管理运筹学lindo案例分析报告
- 格式:docx
- 大小:66.57 KB
- 文档页数:16
(a)Lindo的数据分析及习题(a)灵敏性分析(Range,Ctrl+R)用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。
为了激活灵敏性分析,运行LINGO|Op tions…,选择General Solver Tab,在Dual Computations列表框中,选择Prices and Ranges选项。
灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。
下面我们看一个简单的具体例子。
例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:每个书桌每个餐桌每个椅子现有资源总数木料8单位6单位1单位48单位漆工4单位2单位 1.5单位20单位木工2单位 1.5单位0.5单位8单位成品单价60单位30单位20单位若要求桌子的生产量不超过5件,如何安排三种产品的生产可使利润最大?用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration: 3Objective value: 280.0000Variable Value Reduced CostDESKS 2.000000 0.000000TABLES 0.000000 5.000000CHAIRS 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000“Global optimal solution found at iteration: 3”表示3次迭代后得到全局最优解。
实验报告实验课程名称运筹学
实验项目名称用LINDO验证目标规划
模型并求解
年级
专业
学生姓名
学号
实验时间:年月日
原问题为课本p119面的例3。
一、建立原问题的目标规划模型:
利用LINDO 求解出一个满意解:
从求解结果来看:
满足要求的一个生产计划是:1x (彩色电视机)生产24台;2x (黑白电视机)生产26台。
其中:D12=10,D41=4,表示:每周装配线多开机了10个小时,黑白电视机与30台的目标相比少成产了4台。
而 D22=D21=D31=D32=0,表示每周装配线刚好加班10个小时,彩色电视机的生产量刚好为目标值。
二、调整期望值,再求解:
如果每周开机计划开动可以增加10个小时,那么:
模型的表示形式为:
利用LINDO求解出一个满意解:
从求解结果来看:
满足生产目标的生产计划没有发生改变。
但是,D12=D11=D22=D21=D31=D32=0,说明如果每周的计划开机时间定为50个小时的话,不用加班就能满足其他生产计划。
三、改变优先级
1)让黑白电视的生产量尽可能达到生产计划:
利用LINDO求解出一个满意解:
从求解结果来看:
如果想在扩大黑白电视的生产使其尽可能达到生产目,那么就必须要以牺牲工人的加班时间为代价了,装配线的工作时间就要再超出4个小时。
2)如果员工不满加班:
利用LINGO求解出一个满意解:
从结果来看,
即使增大加班时间不超过10个小时的优先级,工人还需要加班10个小时。
这说明如果工人做出让步,同意加班,那么他们的工作时间就会达到他们心中的底线,尽管他们不满意加班。
标题:LINDO 软件包介绍;副标题:Lindo 解线性规划问题实例导语:LINDO 软件包首先由Linus Schrage 开发,现在,美国的LINDO 系统公司(LINDO System Inc.)拥有版权,是一种专门求解数学规划(优化问题)的软件包。
它能求解线性规划、(0,1)规划、整数规划、二次规划等优化问题,并能同时给出灵敏度分析、影子价格以及最优解的松弛分析,非常方便实用。
1.注意事项(1) 低版本的LINDO 要求变量一律用大写字母表示;(2) 求解一个问题,送入的程序必须以MIN 或MAX 开头,以END 结束;然后按Ctrl + S (或按工具栏中的执行快捷键)进行求解;(3) 目标函数与约束条件之间要用SUBJECT TO (或ST )分开,其中字母全部大写;(4) LINDO 已假定所有变量非负,若某变量,例如X5有可能取负值,可在END 命令下面一行用FREE X5命令取消X5的非负限制;LINDO 要求将取整数值的变量放在前面(即下标取小值),在END 下面一行用命令INTEGER K ,表示前K 个变量是(0,1)变量;在END 下面一行用命令GIN H 表示前H 个变量是整数变量;(5) 在LINDO 中,“<”等价于“≤” ,“>”等价于“≥” ;(6) 在LINDO 的输出结果中有STATUS (状态栏),它的表出状态有:OPTIMAL (说明软件包求得的结果是最优解)、FEASIBLE (说明软件包求得的结果只是可行解)、INFEASIBLE (说明软件包求得的结果是不可行解)。
