苏州大学高等数学下期末考试题库
- 格式:pdf
- 大小:3.36 MB
- 文档页数:50
大一下学期高数期末试题及答案一、选择题(每题2分,共10分)1. 极限的定义中,ε的值可以是()。
A. 任意正整数B. 任意正实数C. 固定正整数D. 只有12. 若函数f(x)在点x=a处连续,则以下哪项正确?()A. f(a)为f(x)在x=a处的极限值B. f(a)等于f(x)在x=a处的左极限值C. f(a)等于f(x)在x=a处的右极限值D. 所有上述选项都正确3. 以下级数中,收敛的是()。
A. 1 + 1/2 + 1/3 + 1/4 + ...B. (1 + 1/2) + (1/3 + 1/4) + (1/5 + 1/6) + ...C. 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...D. 1 + 1/√2 + 1/√3 + 1/√4 + ...4. 函数y = x^2的导数为()。
A. 2xB. x^2C. 1/xD. -2x5. 微分方程dy/dx = x^2, y(0) = 0的解为()。
A. y = x^3B. y = -x^3C. y = 1/xD. y = -1/x二、填空题(每题2分,共10分)6. 极限lim(x→0) (sin(x)/x) = _______。
7. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调递增区间为 _______。
8. 定积分∫(0→2) x^2 dx = _______。
9. 曲线y = x^3在点x=1处的切线斜率为 _______。
10. 微分方程d/dx(y^2) = 2xy,y(0) = 0的通解为 y = _______。
三、计算题(每题10分,共30分)11. 求函数f(x) = 2x^3 - 3x^2 - 12x + 5从x=-1到x=3的定积分值。
12. 求函数g(x) = e^(2x)的导数,并计算在区间[0,1]上的定积分值。
13. 求由曲线y = x^2, y = 2x - 1, x = 0所围成的面积。
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
高等数学 A( 下册 ) 期末考试试题大题一二三四五 六七小题12345得分一、填空题:(本题共 5 小题,每小题 4 分,满分 20 分, 把答案直接填在题中横线上 )r rr rrr rrr1、已知向量 a 、 b 满足 a b0 , a2, b2 ,则 a b.2、设 zx ln( xy) ,则3z.x y23、曲面 x 2 y 2z 9 在点 (1, 2, 4) 处的切平面方程为.4、设 f ( x) 是周期为2 的周期函数,它在 [, ) 上的表达式为 f (x) x ,则 f ( x) 的傅里叶级数在 x3 处收敛于,在 x处收敛于.5、设 L 为连接 (1, 0) 与 (0,1) 两点的直线段,则(xy)ds.L※以下各题在答题纸上作答, 答题时必须写出详细的解答过程,并在每张答题纸写上: 姓名、学号、班级.二、解下列各题:5 小题,每小题 7 分,满分 35 分)(本题共 1、求曲线2x 2 3y 2 z 2 91,2)z23x2y2在点 M 0 (1, 处的切线及法平面方程.2、求由曲面 z2x 2 2 y 2 及 z 6 x 2 y 2 所围成的立体体积.3、判定级数( 1)nlnn1 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1n4、设 zf (xy, x) sin y ,其中 f 具有二阶连续偏导数,求z , 2z .yxx y5、计算曲面积分dS ,其中 是球面 x 2y 2z 2 a 2 被平面 zh (0 h a) 截出的顶部.z三、(本题满分 9 分) 抛物面 zx 2 y 2 被平面 x yz 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分 10 分)计算曲线积分( e x siny m dx ( e x cos y mx dy ,L其中 m 为常数, L 为由点 A(a,0) 至原点 O(0,0) 的上半圆周 x 2y 2ax (a 0) .四、(本题满分 10 分)x n 求幂级数的收敛域及和函数.n 13n n五、(本题满分 10 分)计算曲面积分I2x3dydz 2y3dzdx 3(z21)dxdy ,其中为曲面 z 1 x2y 2 ( z0) 的上侧.六、(本题满分 6分)设 f ( x) 为连续函数, f (0) a , F (t )[ z f ( x2y2z2 )]dv ,其中t是由曲面 zx2y2t与 zt2x22所围成的闭区域,求lim F (t)y t 3 .t 0-------------------------------------备注:①考试时间为 2 小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。
