
中流出,此时小桶转动的角速度和线速度至少应该多大?这时桶底受到水的
压力多大?
5、如图1所示,物体与圆筒壁的动摩擦因数μ,圆筒的半径为R,若要物体不滑
下,圆筒的角速度ω至少为多少?
6、如图6所示,内壁光滑的细导管弯成半径为R的圆形轨道竖直放置,其质
量为2m,小球质量为m,在管内滚动,当小球运动到最高点时,导管刚好要
离开地面,求此时小球速度.。
竖直平面内的圆周运动问题绳球模型和杆球模型一、单选题(本大题共5小题,共20.0分)1.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环可视为质点,从大环的最高处由静止滑下。
重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A. B. C. D.2.如图所示,轻杆的一端有一个小球m,另一端有光滑的固定转轴O.现给小球一初速度v,使小球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示小球到达最高点时杆对小球的作用力,则F()A. 一定是拉力B. 一定是支持力C. 一定等于0D. 可能是拉力,可能是支持力,也可能等于03.质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A. 受到向心力为B. 受到的摩擦力为C. 受到的摩擦力为D. 受到的合力方向指向圆心4.如图所示,在竖直平面内有一“V”形槽,其底部BC是一段圆弧,两侧都与光滑斜槽相切,相切处B、C位于同一水平面上。
一小物体从右侧斜槽上距BC平面高度为2h的A处由静止开始下滑,经圆弧槽再滑上左侧斜槽,最高能到达距BC所在水平面高度为h的D处,接着小物体再向下滑回,若不考虑空气阻力,则( )A. 小物体恰好滑回到B处时速度为零B. 小物体尚未滑回到B处时速度已变为零C. 小物体能滑回到B处之上,但最高点要比D处低D. 小物体最终一定会停止在圆弧槽的最低点5.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。
如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径。
现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b)所示。
⼈教版新版⾼中物理必修⼆第六章圆周运动训练题(18)必修⼆第六章圆周运动训练题 (18)⼀、单选题(本⼤题共6⼩题,共24.0分)1.利⽤探测器探测某⾏星,探测器在距⾏星表⾯⾼度为?1的轨道上做匀速圆周运动时,测得周期为T1;探测器在距⾏星表⾯⾼度为?2的轨道上做匀速圆周运动时,测得周期为T2,万有引⼒常量为G,根据以上信息不能求出的是()A. 该⾏星的质量B. 该⾏星的密度C. 该⾏星的第⼀宇宙速度D. 探测器贴近⾏星表⾯飞⾏时⾏星对它的引⼒2.关于物体做匀速圆周运动,说法正确的是()A. 线速度不变B. 加速度不变C. 向⼼⼒不变D. 周期不变3.2018年5⽉4⽇0点6分,我国使⽤长征三号⼄(CZ?3B)运载⽕箭,在西昌卫星发射中⼼成功发射了⼀颗亚太6C同步通信卫星。
它的发射正为国家“⼀带⼀路”倡议提供更多⽀持。
关于这颗卫星下列说法正确的是()A. 在轨速度等于第⼀宇宙速度B. 加速度等于地⾯重⼒加速度C. 可以通过江苏淮安的正上⽅D. 运⾏周期等于地球的⾃转周期4.如图所⽰,质点a、b在同⼀平⾯内绕质点c沿逆时针⽅向做匀速圆周运动,它们的周期之⽐T a∶T b=1∶k(k>1,为正整数)。
从图⽰位置开始,在b运动⼀周的过程中()A. a、b距离最近的次数为k次B. a、b距离最近的次数为k+1次C. a、b、c共线的次数为2k次D. a、b、c共线的次数为2k?2次5.如图所⽰,转动⾃⾏车的脚踏板时,关于⼤齿轮、⼩齿轮、后轮边缘上的A、B、C三点的向⼼加速度的说法正确的是()A. 由于a=rω2,所以A点的向⼼加速度⽐B的点⼤B. 由于a=v2,所以B点的向⼼加速度⽐C的点⼤rC. 由于a=ωv,所以A点的向⼼加速度⽐B的点⼩D. 以上三种说法都不正确6.半径为R的光滑半圆球固定在⽔平⾯上,顶部有⼀⼩物体m,如图所⽰,今给⼩物体⼀个⽔平初速度v0=√gR,则物体将()A. 沿球⾯滑⾄m点B. 先沿球⾯滑⾄某点N再离开球⾯做斜下抛运动C. 按半径⼤于R的新圆弧轨道运动D. ⽴即离开半球⾯作平抛运动⼆、多选题(本⼤题共6⼩题,共24.0分)7.如图所⽰,在⼀根可绕O点⾃由转动的轻杆的中点B拴⼀细绳,绕过不计⼤⼩的定滑轮悬挂⼀重物A,开始时轻杆平放在⽔平地⾯上,O点恰好位于滑轮正下⽅,轻杆总长为2L。
圆周运动一、选择题1.如图所示,在杂技表演中,杂技演员表演了“球内飞车”的杂技。
一个由钢骨架和铁丝网构成的球壳固定在水平地面上,杂技演员骑摩托车在球壳内飞速旋转,惊险而刺激。
甲演员骑摩托车在球壳内“赤道”平面做匀速圆周运动而不跌落下来;乙演员在“赤道”平面下方某一位置沿水平面做匀速圆周运动。
