控制图案例研究
- 格式:ppt
- 大小:114.50 KB
- 文档页数:7
QC七大手法案例在质量控制领域,存在着七大经典的质量控制手法。
下面将针对这七大手法进行案例分析。
1.石间贴缝剂的控制图案例:建筑工地使用了一种石间贴缝剂,但是出现了频繁的开裂现象。
为了解决这个问题,质量控制团队决定采用控制图的方法进行分析。
首先,团队收集了历次开裂情况的数据,并绘制了一个控制图。
通过图表发现,问题出现的频率超出了正常范围,使得团队认识到需要调整施工工艺或更换石间贴缝剂品牌。
2.样本调查的检验案例:一个制药公司经常遇到产品在包装过程中出现错误数量的问题。
为了解决这个问题,质量控制团队进行了样本调查,并对每个批次的产品进行了检验。
通过对少量产品的样本检验,团队发现了一个操作问题,即包装工人在特定条件下容易出现错误。
团队采取了相应的改进措施,有效地解决了问题。
3.矩阵图案例:汽车制造公司在运输过程中出现了多起零部件损坏的事件。
为了解决这个问题,质量控制团队使用了矩阵图来分析该问题的根本原因。
团队按照损坏情况和运输条件等因素绘制了一张矩阵图,通过观察发现了运输路线的问题。
团队进一步调查发现,一些配送商在特定路段上存在巨大的路面不平,导致零部件受损。
公司随后决定更换配送商,避免进一步的质量问题。
4.甘特图案例:家制造公司计划开发一种新产品,但是开发过程中遇到了很多问题,导致项目延误。
为了解决这个问题,质量控制团队使用甘特图来规划项目,并分配资源和时间。
通过甘特图的可视化,团队能够准确地了解项目的进度和关键节点,并针对问题进行相应的解决措施。
这样,公司最终实现了项目按时完成的目标。
5.鱼骨图案例:家电子制造公司的产品在市场上出现了频繁的故障问题。
为了解决这个问题,质量控制团队采用了鱼骨图进行问题分析。
他们将故障问题分为不同的类别,如机械、人为、供应和设计。
通过对每个类别进行细致的分析,团队确定了供应链方面的问题,例如材料质量和供应商选择。
于是该公司决定与合作伙伴进行沟通,并采取改进措施来避免类似问题的再次发生。
案例1 控制图的计算实例
某厂生产直柄麻花钻,尺寸规格为。
现在测得100个麻花钻的直径数据如图1-1所示。
试绘制0.005
0.00346mm φ−−X R −控制图。
表1-1 麻花钻直径数据表
一、 打开工作表,从位于“样本数据”文件夹中保存的名为“控制图.xls”的Excel 表中获取数据。
1、 选择“文件 > 打开工作表”。
2、 选择工作表“控制图.xls”,单击打开,导入麻花钻直径数据表,如上表所示。
二、 数据处理,为方便后续分析工作,堆叠数据成一列。
1、 选择“数据 > 堆叠 > 行”
2、 选择需要堆叠的行X1-X5,并将堆叠后的数据存储在C7“直径”列中。
如图1-1所示。
图1-1 堆叠行
3、单击“确定”,麻花钻直径的X R
−控制图如图1-2所示。
图1-2 X R
−控制图。
八种控制图应用实例(minitab)1、试作均值极差控制图S a m p l eS a m p l e M e a n25232119171513119753140302010__X=29.86UCL=45.27LCL=14.46S a m p l eS a m p l e R a n g e252321191715131197531604530150_R=26.70UCL=56.47LCL=0Xbar-R Chart of C1S a m p l eS a m p l e M e a n25232119171513119753140302010__X=29.86UCL=45.27LCL=14.46S a m p l eS a m p l e S t D e v25232119171513119753120151050_S=10.79UCL=22.54LCL=0Xbar-S Chart of C13、试作移动极差控制图O b s e r v a t i o nI n d i v i d u a l V a l u e25232119171513119753168.067.567.066.566.0_X=67.036UCL=67.657LCL=66.416O b s e r v a t i o nM o v i n g R a n g e2523211917151311975310.80.60.40.20.0__MR=0.2333UCL=0.7624LCL=0111111I-MR Chart of C14、试作样本大小n 相等时的p 控制图SampleP r o p o r t i o n2523211917151311975310.300.250.200.150.100.050.00_P=0.1496UCL=0.3009LCL=0P Chart of C15、试作样本大小n 相等时的pn 控制图SampleS a m p l e C o u n t252321191715131197531108642__NP=3.76UCL=9.49LCL=0NP Chart of C66. 