(7) 在LINDO 命令中,约束条件的右边只能是常数,不能有变量;(8) 变量名不能超过8个字符;(9) LINDO 对目标函数的要求,每项都要有变量,例如,LINDO 不认识MIN 2000-X+Y ,要改为MIN –X+Y ;(10)LINDO 不认识400(X+Y )要改为400X+400Y 。
运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]第一篇:运筹学的应用简介及实例(lindo,lingo,ahp)运筹学的应用简介及实例(lindo,lingo,ahp)一.运筹学可以用于物流中心选址:配送中心合理选址的目的是为了提高物流企业的服务质量,最大限度地增加物流企业的经济效益。
科学合理的选址不仅能够减少货物运输费用,大幅度地降低运营成本,而且能为客户带来方便快捷的服务。
二.运筹学可以用于路线选择:利用运筹学中的图论和线性规划方法,对已有的空运、水运、公路运输、管道运输、铁路运输组成的交通网,根据不同的决策目标制定不同的调运方案,可以是最短时间的运输路线、最少费用的运输路线或是最大运输量最低运费的运输线路等,从而达到降低物流成本的目的。
三.运筹学中排队论在物流中应用:排队论主要研究具有随机性的拥挤现象,在物流中有许多问题涉及,诸如机场跑道设计和机场设施数量问题, 如何才能既保证飞机起降的使用要求, 又不浪费机场资源又如码头的泊位设计和装卸设备的购置问题, 如何达到既能满足船舶到港的装卸要求, 而又不浪费港口资源等等。
四.运筹学中库存论在物流中应用:库存论主要是研究物资库存策略的理论, 即确定物资库存量、补货频率和一次补货量。
合理的库存是生产和生活顺利进行的必要保障, 可以减少资金的占用, 减少费用支出和不必要的周转环节, 缩短物资流通周期, 加速再生产的过程等。
在物流领域中的各节点如工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存。
五.运筹学中对策论在物流中应用:对策论研究有利害冲突的双方在竞争性的活动中是否存在自己制胜对方的最优策略, 以及如何找出这些策略等问题。
在这些问题中, 把双方的损耗用数量来描述, 并找出双方最优策略。
对策论的发展, 考虑有多方参加的竞争活动, 在这些活动中, 竞争策略要通过参加者多次的决策才能确定。
参考文献:[1] 左元斌.运筹学在物流配送中心的应用研究[J].商场现代化,2006(458):125-127.[2] 李宇鸣.浅谈运筹学在物流管理中应用与发展[J].吉林工商学报,2007(4):55-56.[3] 田进波.运筹学在管理物流管理中的应用[J].石油工程建设,2010(36):153-155.LINDO求解目标规划:题目:一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。
秋季流行服饰与衣料得准备(五人)目从办公室得十层大楼里,凯瑟琳・拉里俯视着下面忙忙碌碌得人流,在充塞着黄色出租车得街道以及乱放着一些买热狗得摊位得人行道上,成群得纽约人来来往往,好不热闹.在这闷热得暑天里,她注视着各类女性得穿衣时尚,心里想得却就是这些人在秋季将会选择怎样得款式•这并非就是她得一时得灵感,而就是她工作得重要得一部分因为她拥有并经营着一家妇女精品时装公司一一时尚隧道(T r en d Lin e s)公司。
今天对她来说就是很重要得,因为她将与生产部经理泰德・罗森碰面,一起商讨下一个月秋季生产线得生产计划,特别就是在一定得生产能力得基础上确定要各种服装得生产量。
制定下个月得周密得生产计划对于秋季得销售就是至关重要得,因为这些产品在9月份将会上市,而妇女们通常在服装一上市时就会购买大部分得秋天得服饰。
凯瑟琳回转身,走到宽大得玻璃台旁去瞧铺上面得大量得资料及设计图。
她扫视着6个月以前就设计出来得服装图样,各种样式所需要得材料,以及在时装展上通过消费者调研取得得各种样式得需求预测。