下列说法正确的是( )A .甲、乙两演员做圆周运动的半径相同B .甲、乙两演员做圆周运动的角速度一定相同C .乙演员的速率增大时,其竖直面内的摩擦力可能减小D .乙演员的速率增大时,其圆周运动的半径一定增大2.如图甲所示,被称为“魔力陀螺”玩具的陀螺能在圆轨道外侧旋转不脱落,其原理可等效为如图乙所示的模型:半径为R 的磁性圆轨道竖直固定,质量为m 的铁球(视为质点)沿轨道外侧运动,A 、B 分别为轨道的最高点和最低点,轨道对铁球的磁性引力始终指向圆心且大小不变,不计摩擦和空气阻力,重力加速度为g ,则( )A.铁球绕轨道可能做匀速圆周运动B.由于磁力的作用,铁球绕轨道运动过程中机械能不守恒C .铁球在A .轨道对铁球的磁性引力至少为5mg ,才能使铁球不脱轨3.(2022·全国·统考高考真题)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。
运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h 。
要求运动员经过c 点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A .1h k +B .h kC .2h kD .21h k - 4.(2022·北京·高考真题)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。
某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。
无论在“天宫”还是在地面做此实验( )A.小球的速度大小均发生变化B.小球的向心加速度大小均发生变化C.细绳的拉力对小球均不做功D.细绳的拉力大小均发生变化5. (2022·全国乙卷)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A. 它滑过的弧长B. 它下降的高度C. 它到P点的距离D. 它与P点的连线扫过的面积6.(2022·河北邯郸·二模)某小组设计一个离心调速装置如图所示,质量为m的滑块Q可沿竖直轴无摩擦地滑动,并用原长为l的轻弹簧与O点相连,两质量均为m的小球1P和2P对称地安装在轴的两边,1P和2P与O、1P和2P与Q间用四根长度均为l的轻杆通过光滑铰链连接起来。
圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以10m/s速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、10000N B、1000N C、20000N D、2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系A,B两小球,已知B球的质量为2Kg,并做匀速圆周运动,其半径为20cm,线速度为5m/s,则A的重力为A、250NB、C、125ND、4、如图O1 ,O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C 点到轴心的距离为O2半径的1/2则A、VA:VB=2:1B、aA:aB=1:2C、VA:VC=1:2D、aA:aC=2:15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化 B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A 、人和自行车的向心力就是它们受的重力B 、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C 、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D 、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用 7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是 A 、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力 8、在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽 车拐弯时的安全速度是 9、小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A 、 小球的角速度Ra=ω B 、小球运动的周期aRT π2=C 、t 时间内小球通过的路程aR t S =D 、t 时间内小球转过的角度aRt=ϕ 10、某人在一星球上以速度v 0竖直上抛一物体,经t 秒钟后物体落回手中,已知星球半径为R,那么使物体不再落回星球表面,物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的2倍,仍做圆周运动;则A.根据公式V=r ω可知卫星的线速度将增大到原来的2倍B.根据公式r v m F 2=,可知卫星所受的向心力将变为原来的21C.根据公式2r MmGF =,可知地球提供的向心力将减少到原来的41D.根据上述B 和C 给出的公式,可知卫星运动的线速度将减少到原来的2倍 12、我们在推导第一宇宙速度时,需要做一些假设;例如:1卫星做匀速圆周运动;2卫星的运转周期等于地球自转周期;3卫星的轨道半径等于地球半径;4卫星需要的向心力等于它在地面上的地球引力;上面的四种假设正确的是 A 、123 B 、234 C 、134 D 、12413、如图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A 和B,它们分别紧贴漏斗的内 壁.