试作样本大小n 不相等时的p 控制图〔案例〕某电机厂生产洗衣机用小型电机,构成交验批的批量各不相等,现每隔1小时抽取一个样本,共25批,经检验将不合格品数及不合格品率记入数据表,试作分析用控制图。
X-R控制图实例:天线公司生产0.6M(13G)天线的弯波导,成形后长度要求为263±0.40mm,生产过程X-控制图,分析控制状态。
质量要求为Cp≥1.00,为对该过程实行连续监控,设计R1.收集数据并加以分组在5M1E充分固定并标准化的情况下,从生产过程中收集数据。
每隔2h,从生产过程中抽取5个零件,测量其长度,组成一个大小为5的样本,一共收集25个样本(数据见上X-图,每组样本大小n≤10,组数k≥25。
表)。
一般来说,制作R0.6M天线弯波导数据表(单位:mm)2.计算每组的样本均值及极差(列于上表)。
计算总平均和极差平均:X=263.07 R=0.2283.计算控制线X图: CL=X=263.07UCL=X+A2R=263.07+0.577*0.228=263.20LCL=X-A2R=263.07-0.577*0.228=262.94R图:CL=R=0.228UCL=D4R=2.114*0.228=0.482LCL=D3R其中系数A2,D3,D4均从控制图系数表中查得,A2=0.577,D4=2.114,当n≤6时D3<0,此时LCL=——。
4.制作控制图分别做X图和R图,两张图画在同一张纸上,以便对照分析。
X图在上,R图在下,纵轴在同一直线上,横轴相互平行并且刻度对齐。
本题中R图的下控制界限线LCL<0,但R要求R≥0,故LCL可以省略。
均值控制图(X图)极差控制图(R图)5.描点:根据各个样本的均值i X和极差Ri在控制图上描点(如上).6.分析生产过程是否处于统计控制状态.利用分析用控制图的判断原则,经分析生产过程处于统计控制状态。
7.计算过程能力指数因为:X=263.07,M=263, X≠M,所以:Cpk=(T-2ε)/6s,其中s=R/d2, ε=|X-M|s=R/d2=0.228/2.326=0.098ε=|X-M|=263.07-263=0.07修正后的过程能力指数Cpk=(T-2ε)/6s=(0.8-2*0.07)/6*0.098=1.228.由于波导管的长度尺寸,对于天线产品的质量影响,属于重要质量特性,1.67≥Cpk>1.33为理想状态, 1.33≥Cpk>1 为低风险状态。
计量型控制图实例分析引言计量型控制图是质量管理中常用的工具,能够帮助企业对生产过程进行监控和改进。
通过计量型控制图,企业可以及时发现和纠正生产过程中的问题,保证产品质量的稳定性。
本文将以某企业生产线上的实例数据为例,从控制图的分析方法、图形的解读等方面对计量型控制图进行详细分析,为读者展示控制图在质量管理中的实际应用。
方法与数据来源本文所分析的计量型控制图是基于某企业生产线上的实际数据,通过检测仪器对产品的尺寸进行测量,记录下每个产品的尺寸数据。
本次数据采集周期为一个月,每天随机抽取一定数量的产品进行尺寸测量。
共计测量了200个数据点,这些数据点将被用来构建计量型控制图进行分析。
控制图构建根据所测量的尺寸数据,我们可以构建均值图(X图)和极差图(R图),以监控产品尺寸的稳定性和过程的可控性。
首先,我们计算所有数据的平均值,并将其绘制在均值图(X图)上。
均值图反映了产品尺寸的中心水平,可以用来判断生产过程是否稳定。
在均值图上,我们还绘制了中心线(CL)和上下控制限(UCL 和LCL),用来指示尺寸的变化范围。
在构建均值图时,我们采用的公式是:X = (x1 + x2 + ... + xn) / n其中,X为平均值,x1到xn为测量数据,n为数据个数。
接下来,我们计算相邻两个数据点之间的差值(即极差),并将其绘制在极差图(R图)上。