现在,她还记得当时就是如何设汁图样并将样品在纽约,米兰与巴黎得服装展上展出,那些天可真就是既兴奋而又痛苦。
最后,她付给六个设计者得总酬金为$ 86 0 ,0 00.除此外,每次时装展得费用为$ 2, 70 0,000,包括雇用职业模特、发型师、化妆师,以及衣服得裁制与缝纫、展台背景得设计、模特得走步与排练、会场得租用。
她研究着衣服得样式与所需得材料。
秋季得服装包括职业装与休闲装,而每种服装得价格就是由衣服得质量、材料得成本、人工成本、机器成本,以及对该产品得需求与品牌得知名度等因素来确定得。
秋季得职业装包括秋季得休闲装包括她知道已经为下个月采购了下面得这些材料:羊毛45, 00 0码、开司米2 8,0 00 码、丝绸18,000码、人造纤维30, 000码、天鹅绒2 0,0 00码、棉布30,00 0码。
各种材料得价格如下图所示:多余得材料(不包括下脚料)可以运回给衣料供应商,并得到全额得偿还。
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai;Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000C( W1, V8) 9.000000 0.000000 C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000X( W1, V4) 0.000000 7.000000 X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000X( W6, V8) 0.000000 3.000000 Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
Lindo软件求解管理领域中的各种问题实验总结一、引言Lindo软件是一款经典的数学规划软件,广泛应用于管理领域中的各种问题的求解。
本文将以Lindo软件为工具,对管理领域中的各种问题进行实验,并总结实验结果和经验教训。
二、线性规划问题求解2.1 问题描述线性规划是管理领域中常见的一种问题求解方法,其目标是寻找一组决策变量的最优值,使得目标函数达到最大或最小值,同时满足一系列线性约束条件。
2.2 实验步骤1.定义决策变量:根据问题的需求和约束条件,定义相关的决策变量。
2.构建目标函数和约束条件:根据问题的目标和约束条件,构建数学模型。
3.输入模型:使用Lindo软件将模型输入到软件中进行求解。
4.分析结果:分析Lindo软件求解的结果,得出最优解和相应的决策变量取值。
5.可行性分析:对结果进行可行性分析,判断解的合理性和可行性。
2.3 实验总结•Lindo软件可以高效地求解线性规划问题,快速得出最优解。
•在构建模型时,需要确保目标函数和约束条件的准确性和合理性。
•对结果进行可行性分析时,需要结合实际情况进行合理判断。
三、整数规划问题求解3.1 问题描述整数规划是线性规划的一种扩展,其决策变量取值限定为整数。
在管理领域中,很多问题需要求解整数规划模型,例如生产调度问题、旅行商问题等。
3.2 实验步骤1.定义决策变量:根据问题的需求和约束条件,定义相关的决策变量,并确定变量的取值范围为整数。
2.构建目标函数和约束条件:根据问题的目标和约束条件,构建整数规划模型。
3.输入模型:使用Lindo软件将整数规划模型输入到软件中进行求解。
4.分析结果:分析Lindo软件求解的结果,得出最优解和相应的决策变量取值。
5.灵敏度分析:对结果进行灵敏度分析,了解目标函数系数和约束条件的变化对结果的影响。
3.3 实验总结•在求解整数规划问题时,需要确定决策变量的取值范围为整数,以确保结果的可行性和合理性。
•Lindo软件在求解整数规划问题时需要更多的计算资源和时间,但仍能得到较好的求解效果。
案例:连续投资的优化问题一、题目:某企业在今后五年内考虑对下列项目投资,已知:项目A,从第一年到第四年每年年初需要投资,并于次年末收回本利115%。
项目B,第三年年初需要投资,到第五年末能收回本利125%,但规定最大投资额不超过40万元。
项目C,第二年年初需要投资,到第五年末能收回本利140%,但规定最大投资额不超过30万元。
项目D,五年内每年年初可购买公债,于当年末归还,并加利息6%。