在不同的水平面上做匀速圆周运动,则以下叙述正确的是 A.物块A 的线速度小于物块B 的线速度 B.物块A 的角速度大于物块B 的角速度C.物块A 对漏斗内壁的压力小于物块B 对漏斗内壁的压力D.物块A 的周期大于物块B 的周期14、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆;已知火卫一的周期为7小时39分;火卫二的周期为30小时18分,则两颗卫星相比较,下列说法正确的是:A 、火卫一距火星表面较远;B 、火卫二的角速度较大C 、火卫一的运动速度较大;D 、火卫二的向心加速度较大; 15、如图所示,质量为m 的物体,随水平传送带一起匀速运动,A 为传送带的终端皮带轮,皮带轮半径为r,则要使物体通过终端时能水平抛出,皮带轮每秒钟转动的圈数至少为A 、rg π21 B 、rg C 、gr D 、π2gr16、如图所示,碗质量为M,静止在地面上,质量为m 的滑块滑到圆弧形碗的底端时速率为v,已知碗的半径为R,当滑块滑过碗底时,地面受到碗的压力为:A 、M+mgB 、M+mg +R mv 2C 、Mg +R mv 2D 、Mg +mg -m Rv 217、1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km;若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同;已知地球半径R=6400km,地球表面重力加速度为g;这个小行星表面的重力加速度为 A 、g 400 B 、g 4001 C 、g 20 D 、g 20118、银河系的恒星中大约四分之一是双星;某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动;由天文观察测得其运动周期为T 1,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G;由此可求出S 2的质量为A 、2122)(4GTr r r -π B 、23124GT r π C 、2224GT r π D 、21224GT r r π 19、2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6—30—15;由于黑洞的强大引力,使得太阳绕银河系中心运转;假定银河系中心仅此一个黑洞,且太阳绕银河系中心做的是匀速圆周运动;则下列哪一组数据可估算该黑洞的质量A.、地球绕太阳公转的周期和速度 B 、太阳的质量和运动速度C 、太阳质量和到该黑洞的距离D 、太阳运行速度和到该黑洞的距离20、质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为A 、m ω2RB 、242R g m ω-C 、242R g m ω+D 、不能确定21、已知万有引力恒量G,要计算地球的质量,还必须知道某些数据,现给出下列各组数据,算不出地球质量的有哪组:A 、地球绕太阳运行的周期T 和地球离太阳中心的距离R ;B 、月球绕地球运行的周期T 和月球离地球中心的距离R ;C 、人造卫星在近地表面运行的线速度v 和运动周期T ;D 、地球半径R 和同步卫星离地面的高度;第二卷二、计算题共37分22、如图所示,一质量为m=1kg 的滑块沿着粗糙的圆弧轨道滑行,当经过最高点时速度V=2m/s,已知圆弧半经R=2m,滑块与轨道间的摩擦系数μ=,则滑块经过最高点时的摩擦力大小为多少12分23.一个人用一根长L=1m,只能承受T=46N绳子,拴着一个质量为m=1kg 的小球,已知圆心O离地的距离H=6m,如图所示,速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大 13分24、经天文学观察,太阳在绕银河系中心的圆形轨道上运行,这个轨道半径约为3×104光年约等于×1020m,转动周期约为2亿年约等于×1015s 太阳作圆周运动的向心力是来自于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题;根据以上数据计算太阳轨道内侧这些星体的总质量M 以及太阳作圆周运动的加速度a;G =×10-11Nm 2/kg 212分答案22、12分 解:由 所以 N = mg – m v 2/R =8 N 6分再由 f = μN 得 f = 4 N 6分23、13分 设小球经过最低点的角速度为ω,速度为v 时,绳子刚好被拉断,则T – m g = m ω2L∴ s rad mLmgT /6=-=ω v = ωL = 6 m/s 7分 小球脱离绳子的束缚后,将做平抛运动,其飞行时间为s gL H gh t 1)(22=-==3分 所以,小球的水平射程为 s = v t = 6 m 3分班级_____________ 姓名_________________________ 座号______________24、12分 M =×1041kg a=×10-10m /s 2若算出其中一问得8分 两问都算出的12分高中物理复习六 天体运动一、关于重力加速度1. 地球半径为R 0,地面处重力加速度为g 0,那么在离地面高h 处的重力加速度是A. R h R h g 022020++()B. R R h g 02020()+ C. h R h g 2020()+D.R hR h g 0020()+二、求中心天体的质量2.