极差图反映了产品尺寸的变动情况,可以用来判断生产过程的稳定性。
在极差图上,同样绘制了中心线(CL)和上下控制限(UCL和LCL),用来指示尺寸变化的合理范围。
在构建极差图时,我们采用的公式是:R = xmax - xmin其中,R为极差,xmax和xmin分别为测量数据中的最大值和最小值。
通过以上步骤,我们成功构建了均值图和极差图,为后续的分析提供了基础。
控制图分析根据构建的均值图和极差图,我们可以结合自身经验和统计方法,对生产过程进行分析和判断。
以下是对均值图和极差图的一些常见分析方法和解读:•均值图:–若均值图的数据点在中心线附近波动,且未超出控制限范围,则说明生产过程稳定且尺寸变化在正常范围内。
质量控制控制图应用与实践案例研究现代化的生产制造过程中,质量控制是至关重要的一环。
而质量控制控制图作为一种运用统计学方法进行质量控制的工具,可以帮助企业发现生产过程中的问题,及时进行调整和改进,确保产品质量得到保障。
下面将通过具体案例研究,探讨质量控制控制图在生产实践中的应用与作用。
一、概述质量控制控制图是一种通过统计方法绘制的图表,用来监控过程中产品的质量指标是否稳定,是否受到异常因素的影响。
通过不断地绘制和分析控制图,可以及时发现问题,并采取相应的措施进行改进。
质量控制图主要包括均值图、极差图、方差图等,根据具体需求和实际情况选择合适的控制图进行应用。
二、案例背景某汽车零部件生产企业在生产过程中发现一批产品出现质量问题,经过初步分析,怀疑是生产过程中某一环节存在质量波动。
为了及时解决问题,企业决定引入质量控制控制图对生产过程进行监控。
三、均值图应用通过对生产过程中的产品质量指标进行数据采集和分析,企业绘制了均值图。
通过观察均值图的变化趋势,发现在某一时间点出现了异常波动,及时对该时间点进行调查和处理,最终解决了产品质量问题。
四、极差图应用除了均值图,企业还绘制了极差图。
极差图可以帮助企业了解产品质量的稳定性,发现生产过程中可能存在的变异问题。
通过对极差图的分析,企业发现了一个影响产品质量的关键因素,及时进行调整,确保产品质量稳定。
五、方差图应用在质量控制控制图的应用过程中,企业还使用了方差图。
方差图可以有效地帮助企业评估生产过程中的变异情况,及时发现并解决问题。
通过对方差图的分析,企业成功地控制了生产过程中的方差,提高了产品质量。
六、控制图建立与优化在质量控制控制图的建立过程中,企业需根据实际情况选择合适的质量指标和控制图类型,并确定控制上下限。
同时,企业还需要不断地优化控制图,根据生产过程中出现的新情况进行调整,确保控制图的有效性和准确性。
七、过程改进与结果分析通过质量控制控制图的应用,企业成功地改进了生产过程中存在的问题,提高了产品质量稳定性和一致性。
计数型控制图分类及案例分析引言计数型控制图是一种常用的质量管理工具,用于监控和控制生产过程中的缺陷数量。
它可以帮助企业及时发现并解决生产过程中的质量问题,提高产品质量和生产效率。
本文将介绍计数型控制图的分类及其在实际生产中的应用案例分析。
一、计数型控制图分类根据被测量的质量特征的性质,计数型控制图可分为以下几类:1. P型控制图P型控制图是用于监控不合格品(缺陷品)的百分比的控制图。
它适用于对质量特征进行二元分类的场景,如产品是否合格、工作过程是否按照要求进行等。
在P型控制图中,我们记录每次生产中不合格品(缺陷品)的数量,然后计算不合格品的百分比。
2. C型控制图C型控制图是用于监控单位产品中缺陷次数的控制图。
它适用于对质量特征进行可计数的场景,如产品中缺陷的数量、设备故障次数等。
在C型控制图中,我们按照一定的时间间隔或生产批次来统计缺陷的数量。
3. U型控制图U型控制图是用于监控单位产品中缺陷的平均数的控制图。
U型控制图是对C型控制图的升级,它考虑了单位产品的不同大小或不同生产周期中的缺陷数量的波动。
通过综合考虑缺陷数目和单位产品的差异,U型控制图可以更加准确地监控和控制生产过程中的质量问题。
二、案例分析在实际生产中,计数型控制图被广泛应用于各个行业。
下面以汽车行业为例,进行案例分析。
1. P型控制图应用案例:汽车生产线上的不合格率监控汽车生产过程中存在着许多环节,如果某个环节的不合格品率过高,将严重影响整体生产效率和产品质量。
因此,汽车生产企业常常利用P 型控制图来监控生产线上的不合格品率。