该企业5年内可用于投资的资金总额为100万元,问它应如何确定给这些项目的每年投资使得到第五年末获得的投资本利总额为最大?二、建立上述问题的数学模型设X1A,X iB , X iC, X iD(i=1.2.3.4.5)为第i年初给项目A,B,C,D的投资额,它们都是待定的未知量。
由于项目D每年年初均可投资,年末收回本利,固每年的投资额应该等于手中拥有的资金额。
建立该问题的线性规划模型如下:Max Z=1.15X4A+1.40X2C+1.25X3B+1.06X5DX1A+X1D=1000000 (1)X2A+X2C+X2D=1.06X1D(2)X3A+X3B+X3D=1.15X1A+1.06X2D (3)s.t. X4A+X4D=1.15X2A+1.06X3D (4)X5D=1.15X3A+1.06X4D (5)X3B<=400000 (6)X2C<=300000 (7)X1A , X iB , X iC, X iD>=0 i=1,2,3,4,5经过整理后如下:Max Z=1.15X4A+1.40X2C+1.25X3B+1.06X5DX1A+X1D=1000000-1.06X1D+ X2A+X2C+X2D =0-1.15X1A-1.06X2D+ X3A+X3B+X3D=0s.t. -1.15X2A-1.06X3D +X4A+X4D=0-1.15X3A-1.06X4D+ X5D=0X3B<=400000X2C<=300000X1A , X iB , X iC, X iD>=0 i=1,2,3,4,5三、Excel求解过程以及相应的结果(1)在Excel中进行布局并输入相应的公式相应公式说明:其中目标函数单元格B16中公式为:=G3*E11+G4*D12+G5*C13+G6*F14 约束条件为投资额的限制以及每年资金分配部分:每年资金分配部分为原模型中约束(1)~(5):J11 =SUMPRODUCT(B11:B14,J3:J6);K11 =SUMPRODUCT(C11:C14,K3:K6);L11 =SUMPRODUCT(D11:D14,L3:L6);M11 =SUMPRODUCT(E11:E14,M3:M6);N11 =SUMPRODUCT(F11:F14,N3:N6);投资额约束:原模型中约束(6)~(7)D12<=P4;C13<=P5;(2)设置规划求解参数并进行求解如右图所示:另外单击选项-采用线性模型,假定非负(3)规划求解结果与分析实验数据分析:线性模型的优化的结果将显示在Excel的界面中,决策变量及目标函数的位置就会出现相应的优化结果值,目标函数的优化结果值是143.75。
秋季流行服饰与衣料的准备(五人)目从办公室的十层大楼里,凯瑟琳·拉里俯视着下面忙忙碌碌的人流,在充塞着黄色出租车的街道以及乱放着一些买热狗的摊位的人行道上,成群的纽约人来来往往,好不热闹。
在这闷热的暑天里,她注视着各类女性的穿衣时尚,心里想的却是这些人在秋季将会选择怎样的款式。
这并非是她的一时的灵感,而是她工作的重要的一部分因为她拥有并经营着一家妇女精品时装公司――时尚隧道(TrendLines)公司。
今天对她来说是很重要的,因为她将与生产部经理泰德·罗森碰面,一起商讨下一个月秋季生产线的生产计划,特别是在一定的生产能力的基础上确定要各种服装的生产量。
制定下个月的周密的生产计划对于秋季的销售是至关重要的,因为这些产品在9 月份将会上市,而妇女们通常在服装一上市时就会购买大部分的秋天的服饰。
凯瑟琳回转身,走到宽大的玻璃台旁去看铺上面的大量的资料及设计图。
她扫视着6个月以前就设计出来的服装图样,各种样式所需要的材料,以及在时装展上通过消费者调研取得的各种样式的需求预测。
现在,她还记得当时是如何设汁图样并将样品在纽约,米兰和巴黎的服装展上展出,那些天可真是既兴奋而又痛苦。
最后,她付给六个设计者的总酬金为$860,000。
除此外,每次时装展的费用为$2,700,000,包括雇用职业模特、发型师、化妆师,以及衣服的裁制与缝纫、展台背景的设计、模特的走步与排练、会场的租用。
她研究着衣服的样式和所需的材料。
秋季的服装包括职业装和休闲装,而每种服装的价格是由衣服的质量、材料的成本、人工成本、机器成本,以及对该产品的需求与品牌的知名度等因素来确定的。
她知道已经为下个月采购了下面的这些材料:羊毛45,000码、开司米28,000码、丝绸18,000码、人造纤维30,000码、天鹅绒20,000码、棉布30,000码。
各种材料的价格如下图所示:多余的材料(不包括下脚料)可以运回给衣料供应商,并得到全额的偿还。