已知引力常数G 和下列各组数据,能计算出地球质量的是 A .地球绕太阳运行的周期及地球离太阳的距离 B .月球绕地球运行的周期及月球离地球的距离C. 人造地球卫星在地面附近绕行的速度及运行周期 D .若不考虑地球自转,己知地球的半径及重力加速度 三、求中心天体的密度3.中子星是恒星演化过程的一种可能结果,它的密度很大,,现有一中子星,观测到它的自转周期为T,问:该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解;计算时星体可视为均匀球体; 6π/GT 2四、卫星中的超失重求卫星的高度4. m = 9kg 的物体在以a = 5m/s 2 加速上升的火箭中视重为85N, ,则火箭此时离地面的高度是地球半径的_________倍地面物体的重力加速度取10m/s 25.地球同步卫星到地心的距离可由r 3 = a 2b 2c / 4π2求出,已知a 的单位是m, b的单位是s, c 的单位是m/ s2,请确定a、b、c 的意义地球半径地球自转周期重力加速度五、求卫星的运行速度、周期、角速度、加速度等物理量6.两颗人造地球卫星的质量之比为1:2,轨道半径之比为3:1,求其运行的周期之比为;线速度之比为 ,角速度之比为;向心加速度之比为;向心力之比为 ;331/2:1 31/2:3 31/2:9 1:3 1:97.地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的1/2倍,求该行星的第一宇宙速度;221/2v18.同步卫星离地心距离r,运行速率为V1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,线速度为V2,第一宇宙速度为V3,以第一宇宙速度运行的卫星向星加速度为a3,地球半径为R,则a2=r/R >a1>a2V2=R/r D. V3>V1>V2六、双星问题9.两个星球组成双星;设双星间距为L,在相互间万有引力的作用下,绕它们连线上某点O 转动,转动的角速度为ω,不考虑其它星体的影响,则求双星的质量之和;L3ω2/G七、变轨问题年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 ABCA.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 八、追击问题11. 如图,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则A .经过时间 t=T 1+T 2两行星再次相距最近B .经过时间 t=T 1T 2/T 2-T 1,两行星再次相距最近C .经过时间 t=T 1+T 2 /2,两行星相距最远D .经过时间 t=T 1T 2/2T 2-T 1 ,两行星相距最远 课堂练习1.宇宙飞船在半径为R 1的轨道上运行,变轨后的半径为R 2,R 1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的A .线速度变小B .角速度变小C .周期变大D .向心加速度变大2.两个质量均为M 的星体,其连线的垂直平分线为HN,O 为其连线的中点,如图所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. “嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时、v 都将略为减小 、v 都将保持不变将略为减小,v将略为增大 D. r将略为增大,v将略为减小4. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”;假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2;火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G;仅利用以上数据,可算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力5.设地球半径为R,在离地面H 高度处与离地面h 高度处的重力加速度之比为A. H 2/h 2 / h C.R+ h/R+ H D. R+ h2/R+ H26.如图所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A、B、C某时刻在同一条直线上,则A.卫星C的速度最小 B.卫星C受到的向心力最小C.卫星B的周期比C小 D.卫星A的加速度最大7. 气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的;我国先后自行成功研制和发射了“风云Ⅰ号”和“风云Ⅱ号”两颗气象卫星,“风云Ⅰ号”卫星轨道与赤道平面垂直并且通过两极,称为“极地圆轨道”,每12h巡视地球一周;“风云Ⅱ号”气象卫星轨道平面在赤道平面内,称为“地球同步轨道”,每24h巡视地球一周,则“风云Ⅰ号”卫星比“风云Ⅱ号”卫星A.发射速度小 B.线速度大 C.覆盖地面区域大 D.向心加A B速度小8. 我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,引力常量为G,下列说法中正确的是A.