天气学原理和方法--第7章--刘强--整理
- 格式:pdf
- 大小:474.68 KB
- 文档页数:33
天气学原理笔记简介笔记来自刘宣飞先生的上课内容,刘先生的课生动活泼,引人入胜,为表敬意,将其整理出电子稿,仅供纪念和参考。
其中算法表示是笔者自己加的内容,第二章锋面天气借唐卫亚老师的天气学分析课件图以期表述更加完善,第四章大气环流参考了李丽萍老师的大气环流概论和李忠贤老师的短期气候预测基础这两门课部分内容。
毕竟上课笔记,难免有些疏忽,如有不当,还望斧正。
长望党支部2014年制前言天气动力学主要分为三大主干课程:天气学、动力学、统计学,研究对象是天气系统和天气过程。
一般而言,天气学适合于做短期天气预报,这方面经验丰富的预报员往往准确率要高于数值预报。
数值预报的基础是动力学,根据方程、参数等进行模拟,模式的运用很关键,对于大尺度的把握较好。
而长期预报则是结合统计学知识,对现有资料进行分析,一般做概率预报为主,短期预报中像墨迹天气的降水概率也是运用到此类知识。
关于学习方法,方程的数学表达固然是基础,但天气学主旨是要理解方程的物理意义,并给予解释,“看图说话”这类图形表达也很重要,天气图的识别是天气学的重要部分。
主要参考书:1.天气学原理和方法(朱乾根等)2.天气学教程(梁必骐)3.现代天气学原理(伍荣生)4.中国主要天气过程的分析(寿绍文)第一章 大气运动的基本特征——风场和气压场本章结构:1.影响大气运动的力(1)2.控制大气运动的基本方程组(2,4)3.简化方程组。
突出大尺度运动基本特征(3)4.天气学分析的基本原则(5)第一节 影响大气运动的力⎧⎨⎩真实力(牛顿力、基本力):气压梯度力、地心引力、摩擦力惯性力(虚假力、视示力):惯性离心力、地转偏向力一.基本作用力1. 气压梯度力(pressure gradient force )G定义:作用于单位质量气块上的净压力 表达式:11p p p G=-p=-i+j+k x y zρρ∂∂∂∇∂∂∂()推导:对于一微气块而言,=x y z v δδδδB 面所受的压力为正方向p y z δδ,A 面应为pp+x y z xδδδ∂∂()令x 正方向为压力正方向,则有x pF =-x y z x δδδ∂∂同理:y p F =-x y z y δδδ∂∂ z p F =-x y zz δδδ∂∂=-(+j+k)x y z=-x y z p p pF i p x y z δδδδδδδ∂∂∂∇∂∂∂1G===-p F F m v δδδρδρ∇讨论:A . 性质:气压梯度力由气压不均匀造成的B . 方向:高压指向低压,垂直于等压线C . 大小:与气压梯度呈正比,与密度呈反比D . 分量:G=G G G ()G h zh z+<<水平(垂直)但垂直方向上有重力与其达到平衡(静力平衡)注:等压线越密,气压梯度力越大 2. 地心引力*g定义: 表达式:*2GM rg =-a r() 方向:地心 3. 摩擦力Fx y z F F i F j F k =++二.惯性力 1. 惯性离心力定义:单位质量的气块,因为地球旋转呈现出的一种惯性力表达式:2c F =R Ω推导:用一根绳子牵一小球以均匀角速度Ω作旋转运动。
2.大气运动的守恒定律?(P10):大气运动总是受质量守恒定律、动量守恒定律、能量守恒定律等基本物定律所控制。
3.大尺度系统的运动方程及其的简化方程式,组成部分?(P13-/公式1.16、1.80):12dV p V g F dt ρ=-∇-Ω⨯++ (右一为梯度力,右二为地球自转角速度,右三为重力(惯性离心力与地心引力),右四为摩擦力)该式就是选装坐标系中牛顿第二定律的表达式,称为单位质量空气的相对运动方程,也就是一般称谓的旋转坐标系中的大气运动方程。
简化方程:{ 5.地转风的定义、表达式、意义?(P37/1.81):水平运动方程的零级简化方程表示了两个力的平衡关系,即: { 这个关系式通常称为地转关系或地转平衡方程。
满足上式的风称为地转风。
意义:①从运动方程简化中,当加速度、摩擦力项以及垂直速度引起的水平地转偏向力项略去时,才能建立地转平衡。
在中纬度,自由大气的大尺度系统中,这种平衡是近似成立的。
地转平衡只能看成一种近似关系,绝对的地转平衡是不存在的。
②地转风速大小与水平气压梯度力成正比。
③地转风与等压线平行,在北半球背风而立,高压在右,低压在左。
④地转风速大小与纬度成正比这是因为纬度愈高,同样的风速,地转偏向力愈大;所以水平气压梯度力相同时,纬度愈高地转风速愈小。
10.锋的概念(P63):天气图上温度水平梯度大而窄的区域,如果它又随高度向冷区倾斜,这样的等温线密集带通常称为锋区。
就是密度不同的两个气团之间的过渡区。
11.锋的类型:a.根据锋在移动过程中冷、暖气团所占的主次地位分为:冷锋、暖锋、准静止锋、锢囚锋 b.根据锋伸展的不同高度分为:对流层锋、地面锋、高空锋 c.根据气团的不同地理类型分为:冰洋锋、极锋、副热带锋。
△19.涡度(P109):表示流体质块的旋转程度和旋转方向。
流场中某一质块的涡11p fu y p fv x ρρ∂=-∂∂=∂ 零级简化: 一级简化: 10p fv x ρ∂=-+∂ 10p fu y ρ∂=--∂ 1du p fv dt x ρ∂=-+∂ 1dv p fu dt y ρ∂=--∂度定义为质块速度的旋度,其表达式为:V ξ=∇⨯ 这里的V 是三维速度。