运筹学上机实验报告标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-新疆大学Xinjiang Universit y运筹学实验报告姓名:阿卜力孜。
阿卜力米提班级:采矿10-2班学号:413指导教师:二〇一三年十二月实验一 LINDO软件安装与使用(线性规划问题)一、实验目的熟悉LINDO软件安装过程和基本算法;了解LINDO软件解决线性规划问题的一般步骤和基本原理;掌握编写LINDO求解线性规划问题的简单代码,熟悉常用的调试方法;二、实验仪器、设备或软件电脑,LINDO软件三、实验内容1.LINDO软件的安装和基本调试;2.使用LINDO软件求解基本线性规划问题,编写简单的计算代码;四、实验步骤1.在F盘建立一个自己的文件夹;2.安装并调试LINDO软件;3.使用LINDO计算并求解线性规划问题;4.写出实验报告,并浅谈学习心得体会(实验中遇到的问题及解决方法)。
五、实验要求与任务根据实验内容和步骤,完成以下具体实验,按照要求写出实验报告。
1.线性规划问题课本P43页(1-4)2.线性规划问题 P29页例5六、实验过程(实验步骤、记录、数据、分析)习题习题例题5实验二 LINDO软件安装与使用(动态规划问题)一、实验目的掌握LINDO软件求解动态规划问题的基本步骤,了解LINDO软件解决动态规划问题的基本原理,熟悉常用的调试及修正动态规划计算代码,理解动态规划问题的迭代关系。
二、实验仪器、设备或软件电脑,LINDO软件三、实验内容1.LINDO软件求解动态规划问题的基本原理;2.编写并调试LINDO软件求解动态规划问题的计算代码;四、实验步骤1.在F盘建立一个自己的文件夹;2.安装并调试LINDO软件;3.使用LINDO计算并求解动态规划问题;4.写出实验报告,并浅谈学习心得体会(动态规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。
五、实验要求与任务根据实验内容和步骤,按照要求完成以下具体实验,要求写出实验报告。
用LINDO、LINGO 解运筹学问题一、 软件简介LINDO是一种专门用于求解数学规划问题的软件包。
由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。
因此在数学、科研和工业界得到广泛应用。
LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。
也可以用于一些非线性和线性方程组的求解以及代数方程求根等。
LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。
一般用LINDO(Linear Interactive and Discrete Optimizer)解决线性规划(LP—Linear Programming)。
整数规划(IP—Integer Programming)问题。
其中LINDO 6 .1 学生版至多可求解多达300个变量和150个约束的规划问题。
其正式版(标准版)则可求解的变量和约束在1量级以上。
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。
虽然LINDO和LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。
要学好用这两个软件最好的办法就是学习他们自带的HELP文件。
二、下面拟举数例以说明这两个软件的最基本用法。
(例子均选自张莹《运筹学基础》)例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。
某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。
管理运筹学lindo案例分析⑻Lindo的数据分析及习题用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。
为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab , 在Dual Computations 列表框中,选择Prices and Ranges 选项。
灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。