高等数学A(下册)期末考试试卷【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅=-4.2、设ln()z x xy =,则32zx y∂=∂∂-1/(y*y ). 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为2x+4y+z-14=0.4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y ⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。
2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n ∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z = 3()lim t F t t +→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
高等数学〔下〕试卷一一、填空题〔每空3分,共15分〕〔1〕函数11z x y x y =++-的定义域为〔2〕函数arctany z x =,那么zx ∂=∂〔3〕交换积分次序,2220(,)y y dy f x y dx⎰⎰=〔4〕L 是连接(0,1),(1,0)两点的直线段,那么()Lx y ds +=⎰〔5〕微分方程230y y y '''+-=,那么其通解为二、选择题〔每空3分,共15分〕 〔1〕设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,那么〔〕 A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交〔2〕设是由方程2222xyz x y z +++=确定,那么在点(1,0,1)-处的dz =〔〕A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - 〔3〕Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为〔〕 A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰〔4〕幂级数,那么其收敛半径〔〕A. 2B. 1C. 12 D.2〔5〕微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=〔〕A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题〔每题8分,共48分〕1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 22(,)z f xy x y =,求z x ∂∂,zy ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰,其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程xxy y xe '+=满足11x y ==的特解四.解答题〔共22分〕1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体外表的外侧(10)'2、〔1〕判别级数111(1)3n n n n ∞--=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔6'〕〔2〕在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数〔6'〕高等数学〔下〕试卷二一.填空题〔每空3分,共15分〕〔1〕函数24x y z -=的定义域为; 〔2〕函数xyz e =,那么在(2,1)处的全微分dz =;〔3〕交换积分次序,ln 1(,)e x dx f x y dy⎰⎰=;〔4〕L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,那么L yds =⎰;〔5〕微分方程20y y y '''-+=,那么其通解为.二.选择题〔每空3分,共15分〕〔1〕设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,那么L 与π的夹角为〔〕;A. 0B. 2πC. 3πD. 4π〔2〕设是由方程333z xyz a -=确定,那么z x ∂=∂〔〕;A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D.2xy z xy - 〔3〕微分方程256x y y y xe '''-+=的特解y *的形式为y *=〔〕;A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++〔4〕Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为〔〕; A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰〔5〕幂级数1212nnn n x ∞=-∑,那么其收敛半径〔〕.A. 2B. 1C. 12 D.2三.