图中航天飞机正加速飞向B处B.根据题中条件可以算出月球质量C.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速D.根据题中条件可以算出空间站受到月球引力的大小9. 物体在一行星表面自由落下,第1s内下落了,若该行星的半径为地球半径的一半,那么它的质量是地球的倍. 110.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为R的均匀球体. 不计火星大气阻力,则一物体在火星表面自由下落H高度时的速度为_____________. 8π2r3H/T2R21/211.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球的角速度应为原来的倍g+a/a1/212.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考虑探测器总质量的变化.求:(1)探测器在行星表面上升达到的最大高度 H;(2)该行星表面附近的重力加速度g;3发动机正常工作时的推力F. 1800m24m/s2317000N。
圆周运动测试题及答案一、选择题1. 一个物体做匀速圆周运动,下列哪些物理量是保持不变的?()A. 线速度B. 角速度C. 向心加速度D. 周期答案:B2. 一个物体在水平面上做匀速圆周运动,向心力的方向指向()A. 圆心B. 圆外C. 切线方向D. 法线方向答案:A3. 以下哪个公式与匀速圆周运动的向心力无关?()A. F = mv^2/rB. F = mω^2rC. F = maD. F = 2mv答案:D二、填空题4. 一个物体做匀速圆周运动时,其向心加速度的大小为________,其中v是线速度,r是半径。
答案:v^2/r5. 如果一个物体的角速度增加,而半径保持不变,那么其线速度会________。
答案:增加三、计算题6. 一个物体在水平面上以2米/秒的速度做匀速圆周运动,半径为5米。
求物体的向心加速度大小。
答案:向心加速度 a = v^2/r = (2 m/s)^2 / 5 m = 0.8 m/s^27. 一个物体绕垂直轴旋转,其角速度为10 rad/s,半径为0.5米。
求物体的线速度。
答案:线速度v = ωr = 10 rad/s * 0.5 m = 5 m/s四、简答题8. 描述一下匀速圆周运动的特点。
答案:匀速圆周运动的特点是物体在圆周轨迹上运动,速度大小保持不变,但方向始终指向圆心,因此存在向心加速度。
向心加速度的方向始终指向圆心,大小与物体的速度、半径成反比。
9. 解释为什么在匀速圆周运动中,物体的速度方向时刻改变。
答案:在匀速圆周运动中,虽然速度的大小保持不变,但由于物体在圆周轨迹上运动,其运动方向不断改变,始终沿着圆的切线方向。
因此,速度的方向时刻在变化,即使大小不变,速度矢量也在变化。
五、实验题10. 设计一个实验来验证匀速圆周运动的向心力公式 F = mv^2/r。
答案:实验设计应包括以下步骤:a. 准备一个可旋转的圆盘和一个可变质量的物体。
b. 将物体固定在细绳的一端,细绳的另一端固定在圆盘的中心。
匀速圆周运动典型练习题1篇一:1+匀速圆周运动练习题_含1匀速圆周运动的练习题一、选择题1.关于角速度和线速度,下列说法正确的是A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成正比D.角速度一定,线速度与半径成反比2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是[]A.它们线速度相等,角速度一定相等B.它们角速度相等,线速度一定也相等C.它们周期相等,角速度一定也相等D.它们周期相等,线速度一定也相等4.关于物体做匀速圆周运动的正确说法是[]A.速度大小和方向都改变B.速度的大小和方向都不变C.速度的大小改变,方向不变D.速度的大小不变,方向改变5.物体做匀速圆周运动的条件是[]A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用6.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为[]A.1:4B.2:3C.4:9D.9:167.如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是[]A.受重力、拉力、向心力B.受重力、拉力9.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是二、填空题12、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的______倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的______倍。
13、一物体在水平面内沿半径R=20cm的圆形轨道做匀速圆周运动,线速度V=0.2m/s,那么,它的向心加速度为______m/S,它的角速度为_______rad/s,它的周期为______s。
