典型相关分析报告SPSS例析

  • 格式:pdf
  • 大小:1.60 MB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型相关分析

典型相关分析(Canonical

correlation

)又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,

而不是

两个变量组个别变量之间的相关。

典型相关与主成分相关有类似,

不过主成分考虑的是一组变量,而典型相关考虑的是两

组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的

成分使之与另一组的成分具有最大的线性关系。

典型相关模型的基本假设:

两组变量间是线性关系,

每对典型变量之间是线性关系,每

个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共

线性。典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因

变量。

典型相关会找出一组变量的线性组合

*

*=

i i j j X a x Y b y 与,称为典型变量;以

使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。

i a 和j

b 称为典型系数。如果对变量进行标准化后再进行上述操作,得到的是标准化的典型系数。

典型变量的性质

每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;

原来所有

变量的总方差通过典型变量而成为几个相互独立的维度。一个典型相关系数只是两个典型变

量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,

共同代表

两组变量间的整体相关。

典型负荷系数和交叉负荷系数典型负荷系数也称结构相关系数,

指的是一个典型变量与本组所有变量的简单相关系数,

交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。

重叠指数

如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。将重叠应用到典型相关时,只要

CR),就得到这对典型变量方差的共同比例,代表一个典型

简单地将典型相关系数平方(2

变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组

变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的

比例,即为重叠系数。

例1:CRM(Customer Relationship Management)即客户关系管理案例,有三组

变量,分别是公司规模变量两个(资本额,销售额),六个CRM实施程度变量(WEB网站,电子邮件,客服中心,DM快讯广告Direct mail缩写,无线上网,简讯服务),三个CRM绩效维度(行销绩效,销售绩效,服务绩效)。试对三组变量做典型相关分析。

数据的格式如上所示,以下对三组变量两两做典型相关分析。

首先对公司规模和CRM实施程度做典型相关分析

SPSS并未提供典型相关分析的交互窗口,只能直接在synatx editor 窗口中呼叫SPSS的CANCORR程序来执行分析。并且cancorr不能读取中文名称,需将变量改为英文名称。

打开文件后

File- new --synatx editor打开语法窗口

输入语句

INCLUDE 'D:\spss19\Samples\English\Canonical correlation.sps'. CANCORR Set1=Capital Sales

/Set2=Web Mail Call DM Mobile ShortM.

小写字母也行,但是变量名字必须严格一致

include 'D:\spss19\Samples\English\Canonical correlation.sps'. cancorr set1=Capital Sales

/set2=Web Mail Call DM Mobile ShortM.

注意第三行的“/”不能为“”

run all得到典型相关分析结果

第一组变量间的简单相关系数

第一对典型变量的典型相关系数为CR1=0.434,第二对典型变量的典型相关系数为

CR2=0.298.

此为检验相关系数是否显著的检验,原假设:相关系数为0.

每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。

第一行看出,第一对典型变量的典型相关系数是不为0的,相关性显著。第二行sig值P=0.263>0.05,在5%显著性水平下不显著。

第一个典型变量的标准化典型系数为-0.287和-0.774.

CV1-1=--0.287capital--0.774sales, CV1-2=--1.4capital+1.2sales

CV2-1=--0.341web+0.117mail+0.027call—0.091DM—0.767mobile—0.174shortm CV2-2=--0.433web—0.168mail—1.075call+0.490DM+0.139mobile+0.812shortm

典型负荷系数和交叉负荷系数表

重叠系数分析Redundancy index

CR*0.833=0.434^2*0.833 0.157=21

CR=0.434^2*0.425 0.08=21*0.425