计算题〔每题8分,共48分〕5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、(sin cos ,)x yz f x y e +=,求z x ∂∂,zy ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题〔共22分〕1、〔1〕〔6'〕判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔2〕〔4'〕在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学〔下〕模拟试卷三一.填空题〔每空3分,共15分〕1、函数arcsin(3)y x =-的定义域为.2、22(2)lim 332n n n n →∞++-=.3、2ln(1)y x =+,在1x =处的微分dy =. 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题〔每空3分,共15分〕1、2x =是函数22132x y x x -=-+的连续点 〔A 〕可去 〔B 〕跳跃 〔C 〕无穷 〔D 〕振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是。
《高等数学》试卷6(下)一.选择题(3 分10)1.点M1 2,3,1 到点M 2 2, 7,4 的距离M1M 2 ().A.3B.4C.5D.62.向量a i 2 j k,b 2i j ,则有().A. a ∥bB. a ⊥bC. a,bD.3 a, b4x 1 y 5 z 83. 设有直线 1L : 和 2L1 2 1 :x y 62y z 3,则L 与L2 的夹角为()1(A);(B);(C);(D).6 4 3 24.两个向量 a 与b 垂直的充要条件是().A. a b 0B. a b 0C. a b 0D. a b 03 35.函数z x y 3xy的极小值是().A.2B. 2C.1D. 16.设z x s in y ,则zy 1,4=() .A.22B.22C. 2D. 27. 级数n( 1) (1 cos ) ( 0)n n1是()(A)发散;(B)条件收敛;(C)绝对收敛;(D)敛散性与有关.8.幂级数n 1nxn的收敛域为().A. 1,1 B 1,1 C. 1,1 D. 1,19.幂级数nx0 2n在收敛域内的和函数是().1 2 2 1A. B. C. D.1 x2 x 1 x 2 x 二.填空题(4 分5)10.一平面过点 A 0, 0,3 且垂直于直线AB ,其中点 B 2, 1,1 ,则此平面方程为______________________.11.函数z sin xy 的全微分是______________________________.3 y xy3 xy212.设z x 3 1,则2zx y_____________________________.13. 设L 为取正向的圆周: 2 2 1x y ,则曲线积分2? (2 xy 2 y)dx (x 4 x)dy ____________.L14. . 级数n 1n( x 2)n的收敛区间为____________.三.计算题(5 分6)z z1.设z e vu sin ,而u xy, v x y ,求, .x yz z2 y z x z2 22.已知隐函数z z x,y 由方程x 2 4 2 5 0确定,求, .x y2 23.计算sin x y d ,其中D2 42 2 2D : x y .4. .计算1y sin x dy dxyx.试卷6参考答案一.选择题CBCAD ACCBD二.填空题1. 2x y 2z 6 0.2.cos xy ydx xdy .3.6x 9 1 .2 y y 24.n 0n1n 12nx .5. y2 xC C x e1 .2三.计算题z xy z xy1. e y sin x y cos x y , e x sin x y cos x y .x y15.z x2 z x 1 ,z y2 z y 1. 16.2 02d sin d26.17.16 33 R .18.y 3xe 2x .e四.应用题 5.长、宽、高均为m3 2 时,用料最省 .126. yx . 3《高数》试卷 7(下)一.选择题( 3 分 10) 6.点 M 1 4, 3,1,M 2 7,1, 2 的距离 M 1M 2( ) .A.12B.13C.14 D.157.设两平面方程分别为 x 2y 2z 1 0和 x y 5 0 ,则两平面的夹角为().A.B.C.D.64 3 28.点 P 1, 2,1 到平面 x 2y 2z 5 0的距离为().A.3B.4C.5D.6 9.若几何级数nar 是收敛的,则().n 0A. r 1B. r 1C. r 1D. r 12.幂级数n n1x 的收敛域为().n 0A.1,1B.1,1C.1,1D.1,13.级数sinna4n n1是( ).A. 条件收敛B.绝对收敛C.发散D.不能确定19. .考虑二元函数 f (x, y) 的下列四条性质:(1) f (x, y) 在点(x , y ) 连续;(2)f x( x, y), f y (x, y) 在点(x0 ,y0 ) 连续0 0(3) f (x, y) 在点(x , y ) 可微分;(4)f x (x0, y0), f y (x0 , y0 ) 存在.0 0若用“P Q ”表示有性质P 推出性质Q,则有()(A)(2) (3) (1);(B)(3) (2) (1)(C)(3) (4) (1);(D)(3) (1) (4)二.