高中物理【圆周运动】章末综合测试题(时间:90分钟)一、选择题(本题共10小题。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求)1.如图所示事例利用了离心现象的是()解析:自行车赛道倾斜,应用了地面对自行车的力与自行车和人的重力的合力提,所以速度越快所需的供向心力,防止产生离心运动,故A错误;因为F n=m v2r向心力就越大,汽车转弯时要限制速度,来减小汽车所需的向心力,防止产生(发生)离心运动,故B错误;汽车上坡前加速,与离心运动无关,故C错误;拖把利用旋转脱水,利用了离心运动,故D正确。
答案:D2.2022年2月5日,短道速滑混合接力队夺得中国在本次冬奥会的首枚金牌。
如图所示,若将某运动员在弯道转弯的过程看成在水平冰面上的一段匀速圆周运动(不考虑冰刀嵌入冰内部分),已知该运动员质量为m,转弯时冰刀平面与冰面间夹角为θ,冰刀与冰面间的动摩擦因数为μ,弯道半径为R,重力加速度为g,最大静摩擦力等于滑动摩擦力,则该运动员在弯道转弯时不发生侧滑的最大速度为()A.μgR(1+tan θ)B.μgR cos θC.μgR(1+cos θ)D.μgR解析:最大静摩擦力等于滑动摩擦力,运动员在弯道转弯时不发生侧滑的最大速度满足μmg=m v2R,则v=μgR,故D正确。
答案:D3.如图所示,竖直薄壁圆筒内壁光滑、半径为R,上部侧面A处开有小口,在小口A的正下方h处亦开有与A大小相同的小口B,小球从小口A沿切线方向水平射入筒内,使小球紧贴筒内壁运动,要使小球从B口处飞出,小球进入A口的最小速率v0为()A.πR g2h B.πR2ghC.πR 2hg D.πRgh解析:小球在竖直方向做自由落体运动,所以小球在筒内的运动时间为t=2h g ,在水平方向,以圆周运动的规律来研究,得到t=n2πR v(n=1,2,3,…),所以v0=2nπRt =2nπR gh(n=1,2,3,…),当n=1时,v0取最小值,所以最小速率v0为πR 2gh,故选B。
《竖直平面内的圆周运动》一、计算题1.如图所示,小球A质量为m,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动,已知重力加速度为g.(1)若小球经过最低点时速度为√6gL,求此时杆对球的作用力大小;(2)若小球经过最高点时,杆对球的作用力大小等于0.5mg,求小球经过最高点时的速度大小。
2.一质量为0.5kg的小球,用长为0.4m细绳拴住,在竖直平面内做圆周运动(g取10m/s2)。
求(1)若过最低点时的速度为6m/s,此时绳的拉力大小F1?(2)若过最高点时的速度为4m/s,此时绳的拉力大小F2?(3)若过最高点时绳的拉力刚好为零,此时小球速度大小?3.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球。
现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C点位于O点正下方,且到O点的距离为1.9L。
不计空气阻力。
(1)求小球通过最高点A时的速度v A的大小;(2)若小球通过最低点B时,细线对小球的拉力F T恰好为小球重力的6倍,且小球经过B点的瞬间细线断裂,求小球的落地点到C点的距离。
4.一细杆与水桶相连,水桶中装有水,水桶与细杆一起在竖直平面内做圆周运动,如图所示,水的质量m=0.5kg,水的重心到转轴的距离l=50cm.(取g=10m/s2,不计空气阻力)(1)若在最高点水不流出来,求桶的最小速率;(2)若在最高点水桶的速率v=3m/s,求水对桶底的压力.5.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离d后落地,如图所示.已知握绳的手离地面高度为d,手与球之间d,重力加速度为g.忽略手的运动半径和空气阻力.求:的绳长为34(1)绳断时小球速度的大小;(2)绳断前瞬间绳对小球拉力的大小;(3)小球落地时速度的大小;(4)改变绳长,使球重复上述运动.若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?6.如图所示,沿半径为R的半球型碗的光滑内表面,质量为m的小球正在虚线所示的水平面内作匀速圆周运动,小球离碗底的高度ℎ=R,试求(结果可用根号表示):2(1)此时小球对碗壁的压力大小;(2)小球做匀速圆周运动的线速度大小.(3)小球做匀速圆周运动的周期大小.7.长L=0.5m的轻杆,其一端连接着一个零件A,A的质量m=2kg.现让A在竖直平面内绕O点做匀速圆周运动,如图所示.在A通过最高点时,求下列两种情况下:(1)A的速率为多大时,对轻杆无作用力;(2)当A的速率为4m/s时,A对轻杆的作用力大小和方向.(g=10m/s2)8.如图所示,长L的轻杆两端分别固定有质量均为m的A、B两小铁球,杆的三等分点O处有光滑的水平固定转轴,使轻杆可绕转轴在竖直面内无摩擦转动.用手将该装置固定在杆恰好水平的位置,然后由静止释放.重力加速度为g.求(结论可以用根号表示):(1)当杆到达竖直位置时,小球A、B的速度v A、v B各多大?(2)从释放轻杆到轻杆竖直时,该过程轻杆对小球A做的功.9.用一根长为l的轻质不可伸长的细绳把一个质量为m的小球悬挂在点O,将小球拉至与悬点等高处由静止释放,如图所示.求:(1)小球经过最低点时,速度大小及细绳的拉力大小.(2)小球经过最低点左边与竖直方向成60°角位置时,速度大小.10.如图所示,一个圆锥摆,摆线长为1米,小球质量为0.5kg,当小球水平方向做匀速圆周运动时,摆线恰与竖直方向成θ=37°角,g=10m/s2。