《天气学原理》复习重点天气学是研究大气的物理、化学、动力学等性质以及它们在天气现象中的应用的学科。
了解天气学的基本原理是预测天气和了解气候变化的关键。
下面是《天气学原理》复习的重点内容:一、大气的组成和结构1.大气的组成:大气主要由氮氧和氩组成,同时还有一些稀有气体和水蒸气等。
2.大气的结构:大气主要分为对流层、平流层、中间层、热层和外层等不同层次。
二、大气的物理性质1.大气的密度和压强:大气密度随着高度的增加而减小,压强也呈现类似的变化趋势。
2.大气的温度:大气温度随着高度的升高或降低而发生变化,不同层次的大气温度分布呈现不同的特征。
三、大气的水循环1.蒸发和蒸腾:水在地表蒸发后形成水蒸气,植物通过蒸腾作用将水从根部吸收并释放到空气中。
2.云的形成:当空气中的水蒸气达到饱和时,会形成云,不同云的形成条件和特征。
四、大气的运动1.风的形成:气压差是风的主要驱动力,气压差越大,风速越快。
2.风的分类:大气运动可以分为垂直运动和水平运动,根据水平运动的方向可以将风分为经向风和纬向风。
五、气象要素和观测方法1.气温:常用温度计进行测量,测量站点和高度的选择对结果也有一定影响。
2.湿度:常用湿度计进行测量,相对湿度和绝对湿度的计算和测量方法。
3.气压:常用气压计进行测量,气压的变化对天气的影响程度。
4.风速和风向:常用风速计和风向标进行测量,气象要素的重要参数之一六、天气的形成和变化1.水平天气系统:高压和低压系统的形成和特征,冷、暖锋的形成和移动规律。
2.垂直天气系统:不同层次的大气运动引起的各种天气现象如云、雨、雪等。
七、天气的预报方法1.经验法预报:基于过去的天气观测,根据类似天气现象出现的规律进行预测。
2.数值模式预报:利用气象数值模型模拟大气的物理过程,通过计算机进行精细的数值预报。
3.卫星和雷达预报:利用卫星和雷达观测到的大气云图和降水信息进行天气预报。
以上是《天气学原理》复习的重点内容,掌握这些知识可以帮助我们更好地理解天气的形成和变化规律,提高天气预报的准确性。
天气学原理和方法第一章大气运动的基本特征地球大气的各种天气现象和天气变化都与大气运动有关。
大气运动在空间和时间上具有很宽的尺度谱,天气学研究的是那些与天气和气候有关的大气运动。
大气运动受质量守恒、动量守恒和能量守恒等基本物理定律所支配。
为了应用这些物理定律讨论在气象上有意义的相对于自转地球的大气运动,本章首先讨论影响大气运动的基本作用力,和在旋转坐标系中所呈现的视示力,然后导出控制大气运动的基本方程组,并在此基础上分析大尺度运动系统的风压场和气压场的关系,并引出天气图分析中应遵循的一向基本指导原则。
第一节旋转坐标系中运动方程及作用力分析一、旋转坐标系中运动方程1. 二(绝对速度)与丁(相对速度)假设t o 时刻一空气质点位于P 点,经t 时间,质块移到Pa 点,地球上的固定点P 移到了 Pe 位置位 移为R ,质块相对固定地点的位移为 兰R ,图1.1旋转坐标系显然匚:=Z-血 &当…- 0位移很小时边左=匚圧_晟占daR dR d^R----- = ------ + -------单位时间的位移为 皿 逸 皿由此得=「兀此关系式表明:绝对速度等于相对速度与牵连速度之和d^V dV2.与az 的关系地球自转角速度为= Q: /x -S由此可得微分算子则于是daR _dtda d -——=—十C △将微分算子用于―则有dCt VCt ——= ---+ G A 九dt dt再将兀!代入上式右端得daVa dVdt _ _ __ _ _ 存=-- 2Q ----- +0八(Q 人卫)dt dt式中■■- !'为地转偏向力加速度,即柯氏加速度:'''■■- ' :'' ■"■,<;为向心力加速度 3 •牛顿第二定律F — m --------------dt在绝对坐标系中单位质量空气块受到的力有叱L=_—w+ /去:地心引力F:摩擦力将此式代入(*)式:竺二一丄VF + GC-2Q A产一心八⑸入氏)十F di q 、作用力分析 1 .气压梯度力(*)daVa F=> dt单位质量的空气块所受到的力①定义:单位质量空气块所受的净空气的压力图1.1.2 作用于气块上的气压梯度力的X分量-&电& = Fyy方向:哲'- —&①隹=Fzz方向:F =弘+ Fy ¥ F去净空气总压力—(迄+K/+里灯%沁dx dy fem =a②表达式③推导:x方向: B面PA 面:-(P+u净压力: g茨&卸歷=F A同理G=-大小:气压梯度力的大小与气压梯度成正比,与空气密度成反比方向:气压梯度力的方向指向的方向,即由高压指向低压的方向①定义:地球对单位质量的空气块所施加的万有引力G:= ^=常数②表达式K:万有引力常量M :地球质量图1.1.3 地心引力受力分析图④讨论:大小:不变,常数④讨论:a:到地心的距离(1.2)实用标准文档3.惯性离心力①定义:观测者站在旋转地球外观测单位质量空气块所受到一个向心力的作用,但站在转动地球上(•’'■观测它的运动,发现它是静止的,这必然引入一个与向心力大小相同,方向相反的力,此力称为惯性离心力图1.1.4旋转坐标系中的惯性离心力④讨论:大小:- 与纬度成反比,赤道处最大方向:在纬圈平面,垂直地轴指向4.重力方向:指向地球心②表达式(1.5)③推导: di① 定义: 地心引力与惯性离心力的合力图1.1.5 重力大小:随纬度增大而增大方向:垂直地球表面指向5 .地转偏向力①定义: 观测者站在转动地球上观测单位质量空气块运动(〕右偏的力,在南半球它向左偏。