填空题(4 分5)7. 级数n 1n(x 3)n的收敛区间为____________.8.函数xyz e 的全微分为___________________________.9.曲面 2 4 2z 2x y 在点2,1, 4处的切平面方程为_____________________________________.10. 1 12x的麦克劳林级数是______________________.三.计算题(5 分6)10.设a i 2j k,b 2j3k ,求a b.11.设z z 2z u ,而u x cos y,v x sin y ,求, .2v uvx yz z3 xyz12.已知隐函数z z x,y 由x 3 2确定,求, .x y13. 设是锥面 2 2 (0 1)z x y z 下侧,计算xdy d z 2 ydzdx 3(z 1)dxd y 四.应用题(10 分2)试用二重积分计算由y x,y 2 x 和x 4 所围图形的面积.试卷7参考答案一.选择题CBABA CCDBA.二.填空题20.x 2 y 2 z 1121. xy. 2.eydx xdy11.8x 8y z 4 .12.1n 0nx .2n13.3y x .三.计算题 14.8i3j 2k .z2z 3 3 3 315.3x sin ycos y cosy sin y , 2x sin ycos y sin y cos y x sin y cos y .xy16.z xxy yz 2 , zz y xy xz 2 z. 17.32 3 2 a.32318.2 xxC ey C e21.四.应用题4. 16 3.125.0 0xgt v t x .2《高等数学》试卷 3(下)一、选择题(本题共 10 小题,每题 3 分,共 30 分) 1、二阶行列式 2-3 的值为( )45 A 、10B 、20C 、24D 、222、设 a=i+2j-k,b=2j+3k ,则 a 与 b 的向量积为()A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P(-1、-2、1)到平面x+2y-2z-5=0 的距离为()A 、2 B、3 C、4 D、54、函数z=xsiny 在点(1,)处的两个偏导数分别为()42 A 、,222,2B、,222C、2222D、2222,5、设x2+y2+z2=2Rx,则2+y2+z2=2Rx,则zxz, 分别为()yA 、x Rzy x, B、zzR y, C、zx R y, D、z zxzR,yz6、设圆心在原点,半径为R,面密度为 2 y2x 的薄板的质量为()(面积A=2 R )1A 、R2A B、2R2A C、3R2A D、R A22nx n7、级数( 1)的收敛半径为()n n 1A 、2 B、12C、1D、38、cosx 的麦克劳林级数为()A 、( 1)n 0 n(2nx2n)!B、( 1)n 1n2nx(2n)!C、n 0( 1) n2nx(2n)!D、n 0( 1)n(2nx2n11)!9、微分方程(y``) 4+(y`) 5+y`+2=0 的阶数是()A 、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0 的特征根为()A 、-2,-1 B、2,1 C、-2,1 D、1,-2二、填空题(本题共 5 小题,每题 4 分,共20 分)x 1 y 31、直线L1:x=y=z 与直线L 2:z的夹角为2 1___________。
高等数学A (下册)期末考试试题【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= —4.2、设ln()z x xy =,则32zx y ∂=∂∂ —1/(y *y ) . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 2x+4y+z-14=0 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414 .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。
2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰, 其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z=与z =,求 3()lim t F t t +→. ———--——-———-—-—-——————-—-————--——-—-—备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
大一下学期高数期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=x^2-4x+3,求f(x)的最小值。
A. 0B. -1C. -4D. 12. 已知数列{an}的前n项和为S_n=n^2,求a_5。
A. 10B. 11C. 12D. 133. 极限lim (n→∞) (1 + 1/n)^n 的值是:A. eB. 1C. 2D. 34. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 25. 函数f(x)=sin(x)+cos(x)的周期是:A. πC. π/2D. π/46. 已知f(x)=2x-1,求f'(2)的值。