下面我们看一个简单的具体例子。
例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:用DESKS TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration:3Objective value:280.0000Variable Value Reduced CostDESKS 2.0000000.000000TABLES0.000000 5.000000CHAIRS8.0000000.000000Row Slack or Surplus Dual Price1280.0000 1.000000224.000000.00000030.00000010.0000040.00000010.000005 5.0000000.000000“ Global optimal solution found at iteration: 3 ”表示 3 次迭代后得到全局最优解。
实验题目线性规划建模应用一、实验目的1、掌握线性规划问题的建模与解决。
2、学会使用LINDO软件,并在线性规划的求解中的应用。
二、实验内容假定某医院院周会上正在研究制定一昼夜护士值班安排计划。
在会议上,护理部主任提交了一份全院24小时各时段内需要在岗护士的数量报告,见下表。
如果按照每人每天两小班轮换,中间间隔休息时间8小时,这样安排岗位不但会造成人员冗余,同时护理人员上下班不是很方便。
由于医院护理工作的特殊性,又要求尽量保证护理人员工作的连续性,最终确定每名护士连续工作两个小班次,即24小时内一个大班8小时,即连续上满两个小班。
为了合理的压缩编制,医务部提出一个合理化建议:允许不同护士的大班之间可以合理相互重叠小班,即分成六组轮班开展全天的护理值班(每一个小班时段实际上由两个交替的大班的前段和后段共同承担)。
现在人力部门面临的问题是:如何合理安排岗位,才能满足值班的需要?正在会议结束之前,护理部又提出一个问题:目前全院在编的正式护士只有50人,工资定额为10元/小时;如果人力部门提供的定编超过50人,那么必须以15元/小时的薪酬外聘合同护士。
一但出现这种情况又如何安排上述班次?保卫处后来又补充到,最好在深夜2点的时候避免交班,这样又如何安排班次?三、实验分析报告根据各部门提出的意见,预备提出四种备选方案,各方案分析如下:1、没考虑定编上限和保卫处的建议令2:00-6:00-10:00,6:00-10:00-14:00,10:00-14:00-18:00,14:00-18:00-22:00,18:00-22:00-2:00,22:00-2:00-6:00时段的大班开始上班的人数分别为X1, X2, X3, X4, X5, X6. 由此可得的2:00-6:00,6:00-10:00,10:00-14:00,14:00-18:00,18:00-22:00,22:00-2:00各小班人数为X1+X6, X1+X2 , X2+X3, X3+X4, X4+X5, X5+X6.可得线性规划问题如下:目标函数为要求所需开始上班的人数最小,约束条件为由各大班开始上班人数所得的各小班人数必须大于规定的小班需要护士量.MinZ=X1+X2+X3+X4+X5+X6X1+X6>=10 ,X1+X2>=15X2+X3>=25 ,X3+X4>=20X4+X5>=18 ,X5+X6>=12X1~X6>=0,且X1~X6为整数在不考虑定编上限和保卫处的建议的情况下,在满足正常需要的情况下医院最少需要53名护士。
食油生产问题(案例一)分析报告一、模型构造1.1 变量设置设两种硬质油代号分别为HD1、HD2(HD代表Hard),三种软质油代号分别为SF1、SF2、SF3(SF代表Soft)。
每种油的采购(Buy)、耗用(Use)和储存(Store)量分别在油品的代号前加B、U和S表示。
1—6月份5种油品的采购、耗用和储存量分别在油品代号后面加1—6表示。
总产量用PROD(Product)表示。