第四部分天气学(刘炼烨)大气环流;气团和锋;西风带大型扰动和大型天气过程;降水天气过程;寒潮天气;中小尺度对流系统及对流性天气;热带和副热带地区的天气系统第一章大气环流一、掌握大气环流的概念:一般来说,大气环流是指全球范围的大尺度大气运动的基本状况。
二、掌握热力环流的概念:假定地球表面性质都一样,地球也不旋转,那么由于太阳辐射不均匀,南北方向上的温度差就产生了高层有从赤道指向极地的位势梯度。
在位势梯度力的作用下,空气就产生向极地运动,空气在极地冷却将下沉,质量堆积又造成对流层下部有指向赤道的气压梯度力,也就产生了由极地向赤道的气流。
空气在低纬加热将垂直上升,就构成了一个南北向的闭合环流。
其特征是:在赤道附近为上升运动,极地为下沉运动,北半球高空为南风,低层为北风。
这种环流圈是由于大气加热不均匀造成,故又称为直接热力环流圈。
但由于地球有自转,存在地转偏向力,地球表面性质也并不单一,所以这种单一的环流圈实际上是不存在的。
三、了解三圈环流的形成原理和科学假设:地球-大气系统所接受的辐射能,各纬度分布并不均匀,产生由热带指向两极的温度水平梯度,这样,在对流层中、上部就产生了指向极地的气压梯度,同时在低层又有指向赤道的气压梯度。
在北半球,高空空气在气压梯度力的作用下由赤道向北运动,受地转偏向力的作用,在约30°N附近,气压梯度力与地转偏向力达到平衡,空气运动方向转为自西向东。
自赤道源源不断向北的空气也就在30°N附近发生辐合,由质量堆积,使地面气压升高,而且自赤道向北的空气不断辐射冷却,因而产生了下沉运动,分别向南和向北辐散。
在低层向南运动的空气在地转偏向力作用下,在北半球转为东北风,称为东北信风。
同理,南半球也存在东南信风。
在赤道附近低层存在东北信风与东南信风汇合的地带称为赤道辐合带,暖空气在辐合带中上升到对流层上部向南北极地方向流动,由于地转偏向力的作用,到达副热带上空形成质量堆积,从而形成了副热带高压,并产生下沉气流,这支下沉气流到达低空时,分为向北、向南两支气流,一支向南流动到达赤道辐合带,形成了哈得来环流圈;另一支向北流动到达中高纬度,与极地下沉向南流动的冷空气,在中高纬度地区汇合形成极锋锋区,并沿极锋上升到对流层上部时,再分成两支向北、向南气流,其中向南的气流到达副热带地区下沉,形成了费雷尔环流圈,并在对流层上部形成副热带锋区;另一支向北气流到达极地上空冷却下沉形成了极地环流圈。
天⽓学原理和⽅法天⽓学原理和⽅法⽬录第⼀章⼤⽓运动的基本特征 (3)第⼀节影响⼤⽓运动的作⽤⼒ (3)第⼆节控制⼤⽓运动的基本定律 (4)第三节⼤尺度运动系统的控制⽅程 (4)第四节“P”坐标系中的基本⽅程组 (5)第五节风场和⽓压场的关系 (6)第⼆章⽓团与锋 (8)第⼀节⽓团与锋 (8)第⼆节锋的概念与封⾯坡度 (9)第三节⾄第五节 (10)第三章⽓旋与反⽓旋 (12)第⼀节⽓旋、反⽓旋的特征和分类 (12)第⼆节涡度与涡度⽅程 (12)第三节位势倾向⽅程和⽅程 (14)第三节温带⽓旋与反⽓旋 (15)第五节东亚⽓旋和反⽓旋 (16)第四章⼤⽓环流 (18)第⼀节⼤⽓平均流场特征与季节转换 (18)第五章天⽓形势及天⽓要素的预报 (22)第六章寒潮天⽓过程 (26)第七章⼤型降⽔天⽓过程 (28)第⼀节降⽔的形成与诊断 (28)第⼆节⼤范围降⽔的环流特征 (34)第三节降⽔的天⽓尺度系统 (39)第四节暴⾬中尺度系统 (44)第五节不同⾼度急流对暴⾬⽣成的作⽤ (46)第⼋章对流性天⽓过程 (47)第⼀节雷暴的结构及雷暴天⽓成因 (47)第⼆节中⼩尺度天⽓系统 (49)第三节对流性天⽓预报的物理基础 (50)第四节对流性天⽓的预报 (52)雷达原理与业务应⽤ (53)第九章低纬度和⾼原环流系统 (59)第⼗章东亚季风环流 (71)第⼗⼀章天⽓诊断分析 (77)第⼀章⼤⽓运动的基本特征第⼀节影响⼤⽓运动的作⽤⼒1.⼤⽓运动受什么定律⽀配?质量守衡、动量守衡和能量守衡定律2.影响⼤⽓运动的真实⼒有哪⼏种?⽓压梯度⼒、地⼼引⼒、摩擦⼒。
3.影响⼤⽓运动的视⽰⼒(外观⼒)有哪⼏种?惯性离⼼⼒、地转偏向⼒。
4.⽓压梯度⼒的⽅向?⽓压梯度⼒的⼤⼩与⽓压梯度和空⽓密度有什么关系?⽅向指向—▽P 的⽅向,即由⾼压指向低压的⽅向;⽓压梯度⼒的⼤⼩与⽓压梯度成正⽐,与空⽓密度成反⽐。
5.地⼼引⼒6.惯性离⼼⼒7.地转偏向⼒8.地转偏向⼒的⼏个重要特点?1)地转偏向⼒A 与Ω相垂直,⽽Ω与⾚道平⾯垂直,所以A 在纬圈平⾯内2)地转偏向⼒A 与V 相垂直,因⽽地转偏向⼒对运动⽓块不作功,它只能改变⽓块的运动⽅向,⽽不能改变其速度⼤⼩。
天气学原理和方法作为人类活动的一个重要方面,气象已经成为了一个广受欢迎的话题。
在讨论天气时,我们经常听到一些专业的词汇和术语,比如温度、气压、湿度等等。
这些都是气象学的一些基础概念,也是学习气象科学的第一步。
那么,什么是天气学原理和方法呢?本文将对此进行一番探讨。
天气学原理天气学是研究大气现象、发生机理和预报方法的一门学科。
天气学的基础原理是气象学。
气象学是研究大气现象的学科,它是大气科学的一部分。
大气科学是研究地球大气层的物理性质、化学特性及其与地球和太阳等其他天体相互作用的学科。
天气学的基础原理是气象学中的许多原理及其应用。
天气学中的一些基础原理包括:大气热力学原理、大气动力学原理、大气化学原理等。