A. 3B. 2C. 1D. 07. 曲线y=x^2与直线y=4x-5的交点坐标是:A. (1,3)B. (2,3)C. (1,1)D. (2,7)8. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 19. 若f(x)在[a,b]上连续,且∫(a到b) f(x) dx = 0,则f(x)在[a,b]上:A. 恒等于0B. 至少有一个零点C. 恒为正D. 恒为负10. 函数y=ln(x)的原函数是:A. x-1C. x^2D. xln(x) - x + C二、填空题(每题2分,共20分)11. 函数f(x)=x^3的导数是________。
12. 微分方程dy/dx + 2y = 4x的解是________。
13. 已知∫(0到1) x dx = 1/2,那么∫(1到2) x dx =________。
14. 函数f(x)=x^2+1的二阶导数是________。
15. 利用导数求函数f(x)=x^3-2x^2+3x-4在x=2时的切线方程是________。
16. 函数y=e^x的泰勒展开式在x=0处的前三项是________。
17. 定积分∫(0到π/2) sin(x) dx的值是________。
大一下学期高数期末试题及答案一、选择题(每题5分,共20分)1. 函数$f(x)=x^2-4x+4$的最小值是()A. 0B. 1C. 4D. 3答案:D2. 极限$\lim_{x \to 0} \frac{\sin x}{x}$的值是()A. 0B. 1C. 2D. $\infty$答案:B3. 曲线$y=x^3$在点$(1,1)$处的切线斜率是()A. 0B. 1C. 3D. 12答案:C4. 微分方程$y''-2y'+y=0$的通解是()A. $y=e^{tx}$B. $y=e^{t}(C_1 \cos t + C_2 \sin t)$C. $y=e^{tx}(C_1 + C_2x)$D. $y=(C_1 + C_2x)e^{tx}$答案:B二、填空题(每题5分,共20分)5. 函数$f(x)=\ln(x)$的定义域是______。
答案:$(0,+\infty)$6. 函数$f(x)=x^3-3x$的导数是______。
答案:$3x^2-3$7. 函数$f(x)=\frac{1}{x}$的不定积分是______。
答案:$\ln|x|+C$8. 函数$f(x)=\sin x$的原函数是______。
答案:$-\cos x+C$三、计算题(每题10分,共30分)9. 计算定积分$\int_{0}^{1} x^2 dx$。
答案:$\frac{1}{3}x^3|_0^1 = \frac{1}{3}$ 10. 求极限$\lim_{x \to 0} \frac{e^x - 1}{x}$。
答案:$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$11. 求函数$f(x)=x^3-6x^2+11x-6$的极值。
答案:函数的极值点为$x=1$和$x=3$,其中$x=1$为极大值点,$x=3$为极小值点。
四、证明题(每题10分,共30分)12. 证明:$\lim_{x \to 0} \frac{\sin x}{x} = 1$。
高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。
大一下学期高数期末试题及答案一、选择题(每题5分,共20分)1. 函数$f(x)=x^2-4x+4$的最小值是()A. 0B. 1C. 4D. 3答案:D2. 极限$\lim_{x \to 0} \frac{\sin x}{x}$的值是()A. 0B. 1C. 2D. $\infty$答案:B3. 曲线$y=x^3$在点$(1,1)$处的切线斜率是()A. 0B. 1C. 3D. 12答案:C4. 微分方程$y''-2y'+y=0$的通解是()A. $y=e^{tx}$B. $y=e^{t}(C_1 \cos t + C_2 \sin t)$C. $y=e^{tx}(C_1 + C_2x)$D. $y=(C_1 + C_2x)e^{tx}$答案:B二、填空题(每题5分,共20分)5. 函数$f(x)=\ln(x)$的定义域是______。
答案:$(0,+\infty)$6. 函数$f(x)=x^3-3x$的导数是______。
答案:$3x^2-3$7. 函数$f(x)=\frac{1}{x}$的不定积分是______。
答案:$\ln|x|+C$8. 函数$f(x)=\sin x$的原函数是______。
答案:$-\cos x+C$三、计算题(每题10分,共30分)9. 计算定积分$\int_{0}^{1} x^2 dx$。
答案:$\frac{1}{3}x^3|_0^1 = \frac{1}{3}$ 10. 求极限$\lim_{x \to 0} \frac{e^x - 1}{x}$。
答案:$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$11. 求函数$f(x)=x^3-6x^2+11x-6$的极值。