)(222L h L x Lgw -==圆周运动习题1.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求: (1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?2.如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。
3.如图所示,被长L 的轻杆连接的球A 能绕固定点O 在竖直平面内作圆周运动,O 点竖直高度为h ,如杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?RR H S mg F N )(2)2(3)1(-==LgL V A 3)2()1(=4.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h 的取值范围。
5.游乐园“翻滚过山车”的物理原理可以用如图所示的装置演示。
斜槽轨道AB 、EF 与半径R=0.4m 的竖直圆轨道(圆心为O )相连,AB 、EF 分别与圆O 相切于B 、E 点,C 为轨道的最低点,斜轨AB 倾角为370。
质量m=0.1kg 的小球从A 点由静止释放,先后经B 、C 、D 、E 到F 点落入小框。
2021-2022学年 人教版(2019)必修2 第六章 圆周运动 单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每题4分,共8各小题,共计32分)1.如图所示,一圆柱形容器绕其轴线匀速转动,内部有A B 、两个物体,均与容器的接触面始终保持相对静止。
当转速增大后(A B 、与容器接触面间仍相对静止),下列说法正确的是( )A.两物体受到的摩擦力都增大B.两物体受到的摩擦力大小都不变C.物体A 受到的摩擦力增大,物体B 受到的摩擦力大小不变D.物体A 受到的摩擦力大小不变,物体B 受到的摩擦力增大2.如图所示,竖直杆AB 在A B 、两点通过光滑铰链连接两等长轻杆AC 和BC AC ,和BC 与竖直方向的夹角均为θ,轻杆长均为L ,在C 处固定一质量为m 的小球,重力加速度为g ,在装置绕竖直杆AB 转动的角速度ω从0开始逐渐增大的过程中,下列说法正确的是( )A.当0ω=时,AC 杆和BC 杆对球的作用力都表现为拉力B.AC 杆对球的作用力先增大后减小C.一定时间后,AC 杆与BC 杆上的力的大小之差恒定D.当ω=BC 杆对球的作用力为0 3.如图甲所示的“太极球”是一种较流行的健身器材。
现将太极球拍和球简化成如图乙所示的平板和球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A B C D 、、、四个位置时球与板间无相对运动趋势。
A 为圆周的最高点,C 为最低点,B D 、与圆心O 等高。
设球的质量为m ,重力加速度为g ,不计球拍的质量和球与球拍间的摩擦。
下列说法正确的是( )A.球运动到最高点A 时的最小速度为零B.球在C 处对板的作用力比在A 处对板的作用力大2mgC.增大球的运动速度,当球运动到B 点时,板与水平面的夹角θ变小D.球运动到B 点,45θ=时,板对球的作用力大小2F mg =4.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R 。
圆周运动计算题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
1.一个3kg 的物体在半径为2m 的圆周上以4m/s 的速度运动,向心加速度是多大所需向心力是多大
2.一辆质量为4 t 的汽车驶过半径为50 m 的凸形桥面时,始终保持5 m/s 的速率.汽
车所受的阻力为车与桥面压力的倍.通过桥的最高点时汽车牵引力是多少(g=10 m/s 2)
3.(10分)如图所示,已知绳长L 1,水平杆长L 2,小球的质量
m ,整个装置可绕竖直轴转动,当该装置从静止开始转动,最后以某一角速度稳定转动时,绳子与竖直方向成角θ。
(1)试求该装置转动的角速度;
(2)此时绳的张力;
5.一质量为2000 kg 的汽车,行驶到一座半径为40m 的圆弧
形拱桥顶端时,汽车运动速度为8m/s 。
求此时汽车对桥面的
压力的大小(g=10m/s 2)。
6.绳子系着装有水的小水桶,在竖直平面内做圆周运动,水的质量m =Kg ,绳长1m ,若不考虑桶的尺寸,求:
①桶通过最高点时至少要有多大的速度水才不会流出
②若水在最高点速度为V =5m/s ,水对桶的压力是多少(g =10m/s 2)
7.如图所示,长为L 的绳子下端连着质量为m 的小球,上端悬于天花板上,把绳子拉直,绳子与竖直线夹角为60°,此时小球静止于光滑的水平桌
面上。
问:
(1)当球以L
g =
ω作圆锥摆运动时,绳子张力T 为多大桌面受到压力N (2)当球以L
4g =
ω作圆锥摆运动时,绳子张力及桌面受到压力各为多大
8.一质点做半径为60cm的匀速圆周运动,它在内转过了300角,则该质点的线速度、角速度和转速是多大
9.(6分)在以角速度ω=2 rad/s绕竖直转轴匀速转动的水平圆盘上有一质量m=5 kg 的滑块,滑块离转轴的距离r= m,滑块跟随圆盘做匀速圆周运动(二者未发生相对滑动).求:
(1) 滑块运动的线速度大小;
(2) 滑块受到静摩擦力的大小和方向.