其中,大气热力学原理主要用于解释大气现象的形成和演化。
大气动力学原理则主要用于解释大气运动和对气体较复杂流场的描述和计算。
而大气化学原理主要研究大气层的化学反应、污染物的传输和纵向分布等。
天气学分析的主要方法是气象学的数学方法。
数学方法是对气象学进行研究以及预报天气的一种很重要的方法。
气象学的数学方法包括应用大气物理学、数学物理学、云物理学、数值计算等方法,具有很高的准确性和预报时效性。
数学方法的应用要根据不同的气象特征和目的所需的准确度来选择。
例如,在气象研究方面应用较多的有斯特菲特定理和拉格朗日微分方程等。
这些方法可以有效地解决不同类型的大气现象和气象特征。
天气学方法天气学的研究方法有很多种,但这里主要介绍以下几种:地面气象观测、遥感气象技术、气象模拟和数值预报方法。
地面气象观测:观测是气象学的关键环节,是对现象的直接观察。
利用气象观测可以获取大气的物理状况、气体性质和降水量等信息。
地面气象观测主要有以下几种常见的方法:气象观测站测量、天气雷达、降水量传感器、GPS气象等。
地面观测数据是气象学研究的一种最基本的资料。
遥感气象技术:遥感气象技术是指利用卫星遥感、飞机遥感、地面遥感等技术手段观测大气和地表情况的一种技术。
南京信息工程大学2005年研究生招生入学考试《天气学原理与方法》考试大纲科目代码:401科目名称:天气学原理与方法参考书目:《天气学原理与方法》,朱乾根等编,气象出版社第一部分课程目标与基本要求一、课程目标:天气学原理与方法(天气学)研究对象是天气学原理及中国天气,研究方法以天气动力学原理揭示大气运动的基本特征和用此原理论述天气系统及天气过程生、消演变规律,为进一步学习动力气象学、低纬度天气动力学、中尺度天气学、大气环流及中长期预报,也为将来天气预报业务及研究工作打下基础。
二、基本要求:要求学生掌握有关内容基本概念、基本理论和基本方法,以便提高综合分析及解决问题的能力。
第二部分课程内容与考核目标第一章大气运动的基本特征1.了解大气运动各作用力含义、表达式及理解它的物理意义2.了解个别变化、局地变化、平流变化含义3.了解质量散度(质量通量散度)含义、表达式及其物理意义4.了解尺度分析含义、掌握在自由大气中大尺度系统运动,可以作为准地转、准静力处理5.理解热力学能量方程中引起固定点温度变化的因子6.了解实际工作中高空分析等压面图而不分析等高面图(P坐标系的优越性)7.了解位势、位势高度、位势米、几何米概念8.理解等高面上水平气压梯度力可以用等压面上位势梯度或等压面坡度表示9.理解地转风、梯度风、热成风、地转偏差含义、表达式及掌握它的讨论10.了解正压大气、斜压大气概念;掌握热成风发生在斜压大气中11.了解地转风、梯度风及热成风实用意义12.掌握低压中心附近及其边缘,还有高压边缘等压线可以分析密大风经常出现,而高压中心附近不能有上述现象13.理解变压风及切向、法向地转偏差含义,要求会画图解释第二章气团与锋1.了解锋、锋面、锋线、锋区含义及锋倾斜原因2.了解冷性锢囚锋、暖性锢囚锋含义,要求会画出剖面图中锋位置及等温线分布3.了解以密度零级不连续面模拟锋时,锋面坡度公式物理意义4.理解锋附近温度分布特征及锋面附近气压、变压分布特征5.掌握锋面分析中,高空测风资料应用图2.27(a)(b)6. 了解锋生带(线)、锋生函数、锋生条件概念7. 掌握锋生、锋消公式讨论第三章 气旋与反气旋1. 了解大气作水平运动、绝对涡度概念及理解 2h H ∇含义2. 理解大尺度系统运动中,固定点相对涡度变化可以用此点位势高度变化表示3. 掌握涡度方程、位势倾向方程及ω方程等式右端各项名称及画出有关图讨论4. 掌握在温带气旋发展中,动力因子(涡度因子)及热力因子对500hpa 高空槽及温带气旋变化,要求会画图解释5. 了解气旋族含义6. 了解北方、南方气旋活动范围及包括哪些气旋7. 掌握“倒槽锋生型”、“静止锋波动型”,要求画图解释江淮气旋生成过程第四章 大气环流1. 了解控制大气环流基本因子、2. 了解三圈径向环流、极锋锋区与副热带锋区及其对应急流概念3. 了解信风与季风概念4. 了解沃克环流含义5. 了解我国各季环流概况及主要天气天气过程特点第五章 天气形势及天气要素预报1. 理解运动学公式中t δδ及t∂∂含义,掌握用运动学公式推导锋面移速公式并会讨论冷锋、暖锋移速情况与变压分布特征2. 掌握用运动学公式讨论非闭合系统及闭合系统移动及强度3. 高空形势预报方程中,由于各层等温线平行,因此各层热成风方向相同,这样任意层风速 P p T V V AV =+ 注意理解A 的系数确定4. 掌握相对涡度平流在自然坐标系中展开分成三项,其中曲率项及散合项在实际天气图中会应用5. 掌握用高空形势预报方程有关项解释500hpa 槽、脊变化6. 熟悉地面形势预报方程由哪几项组成,要求会应用7. 掌握地形对低值系统(槽、低压)移动及强度8. 了解数值预报产品的“释用”第六章 寒潮天气过程1.了解极涡及上游效应含义2.会运用形势预报原理解释“小槽发展型”、“横槽转竖型”的寒潮短、中期过程第七章 大型降水天气过程1.理解水汽通量散度概念、表达式及物理意义2.了解中国及其各地暴雨有何天气系统影响3.熟悉我国东部雨带活动概况4.理解行星尺度、天气尺度系统对暴雨作用第八章对流天气过程1.了解飑中系统含义及飑线与冷锋区别2.理解对流性不稳定与条件性不稳定概念3.理解强雷暴发生发展有利条件第九章低纬度与高原环流系统1.熟悉西太平洋副热带高压变动与我国天气关系2.掌握南亚高压与西太平洋副热带高压区别3.掌握台风结构4.掌握台风发生发展第三部分有关说明与实施要求1.考试目标的能力层次的表述本课程对各考核点的能力要求一般分为三个层次用相关词语描述: 较低要求——了解一般要求——理解、熟悉、会较高要求——掌握、应用一般来说,对概念、原理、理论知识等,可用“了解”、“理解”、“掌握”等词表述;对应用方面,可用“会”、“应用”、“掌握”等词。