在该案例中,汽车生产企业每天按照一定的时间间隔对生产线上的车辆进行抽检,记录不合格品的数量,并计算当天的不合格品率。
通过绘制P型控制图,汽车生产企业可以及时发现生产线上的不良情况,并采取相应的措施进行改进,从而提高产品质量和生产效率。
2. C型控制图应用案例:汽车发动机缺陷次数监控汽车发动机是汽车的核心部件之一,其质量直接影响到整车的可靠性和性能。
SPC經典案例剖析---SPC在控制男主人歸家時間上的運用朋友们大家好,这个经典的案例可能读过很多遍了。
现把整篇的文章转载过来并加以分析。
从网上看到一个经典的SPC应用的例子,与大家共赏:俗话说宴无好宴。
朋友邀我去他家做客吃晚饭,进了门迎面遇上他焦急无辜的表情,才知道主题是咨询。
起因是朋友最近回家的时间越来越晚,罪证就在他家门口玄关的那张纸上——朋友的太太是一家美商独资企业的QC主管,在家里挂了一张单值-移动极差控制图,对朋友的抵家时间这一重要参数予以严格监控:设定的上限是晚七点,下限是晚六点,每天实际抵家时间被记录、描点、连线——最近连续七天(扣除双休日)的趋势表明,朋友抵家的时间曲线一路上扬,甚至最近两天都是在七点之后才到家的,证据确凿——按照休哈特控制图的原则和美国三大汽车公司联合编制的SPC(Statistical Quality Control,统计过程控制)手册的解释,连续7点上升已绝对表明过程发生了异常,必须分析导致异常的原因并做出必要的措施(比如准备搓衣板),使过程恢复正常。
显然,我可能给出的合理解释成了朋友期待的救命稻草,而这顿晚饭就是他在我面前挂着的胡萝卜。
(单值---移动极差图:X-Rs,这个控制图我先来讲它一般的适用场合:(1)对每个产品都进行检验; (2)采用自动化检查和测量的场合; (3)取样费时、费用昂贵的场合; (4)化工等流程性材料及样品均匀的场合。
它的取样信息不多,所以它检出的过程变化的灵敏度也要差一些。
在本例中,这位QC主管显然考虑到老公回家这个重要的参数,是保证他对自己的婚姻忠诚的主要因素,那么根据连续7点呈现上升的趋势,我们很容易就对这个过程判异。
这个判异是根据小概率事件原理:小概率事件在一次试验中发生的概率几乎为零,也就是几乎不可能发生,若发生即判异。
本例中的連續7点呈现上升趋势,是根据判异准则的界内点不随机排列判异。
通常在过程受控的条件下,連續7點不随机排列呈现的概率都很小,若出现我们就可以判断该过程出现了异常因素,导致过程失控。
统计过程控制案例分析统计过程控制案例分析在生产和管理领域,统计过程控制(SPC)是一种重要的技术,用于监控和改善过程质量。
本文通过一个实际案例分析,探讨了SPC的应用和效果。
案例背景某电子产品制造商在生产过程中遇到了质量问题,产品不合格率居高不下。
为了解决这个问题,公司决定采用SPC技术对生产过程进行监控和改进。
控制图分析首先,我们通过控制图来分析生产过程。
控制图是一个直观的图形,横轴表示时间,纵轴表示产品质量。
在SPC中,通常使用X-R图(均值-极差图)来监控过程的稳定性。
X-R图由两条曲线组成,一条表示均值(X),另一条表示极差(R)。
均值反映过程的中心趋势,极差反映过程的波动大小。
通过对X-R图的分析,我们可以发现生产过程中的波动和不稳定性。
在本案例中,我们发现产品质量存在较大的波动,且不合格率较高。
这表明生产过程存在较大的问题,需要进行改进。
原因分析和措施制定针对上述问题,我们进行了深入的原因分析。
通过对生产环节的调查和分析,我们发现问题的主要原因是原材料的质量不稳定。
为此,我们提出了以下改进措施:1、对原材料进行质量检查和控制,确保原材料的质量符合要求。
2、加强生产过程的监控和管理,确保生产过程的稳定性和一致性。
3、提高员工的技能和素质,加强质量意识培训。
实施改进措施在制定改进措施后,我们开始实施。
在实施过程中,我们采用了PDCA 循环(计划-执行-检查-处理)来确保改进措施的有效性和持续性。
在改进措施实施后,我们再次对生产过程进行了SPC监控和评估。
效果评估和总结通过SPC技术的监控和评估,我们发现生产过程的质量得到了显著改善。
不合格率得到了有效降低,产品质量更加稳定。
员工的技能和素质也得到了提高,质量意识得到了加强。
这些改进不仅提高了企业的生产效率和质量水平,也提高了客户对产品的满意度。
通过本案例的分析,我们可以看到SPC技术在生产和管理领域的重要作用。
SPC技术可以帮助我们监控和改善过程质量,提高生产效率和质量水平。