10.汽车质量为m,汽车与地面间的最大静摩擦力为车对地面压力的k倍,欲使汽车转弯时不打滑:
(1)如果弯道是一水平的半径为R的圆弧,汽车在弯道处行驶的最大速度为多少(2)如果弯道是一倾角为θ、半径为R的圆弧,最理想(即汽车不受摩擦力)的速度为多少
11.汽车质量为m,汽车与地面间的最大静摩擦力为车对地面压力的k倍,欲使汽车转弯时不打滑,如果弯道是一倾角为θ、半径为R的圆弧。
(1)最理想(即汽车不受摩擦力)的速度为多少
(2)汽车在弯道处行驶的最大速度为多少
12.(10分)如图所示,是马戏团中上演的飞车节目,在竖直平面内有半径为R的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m,人以v
1
=2gR的速度过轨道最高点B,并以v
2=3v
1
的速度过最低点A.
求在A、B两点轨道对摩托车的压力大小相差多少
13.(9分)如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内转动,已知球A运动到最高点时,球A对杆恰好无作用力。
求:
(1)球A在最高点时的角速度大小;
(2)球A在最高点时,杆对水平轴的作用力的大小和方向。
14.一个人用一根长L=1m,只能承受T=46N拉力的绳子,拴着一个质量为m=1kg的小球,在竖直面内做圆周运动,已知转轴O离地的距离H=6m,如图所示,此人必须用多大的角速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大
15.绳系着装有水的小木桶,在竖直平面内做圆周运动,水的质量m=,绳长L=40cm,求:
①桶在最高点而使水不流出的最小速度的大小.②若水在最高点速度s
3
=时,水对
v/
m
桶底的压力。
16.如图所示,在水平转盘上有一小木块,随转盘一起转动(木块与转盘间无相对滑动),木块到转轴的距离r=,圆盘转动的周期T=π(s)。
求:
(1)木块的线速度大小;
(2)木块的向心加速度大小。
17.长为,质量可忽略的杆,其下端固定于O 点,上端连有质量m=2kg 的小球,它绕O 点做圆周运动,当通过最高点时,如图所示,求下列情况下,杆受到
的力(说明是拉力还是压力):
(1)当v 1=1m/s 时;
(2)v 2=4m/s 时。
(g 取10m/s 2)
18.如图13所示,半径为R 的半圆槽木块固定在水平地面上,质量为m 的小球以某速度从A 点无摩擦地滚上半圆槽,小球通过最高点B 后落到水平
地面上的C 点,已知AC=AB=2R 。
求:
(1)小球在B 点时的速度大小为多少
(2)小球刚达A 点时对半圆槽木块的压力为多少
19.长为L 的细线,拴一质量为m 的小球,一端固定于O 点.让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图.求摆线L 与竖直方向的
夹角为α时:
(1)线的拉力F ;
(2)小球运动的线速度的大小;
(3)小球运动的角速度及周期.
21.轻杆长m L 5.1=,以一端为圆心,在竖直面内做圆周运动,杆另一端固定一个质量Kg m 2.1=的小球,小球通过最高点时速率s m v /0.3=,已知重力加速度为2/10s m g =。
求此时小球对杆的作用力大小及方向。
23.如图所示,长度为m
=的绳,拴着一质量kg
L0.1
=的小球在竖直面内做圆周运
m1
动,小球半径不计,已知绳子能够承受的最大张力为19N,圆心离地面高度m
=,
H6
运动过程中绳子始终处于绷紧状态求:
(1)分析绳子在何处最易断,求出绳子断时小球的线速度;????
(2)绳子断后小球落地点与抛出点的水平距离多大落地时速度多
大
24.(12分)如图所示,水平转台上有一个质量m=5kg的小物体,一根劲度系数k=103N/m、原长为8cm的弹簧一端连接转台中心的转轴,另一端连接此物体。
当整个装置处于静止时,弹簧的长度为10cm。
如果小物体与转台之间的摩擦足够
大,讨论:
(1)要使小物体与转台之间不存在摩擦力,则转台转动的角速度应为
多大
(2)要使小物体与转台之间的摩擦力大小为5N,则转台转动的角速度
又应为多大
25.(10分)如图所示,让质量为m=的摆球从图中A位置(OA与竖直方向成60°)由静止开始下摆,正好摆到最低点B位置时线刚好被拉断,之后落到D点,已知C、D两点间的水平距离为,设摆线长L= m,B点离地高H= m,不计断绳时
机械能损失,不计空气阻力,g=10 m/s2,求:
(1) 小球运动到B点时速度大小
(2) 摆线的最大拉力为多大。