天气学原理和方法天气学是研究大气中各种气象现象及其规律的科学。
它不仅是一门理论性学科,也是一门应用性学科,对人类的生产、生活、科研等方面都有着重要的影响。
天气学的研究对象主要是大气中的各种气象现象,包括气温、气压、湿度、风向、风速、降水等。
天气学研究的方法主要包括观测、实验、数学模型和预报等。
观测是天气学研究的基础。
通过对大气中各种气象要素的观测,可以获取大气的基本信息,为天气学的研究提供数据支持。
观测的方法包括地面观测、高空观测、卫星遥感等。
地面观测主要通过气象站、气象雷达等设备进行,可以获取气温、气压、湿度、降水等信息。
高空观测主要通过气球、飞机等载体进行,可以获取大气垂直结构、风向、风速等信息。
卫星遥感主要通过卫星对大气进行遥感观测,可以获取大范围、全天候的气象信息。
实验是天气学研究的重要手段。
通过对大气中各种气象现象的模拟实验,可以深入了解气象现象的成因和规律。
实验的方法包括室内模拟实验、野外实验等。
室内模拟实验主要通过模拟大气环境,对气象现象进行实验研究。
野外实验主要通过在自然环境中进行实地观测和实验,获取真实的气象数据和现象。
数学模型是天气学研究的重要工具。
通过建立数学模型,可以模拟大气中各种气象现象的演变过程,为天气预报、气候预测等提供科学依据。
数学模型的建立需要考虑大气的动力学、热力学、水文等方面的因素,通过数学方程组的求解,可以模拟大气的运动、热量传递、水汽循环等过程。
天气预报是天气学研究的应用方向。
通过对大气中各种气象要素的观测、实验和数学模型的分析,可以对未来一段时间内的天气情况进行预测。
天气预报主要包括短期预报、中期预报和长期预报。
短期预报主要针对未来1-3天的天气情况,中期预报主要针对未来3-10天的天气情况,长期预报主要针对未来10天以上的气候情况。
总之,天气学是一门重要的气象学科,它通过观测、实验、数学模型和预报等方法,研究大气中的各种气象现象及其规律,为人类的生产、生活、科研等提供重要的科学依据。
天气学原理和方法第四版课程设计一、引言天气是地球大气层的一种状态,它的变化对人们的生产、生活和交通等方面都会产生影响。
因此,对天气进行监测、预测和研究是人类掌握天气变化规律,合理应对自然灾害的重要手段。
天气学原理和方法是天气预报和气象研究的基础。
本课程设计旨在通过深入了解天气学原理和方法,掌握常用天气预报方法及其应用,提高学生的天气学理论素养和实践能力。
二、课程目标1.掌握天气学的基础原理和方法;2.熟悉常用天气监测和预报技术;3.学会使用天气软件进行天气分析和预报;4.提高学生理论与实践相结合的能力。
三、课程内容3.1 主要理论1.大气成分和大气运动;2.大气物理学原理;3.大气化学和大气污染;4.天气系统和天气现象;5.气候和气候变化。
3.2 天气监测和预报技术1.气象观测方法和设备;2.常用天气监测方法和技术;3.数字化天气预报方法;4.模式预报和统计预报;5.人工智能在天气预报中的应用。
3.3 实践环节1.天气实习;2.气象软件使用实践;3.天气预报实验。
四、教学方法1.课堂讲授:教师讲解天气学的基本理论和方法;2.实验演示:进行天气学实验,加深学生对理论的理解和应用;3.讨论交流:开展小组讨论和学生报告,加深学生的研究和探究精神;4.比对分析:通过历史数据对比分析,深入剖析天气预报失败案例;5.互联网技术应用:利用网络平台进行在线教学和互动交流。
五、教材及学习资料5.1 教材《天气学原理和方法第四版》(钱芳、张俊生著)5.2 学习资料1.气象观测方法和设备相关材料;2.大气成分和大气运动方面的课件;3.天气软件操作指南;4.互联网上的气象学学习资源和天气数据等。
六、考核要求6.1 平时成绩1.课堂表现(20%):上课听讲、课堂讨论、积极参与和主动提问;2.实习成绩(30%):实验操作和实验报告;3.作业质量(20%):根据教师安排完成的作业。
6.2 期末考试1.理论知识考试(30%):选择、填空和简答;2.应用能力考试(30%):天气预报实验和理论分析。
天气学原理知识点汇总天气学是气象学的一个分支,主要研究大气中各种气象现象的发生机制和规律。
天气学关注的是气象学中的基础理论和原理,为我们了解天气变化和预测天气提供了重要的科学依据。
本文将对天气学的几个重要知识点进行汇总和介绍,帮助读者更好地理解天气学的原理。
一、大气成分与结构大气是地球表面外围的一层气体包围层,它由各种气体混合而成。
主要的成分有氮气、氧气、水蒸气、二氧化碳等。
在大气中,有不同的层次划分。
最底层是对流层,大气中的气温随高度下降;而对流层之上是平流层,气温随高度上升;最外层是电离层,这是一个在日常生活中不可见的层次。
二、大气运动和循环大气中存在着各种运动和循环现象,这些现象影响着天气的形成和演变。
大气运动包括水平风、垂直风、气旋和气团等。