答案:函数的极值点为$x=1$和$x=3$,其中$x=1$为极大值点,$x=3$为极小值点。
四、证明题(每题10分,共30分)12. 证明:$\lim_{x \to 0} \frac{\sin x}{x} = 1$。
高等数学(下)试卷-、填空题(每空3分,共15分)1 1z 二-(1) ___________________________________________________________ 函数 .x yX - y的定义域为 _____________________________________________________z = arcta n 》—=(2) 已知函数x ,贝y 汉 _____________________22y、 [dW 2 f (x, y )dx (3 )交换积分次序, '0 ' y = ___________________(4) 已知L 是连接(0,1)>(1,0)两点的直线段,则L(x y)ds 二 __________(5) __________________________________________________________________ 已知微分方程 y : 2y • -3y = 0,则其通解为 ____________________________________二、选择题(每空3分,共15分)zSz(1)A. x 3y 2z 1 = 0设直线 L 为 2x-y "Oz ,3",平面二为4x-2y • z -2=0L 平行于二 (2) ( 设 ) A . dxdy C. L 垂直于兀是由方程xyz• x yz =、2确定,则在点B. L 在二上B dx + 72dyC^dx + ddy,则( )D. L 与二斜交(1,0^1)处的 dz二(3)已知l ■■是由曲面4z^25(x 2 y 2)及平面 在柱面坐标系下化成三次积分为()2二 2 3 5 [d 。
[ r dr 「dzA $0 』0 』0z = 5所围成的闭区域,将 D.dx-V2dy2 2(x y )dvQB. 2二4 35d 「0r dr .0dz… 2 3r drJ 0』0C.5 5 dz r2D.2 25d 「°rdr _dz(4)已知幕级数 -,则其收敛半径A. 2B. 1(5)微分方程y ;3y ' 2y =3x -2e x 的特解 C. 2y”的形式为y=D.B (ax+b)xe x(ax b) ce xA.D (ax +b) +cxe x三、计算题(每题8分,共48分) x -1 y _2 z _3 x 2 求过直线L 1:10 Ty-1 C.1、 且平行于直线L2:2z11的平面方程\ I x 2dxdyD2、已知z = f(xy2,x2y),求,::y2 23、设D二{(x,y)x y M},利用极坐标求4、求函数f(x,y)二e2x(x y2 2y)的极值"x = t —si nt5、计算曲线积分L (2xy 3sinX*彼-e)dy其中L为摆线yd cost从点0(°, 0)到A(二,2)的一段弧6、求微分方程xy * y = xe x满足yT的特解四•解答题(共22分)2xzdydz+ yzdzdx—z dxdy1、利用高斯公式计算住n J3的敛散性,若收敛,判别是绝对收敛还是条件收敛;O0n瓦nx(2)在X,(-11)求幕级数n4高等数学(下)试卷二- •填空题(每空3分,共15分)J4x_y2z = 2 ~(1) ______________________________________________ 函数In(1 - x -y )的定义域为_____________________________________________________________ ;(2) 已知函数z二e xy,则在(Z 1)处的全微分dz=___________________ ;e In x亠 1 dx「f (x, y)dy(3 )交换积分次序,'1 0= __________________ ;2(4 )已知L是抛物线y = X上点0( 0 , 0与点B( 1 , 1之间的一段弧,则L : yds =-------------------- ?(5)已知微分方程y “ - 2y ' y = 0,则其通解为_____________________________ .二•选择题(每空3分,共15分)x y 3z = 0(1)设直线L为x-y-z^O ,平面二为x-y-zJ",则L与二的夹角为( );兀兀兀A. 0B. 2C. 3D. 43 小是由方程z_3xyz_a:z(2 ) 严X 1 3确定,则汶(设);yz yz xz xy2 2 2 2其中V由圆锥面z - X2y2与上半球面z二〔2 -x? - /所围成的立体表面的外侧(10 ) □0■- ( _1)2、( 1)判别级数心(&)的和函数(6)A. xy _ zB. z_xy C. xy-zD.z—xy(3)微分方程y -5/ 6^xe2x的特解y的形式为y ();2、°°ITn 」 n,"2sin 飞1、( 1) ( 6 )判别级数n生 3的敛散性,若收敛,判别是绝对收敛还是条件收敛;inz —(2) ( 4 )在区间(一1,1)内求幕级数n^ n的和函数.ii2xdydz ydzdx zdxdy(12 )利用高斯公式计算二 ,'为抛物面z = X 2 • y 2 ( 8 z 