水平风是指大气在不同地区形成的水平气流,它直接影响着天气的变化;垂直风是指由于温度差异和气压梯度引起的上升气流和下沉气流;气旋是指大气中的旋涡,在气旋中,空气会顺时针或逆时针旋转;气团是指一团同质的空气质量,由于它的质量和特性与周围环境有差异,因此会对天气产生影响。
三、天气系统与天气现象天气系统主要包括气压系统、锋面系统和高空风系统等。
气压系统是指地球表面各地气压的分布和变化,它决定了空气的运动方向和速度;锋面系统是指暖锋和冷锋之间的边界区域,锋面会在天气系统中形成降水;高空风系统是指在平流层中的强风系统,它影响着天气的形成和变化。
天气现象是指大气中发生的各种天气变化,如气温的升降、风的变化、云的形成等。
天气现象是天气学的重要研究对象。
四、天气预报和监测天气预报是根据天气学的原理和现代技术手段对未来天气进行预测。
天气预报可以帮助人们提前采取相应的措施,以应对不同的天气情况。
天气监测是通过观测和收集大量的气象数据,对天气进行实时监测和分析,以便及时更新天气预报信息。
天气预报和监测有助于提高人们对天气变化的认知,并指导人们的生产和生活。
五、天气事件与灾害天气事件包括各类气象现象,如雷暴、龙卷风、暴雨等。
天气学原理和方法第一章大气运动的基本特征地球大气的各种天气现象和天气变化都与大气运动有关。
大气运动在空间和时间上具有很宽的尺度谱,天气学研究的是那些与天气和气候有关的大气运动。
大气运动受质量守恒、动量守恒和能量守恒等基本物理定律所支配。
为了应用这些物理定律讨论在气象上有意义的相对于自转地球的大气运动,本章首先讨论影响大气运动的基本作用力,和在旋转坐标系中所呈现的视示力,然后导出控制大气运动的基本方程组,并在此基础上分析大尺度运动系统的风压场和气压场的关系,并引出天气图分析中应遵循的一向基本指导原则。
第一节旋转坐标系中运动方程及作用力分析一、旋转坐标系中运动方程1. (绝对速度)与(相对速度)t时刻一空气质点位于P点,经t 时间,质块移到Pa点,地球上的固定点P移到了Pe位置位移假设为R,质块相对固定地点的位移为R,图1.1 旋转坐标系显然当 0位移很小时单位时间内的位移为由此得此关系式表明:绝对速度等于相对速度与牵连速度之和2.与的关系地球自转角速度为则于是由此可得微分算子将微分算子用于则有再将代入上式右端得(*)式中为地转偏向力加速度,即柯氏加速度为向心力加速度3.牛顿第二定律单位质量的空气块所受到的力在绝对坐标系中单位质量空气块受到的力有+:地心引力F:摩擦力将此式代入(*)式:二、作用力分析1.气压梯度力①定义:单位质量空气块所受的净空气的压力②表达式G=-(1.1)③推导:图1.1.2 作用于气块上的气压梯度力的X分量x方向:B面 PA面:-(P+净压力:-同理y方向:z方向:净空气总压力④讨论:大小:气压梯度力的大小与气压梯度成正比,与空气密度成反比方向:气压梯度力的方向指向的方向,即由高压指向低压的方向2.地心引力① 定义:地球对单位质量的空气块所施加的万有引力② 表达式(1.2)K:万有引力常量M:地球质量a:到地心的距离③ 推导:图1.1.3 地心引力受力分析图④ 讨论:大小:不变,常数方向:指向地球心3.惯性离心力① 定义:观测者站在旋转地球外观测单位质量空气块所受到一个向心力的作用,但站在转动地球上(观测它的运动,发现它是静止的,这必然引入一个与向心力大小相同,方向相反的力,此力称为惯性离心力。
天气学原理和方法--第7章--刘强--整理第七章第一节降水的形成与诊断一、降水形成过程(一)一般降水的形成过程(有三个条件)1、水汽条件:水汽由源地水平输送到降水地区2、垂直运动条件:水汽在降水地区辐合上升,在上升中绝热膨胀冷却凝结成云3、云滴增长条件:云滴增长变为雨滴而下降前两个条件决定于天气学条件,是降水的宏观过程,第三个条件主要决定于云物理条件,是降水的微观过程。
云滴增长的条件主要决定于云层厚度,而云层厚度,由决定于水汽和垂直运动的条件,所以在降水预报中,通常只要分析水汽条件和垂直运动条件即可。
一般任务云滴增长的过程有两种:一种是“冰晶效应”可促使云滴迅速增长而产生降水,在中高纬度,这种过程起着重要作用;另一种是云滴的碰撞合并作用,尤其是云层发展较厚时,这种过程更明显。
(二)暴雨的形成条件凡是日降水量达到和超过50.0毫米的降水称为暴雨。
有三个普遍的主要条件,分别是充分的水汽供应、强烈的上升运动、较长的持续时间,另外还有一个地形条件,就是有利的地形条件。
1、充分的水汽供应暴雨是在大气饱和比湿达到相当大的数值以上才形成的,700hpa 上比湿≥8克/千克(对北京来说,比湿≥5克/千克),是出现大、暴雨的必要条件;有了相当高的饱和比湿条件,还必须有充分的水汽供应,因为只靠某一地区大气柱中所含的水汽凝结下降量很小,因此必须研究水汽供应的环流形势。
2、强烈的上升运动强烈的上升运动只有在不稳定能量释放时,才能形成,因此暴雨预报必须分析不稳定能量的储存和释放问题,研究形成暴雨的中、小尺度系统。
二、水汽方程和降水率(一)水汽方程水汽方程是表示水汽输送和变化的基本方程。
单位时间内通过某一单位面积的水汽量,称为水汽通量。
水汽方程表达式:此式说明,一个运动的单位质量湿空气块,其比湿的变化等于凝结率及湍流扩散率之和。
单位时间内,某一体积所含水汽的变化量主要有四个方面的因素决定:水平方向上水汽的净流入量,垂直方向上水汽的净流入量,凝结量,湍流扩散。
第七章第一节降水的形成与诊断一、降水形成过程(一)一般降水的形成过程(有三个条件)1、水汽条件:水汽由源地水平输送到降水地区2、垂直运动条件:水汽在降水地区辐合上升,在上升中绝热膨胀冷却凝结成云3、云滴增长条件:云滴增长变为雨滴而下降前两个条件决定于天气学条件,是降水的宏观过程,第三个条件主要决定于云物理条件,是降水的微观过程。
云滴增长的条件主要决定于云层厚度,而云层厚度,由决定于水汽和垂直运动的条件,所以在降水预报中,通常只要分析水汽条件和垂直运动条件即可。
一般任务云滴增长的过程有两种:一种是“冰晶效应”可促使云滴迅速增长而产生降水,在中高纬度,这种过程起着重要作用;另一种是云滴的碰撞合并作用,尤其是云层发展较厚时,这种过程更明显。
(二)暴雨的形成条件凡是日降水量达到和超过50.0毫米的降水称为暴雨。
有三个普遍的主要条件,分别是充分的水汽供应、强烈的上升运动、较长的持续时间,另外还有一个地形条件,就是有利的地形条件。
1、充分的水汽供应暴雨是在大气饱和比湿达到相当大的数值以上才形成的,700hpa上比湿≥8克/千克(对北京来说,比湿≥5克/千克),是出现大、暴雨的必要条件;有了相当高的饱和比湿条件,还必须有充分的水汽供应,因为只靠某一地区大气柱中所含的水汽凝结下降量很小,因此必须研究水汽供应的环流形势。
2、强烈的上升运动强烈的上升运动只有在不稳定能量释放时,才能形成,因此暴雨预报必须分析不稳定能量的储存和释放问题,研究形成暴雨的中、小尺度系统。
二、水汽方程和降水率(一)水汽方程水汽方程是表示水汽输送和变化的基本方程。
单位时间内通过某一单位面积的水汽量,称为水汽通量。
水汽方程表达式:此式说明,一个运动的单位质量湿空气块,其比湿的变化等于凝结率及湍流扩散率之和。
单位时间内,某一体积所含水汽的变化量主要有四个方面的因素决定:水平方向上水汽的净流入量,垂直方向上水汽的净流入量,凝结量,湍流扩散。
(二)降水率单位时间内降落在地面单位面积上的总降水量,称为降水率或降水强度。
表达式:三、水汽条件的诊断分析(一)水汽含量主要从以下几个湿度项目分析1、各层比湿或露点分析等压面上的比湿或露点的分布,就等于分析了湿度场的分布。
2、各层饱和程度一般用温度露点差来表示空气的饱和程度,通常以(T-T d)≤2℃的区域作为饱和区,(T-T d)≤4~5℃的区域作为湿区。
在垂直剖面图上,常使用相对湿度的分布来表示空气的饱和程度,一般≥90%作为饱和区。
3、湿层厚度湿层越厚,降水越强,常在单站探空曲线及剖面图中分析湿层厚度作为降水预报的指标。
(二)可降水量将某一地区上空整层大气的水汽全部凝结并降至地面的降水量成为该地区的可降水量。
表达式:一地区的可降水量的大小表示了该地区整层大气的水汽含量。
一般一地区较大的降水,其量远远超过该地区的可降水量,因此某地区要下一场较大的降水,就必须要有足够的水汽从源地不断向该地区供应。
(三)水汽通量源地的水汽,主要是通过大规模的水汽气流被输送到降水区的,其输送量的大小用水汽通量表示。
单位时间内,通过垂直于风向的单位面积输送的水汽量可表示为ρqV,即为水汽水平通量。
通过垂直于风向的底边为单位长度,高为整层大气柱的面积上的总的水汽通量为:(三)水汽通量散度(公式表达)若不考虑地形和地面摩擦的影响,且认为地面和大气层顶的垂直速度为零,则I=-D,即整层水汽水平辐合的大小,近似的等于降水率。
另外,由于:,可见水汽通量散度由两部分组成,一部分为水汽平流(右端第一项),另一部分为风的散度(右端第二项)。
(四)水汽的局地变化某地区水汽的变化取决于四项:比湿平流,比湿垂直输送,凝结、蒸发,湍流扩散。
总之,分析水汽条件主要是分析大气中的水汽含量及其变化、水汽通量和水汽平流等。
水汽通量辐合主要决定于空气的水平辐合,因而决定于垂直运动的条件。
四、垂直运动条件的诊断分析对垂直运动的诊断分析主要是通过分析水平风场和温压场来进行,前者主要是利用连续方程进行诊断,后者主要是利用ω方程进行诊断。
(一)用连续方程诊断垂直运动由第一章已知“p”坐标系中的连续方程为:将上式由地面(p0)到某层(p)积分得:(7.19)式中ωp0,是地面垂直速度,下面将要进一步讨论。
如果地面平坦且摩擦较小时,可以认为ωp0=0,而上式可简化为:(7.20)上式的意义是p层的垂直速度,由p层以下整层的水平散度之和所决定。
当水平散度之和为辐台时,p层有上升运动(ωp<o),反之,有下沉运动。
因此,可以根据(7.20)式用大气低层风场的水平散度大致估计对流层中层的垂直运动,一般大气中层垂直运动较高层低层大,与降水的关系密切。
若对连续方程由大气层顶(p=0)到p层积分则得;因为在大气层顶ω0=0,所以上式可以写成:(7.21)其意义是p层的垂直速度也可由p层以上的水平散度之和来决定。
当水平散度之和为辐散时,p层有上升运动(ωp<o)。
这种作用称为“抽气”作用。
反之,当水平散度之和为辐合时,p层有下沉运动。
因此,也可以根据(7.21)式用大气高层风场的水平散度大致估计对流层中层的垂直运动。
1、低层散度的诊断(1)通常可用850hpa或700hpa图上的风向风速来诊断辐合上升运动的强度及降水。
有以下几种降水分布型式可在日常预报中参考使用(阴影区为降水区):(a 风速辐合、b风向辐合)(a 风向切变、b 冷锋式辐合与切变相结合、c 暖锋式辐合与切变)(a 风向风速辐合、b 风向辐合与风速切变相结合)(2)流畅散度主要是由非地转风所造成的。