乞的下侧A. (ax +b)e 2xB. (ax +b)xe 2xC. (ax +b) +ce 2x (4)已知丨■■是由球面 三次积分为(2-a 2dr 2sin d r drA 02:-;[d T 『d ®『rdr2 2 2 2xy z =a 所围成的闭区域,将 );D. (ax + b) + cxe 2x...dvQ在球面坐标系下化成B.2adr 2d 「 rdrD.a2r dr(5)已知幕级数Q0Zn 42n 1x n2n,则其收敛半径 B. 1二(C. 2D. 2(每题8分,共 48 分)6、7、 且与两平面二1 :x 2z =1 和.z■:y:z已知 z 二 f(sin xc°sy,e x y),求::x , 设 D 二{(x, y) X 2 y 2乞 1,0 乞 y 乞 X}, 8、求函数f (x, y)二 L 为沿上半圆周y6、求微分方程四.解答题(共22分)二2: y-3z =2平行的直线方程. y11arctan dxdy 利用极坐标计算 Dx.2 2 X5y-6x 10y 6的极值.c 知叭夂栽八于斗瞥 I (e x siny —2y)dx + (e x c°sy — 2)dy 其中9、利用格林公式计算 L ,其中2 2 2 (x-a) y =a,y _0、从 A(2a,0)到。
高等数学(下)期末试题(2)二、填空题(每题3分,总计15分)。
1、函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =______。
2、若曲面2222321x y z ++=的切平面平行于平面46250x y z -++=,则切点坐标为______________________。
3、二重积分3110x ydyye dx -蝌的值为______________。
5、微分方程2yy x y ¢=+的通解为_____________________。
三、计算题(每题7分,总计35分)。
2、设(,)z f x y xy =-具有连续的二阶偏导数,求2z x y¶抖。
3、将函数23()2f x x x=--展开成x 的幂级数,并指出收敛域。
4、设)(x y y 满足方程322x y y y e ⅱ?-+=,且其图形在点)1,0(与曲线21y x x =-+相切,求函数)(x y 。
5、计算222Ldsx y z++ò,其中L 是螺旋线8cos ,8sin ,x t y t z t ===对应02t p#的弧段。
四、计算题(每题7分,总计35分)。
1、设0a >,计算极限23123lim ()n n na a a a??++++的值。
2、计算z dv W蝌?,其中W 由不等式z ?22214x y z ?+?所确定。
4、将函数()(11)f x x x =-#展开成以2为周期的傅立叶级数。
5、设函数)(x f 具有连续导数并且满足(1)3f =,计算曲线积分22(())(())Ly f x x dx x f x y dy +++ò的值,假定此积分在右半平面内与路径无关,曲线L 是由)2,1(到)1,2(的任一条逐段光滑曲线。
五、本题5分。
对0p >,讨论级数11(1)nn n n p¥+=-å的敛散性。
《高等数学》试卷1(下)一。
选择题(3分10)1。
点到点的距离( ).A.3 B。
4 C。
5 D.62.向量,则有().A。
∥B。
⊥ C. D。
3.函数的定义域是( ).A. B.C。
D4。
两个向量与垂直的充要条件是( ).A. B. C. D.5.函数的极小值是( ).A。
2 B。
C。
1 D。
6。
设,则=()。
A. B. C. D。
7.若级数收敛,则()。
A. B。
C。
D.8。
幂级数的收敛域为().A. B C。
D。
9。
幂级数在收敛域内的和函数是( ).A. B。
C。
D。
10。
微分方程的通解为().A. B. C。
D。
二.填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________.2。
函数的全微分是______________________________.3.设,则_____________________________。
4.的麦克劳林级数是___________________________.5。
微分方程的通解为_________________________________.三。
计算题(5分6)1.设,而,求2。
已知隐函数由方程确定,求3.计算,其中.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。
5.求微分方程在条件下的特解。
四.应用题(10分2)1.要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2。
曲线上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点,求此曲线方程.《高数》试卷2(下)一。
选择题(3分10)1.点,的距离( )。
A. B. C. D.2.设两平面方程分别为和,则两平面的夹角为().A。
B。
C. D。
3。
函数的定义域为()。
A. B.C。
D.4。
点到平面的距离为( )。
A。
3 B.4 C。
5 D.65.函数的极大值为()。
A.0B.1C.D.6。