我们可以用地面图上的变压(一般用△p3)或低层等压面图上的变高分布来诊断散度,从而诊断垂直运动。
在正变压中心有辐散下沉运动,负变压中心有辐合上升运动,中心数值愈大,愈明显。
西风带低层系统一般是向东移动的,故在低压东部.高压西部为负变压区,因而有上升运动;反之,低压西部、高压东部为正变压区,故有下沉运动。
低压加深、高压减弱时有上升运动,低压减弱、高压加强时有下沉运动。
2、高层散度的诊断由于高层测风记录误差较大,用风场直接分析判断散度有困难。
根据卫昆云图上高云云系的辐散结构来判断高层辐散是一个较好的方法。
在天气图上一般都利用高层的涡度平流来分析判断高层辐散,从而估计垂直运动。
此式说明,水平散度可从下面三项判断:第一项为相对涡度局地变化项;第二项为相对涡度平流项;第三项为纬度效应(即地转涡度平流)项。
高层散度主要决定于相对涡度平流。
槽前有正的相对涡度平流,因而槽前有辐散上升运动,槽后有负的相对涡度平流,因而槽后有辐合下沉运动。
当高空槽位于高空急流轴上时,相对涡度平流更强,因而在这里有强的垂直运动。
为了分析高层散度,最好用200百帕或300百帕图。
(二)用ω方程诊断垂直运动1、热成风对相对涡度平流的作用热成风对绝对涡度的平流是决定垂直运动的主要因子。
可只利用某一层等压面的温压场资料,就可判断垂直运动。
当热成风对相对涡度平流为正时,有上升运动;反之,有下沉运动。
上图表示涡度平流和冷暖平流对垂直运动贡献一致。
图中虚线为等温线,实线为等高线,点划线为等ζg线。
在高空槽前,有暖平流和正的涡度平流,二者都对上升运动有贡献。
所以总的效果显然亦为上升运动。
在高空槽后为冷平流及负涡度平流,二者都对下沉运动有贡献,其总的效果也很明显,是下沉运动。
按热成风对相对涡度平流的作用,槽前为正,有上升运动,槽后为负,有下沉这动,与上述结果是一致的。
下图表示涡度平流和冷暖平流对垂直运动贡献相反。
图中高空槽前为冷平流,对下沉运动有贡献,而正涡度平流对上升运动有贡献,其对垂直运动的总效果就不明显。
同理,槽后的总效果也不明显。
如按热成风对相对涡度平流,则槽前为正,明确表明为上升运动。
槽后为负,麦明为下沉运动。
在日常分析顾报中如不分析等涡度线,可根据等高线的形势大致估计涡度的分布,进而判断垂直运动。
2、非绝热加热对垂直运动的贡献在非绝热加热作用中,以凝结潜热释放为主,释放出的凝结潜热所引起的垂直上升运动,必须在其他原因造成了上升运动基础上才能产生。
因此,人们常把凝结潜热引起的上升运动称为降水对于上升运动的反馈作用。
根据实际资料的分析,一般认为在满足下列三条件的地区才可能有潜热释放:①摩擦层中有水汽通量的净辐合;②有其他原因造成的上升运动;③空气近于饱和,例如规定T—T d≤4℃。
五、地形和摩擦对降水的影响(一)地形的动力作用地形对降水关系很密切,在同样的天气形势下,迎风坡的降水要比其他地区大。
在一定的条件下,地形对降水有两个作用,一是动力作用,二是云物理作用。
动力作用中主要是地形的强迫抬升。
由于地形抬升产生的上升运动和下沉运动是随高度减弱的;地形的动力作用还表现在地形使系统性的风向发生改变,从而在某些地方产生地形辐合或辐散,因而影响垂直运动和降水。
例如当盛行风朝着喇叭口地形灌进时,由于地形的收缩,常常引起辐合上升运动的加强和降水量的增大。
所谓喇叭口地形即是三面环山,一面开口的谷地。
(二)地形的云物理作用地形可以改变降水形成的云雾物理过程,使得已经凝结的水分,高效率地下降为雨,从而增加降水量。
地形对降水形成的云雾物理过程的改变方式是复杂的。
从现有的研究成果来看,可能有四种情况:1、对流层中部层状云和低云的相互作用;2、对流层中部层状云和积雨云的相互作用;3、积雨云和低空层状云的相互作用;4、对流层中部不稳定与低云的相互作用。
(三)摩擦作用在近地面层中由于摩擦作用,风由高压吹向低压时,在气旋性涡度的地区,便会出现摩擦辐合,并有上升运动形成;而在反气旋性涡度的地区,则出现辐散下沉运动。
摩擦对于降水的重要贡献主要是提供了降水的水汽来源。
计算表明,在暴雨区上空,高层的水汽辐合通量是微不足道的,主要是靠700百帕以下的水汽辐合通量来供给水汽。
低层幅合的水汽直接在低启凝结成雨的仅占一半,其余一半则通过700百帕面向上输送到高层而后凝结成雨。
因此,摩擦辐合有利于将雨区四周摩擦层中的水汽集中地向高层输送,从而使降水加强。
例如台风登陆后,由于摩擦影响,中心强度虽然迅速减弱,但由于系统仍有一定的强度,摩擦幅合上升运动较大,所以在系统减弱的同时,仍可发生较大的降水。
第二节大范围降水的环流特征一、中国降水的气候概况(一)中国各地雨量和雨季(了解)雨季:夏季的连阴雨期,它们都是在大范围的环流形势稳定的背景下产生的,但因夏季水汽充沛,降水量多,故,夏季的连阴雨期一般称为雨季。
一般的讲,从东南沿海向西北内陆减少。
大多数地区雨量多集中在夏季,有明显的雨季、干季之分。
高原(东北部比西南、西北部开始早、结束晚)云贵高原——5月下旬到10月下旬青藏高原——6月中旬到10月下旬新疆全年平均雨季、干季不明显东部地区(南部比北部开始早、结束晚)华南沿海——4月到10月中旬长江流域——6月上旬——9月初华北东北——7月中旬——8月底(二)东亚环流的季节变化与雨带活动大雨带的位移与西太平洋副热带高压脊线、100百帕青藏高压、副热带西风急流以及东亚季风的季节变化有关。