第一种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD11,BHD12,BHD13,BHD14,BHD15,BHD16;UHD11,UHD12,UHD13,UHD14,UHD15,UHD16;SHD11,SHD12,SHD13,SHD14,SHD15;第二种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD21,BHD22,BHD23,BHD24,BHD25,BHD26;UHD21,UHD22,UHD23,UHD24,UHD25,UHD26;SHD21,SHD22,SHD23,SHD24,SHD25;第一种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF11,BSF12,BSF13,BSF14,BSF15,BSF16;USF11,USF12,USF13,USF14,USF15,USF16;SSF11,SSF12,SSF13,SSF14,SSF15;第二种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF21,BSF22,BSF23,BSF24,BSF25,BSF26;USF21,USF22,USF23,USF24,USF25,USF26;SSF21,SSF22,SSF23,SSF24,SSF25;第三种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
实验概述:实验二、灵敏度分析(操作型)【实验目的及要求】1、进一步掌握管理运筹学、LINDO和LINGO软件的基本入门知识,学习使用管理运筹学、LINDO和LINGO软件对线性规划问题进行灵敏度分析。
2、熟练掌握用单纯形法求解线性规划问题。
【实验原理】单纯形法迭代原理及其基本步骤【实验环境】(使用的软件)管理运筹学软件、LINDO软件,信息中心6机房计算机实验内容:【实验方案设计】1、分别打开管理运筹学、LIND软件;2、在打开的软件中输入课本例题和习题数据,对线性规划问题进行灵敏度分析;3、运行实验并保存实验结果。
【实验过程】使用管理运筹学、LINDO软件分别对线性规划问题进行灵敏度分析。
1、使用管理运筹学软件对线性规划问题进行灵敏度分析:(1)打开管理运筹学软件,选择“线性规划”,单击“新建”菜单,输入P59-例题2.6.1的变量个数、约束条件个数并选择目标函数,点击“确定”。
在目标函数中输入价值系数,再输入变量的约束条件数据,然后选择变量的正、负、无。
选择“解决”得到线性规划结果,保存文件于指定文件夹。
(2)将例2.6.1中的右端向量b=(2 1)T变为b1=(-2 1)T,其他数据不变。
(3)在“线性规划”界面中,单击“新建”菜单,输入P77-习题20的变量个数、约束条件个数并选择目标函数,点击“确定”。
在目标函数中输入价值系数,再输入变量的约束条件数据,然后选择变量的正、负、无。
选择“解决”得到线性规划结果,保存文件于指定文件夹。
(4)将P77-习题20中的价值系数C1由1变为(-5/4);C1由1变为(-5/4),C3由1变为2;b由(5 3)T变为b1=(-2 1)T;b=(5 3)T变为b1=(2 3)T。
2、使用LINDU软件对线性规划问题进行灵敏度分析:(1)打开LINDU软件,在空白框中输入P79-习题B(1)的目标函数和约束条件,点击靶形工具,是否进行灵敏度分析选择“是”,得到线性规划及灵敏度分析结果,保存文件到LINDO文件夹。
运筹学案例分析报告一、研究目的及问题表述一研究目的:公司、企业或项目单位为了达到招商融资和其它发展目标之目的,在经过前期对项目科学地调研、分析、搜集与整理有关资料的基础上,向读者全面展示公司和项目目前状况、未来发展潜力的书面材料。
这是投资公司在进行投资前非常必要的一个过程。
所以比较有实用性和研究性。
二问题表述:红杉资本于1972年在美国硅谷成立。
从2021年9月成立至今,在科技,消费服务业,医疗健康和新能源/清洁技术等投资了众多具有代表意义的高成长公司。
在2021年红杉资本投资的几家企业项目的基础上,规划了未来五年在上述基础上扩大投资金额,以获得更多的利润与合作效应。
已知:项目1受资方:海纳医信:从第一年到第四年每年年初需要投资,并于次年末收回本利115%项目2受资方:今世良缘:第三年年初需要投资,到第五年末能收回本利125%,但规定最大投资额不超过40万元。
项目3受资方:看书网:第二年年初需要投资,到第五年末能收回本利140%,但规定最大投资额不超过30万元。
项目4受资方:瑞卡租车:五年内每年年初可购买公债,于当年末归还,并加息6%。
该企业5年内可用于投资的资金总额为100万元,问他应如何确定给这些项目的每年投资使得到第五年末获得的投资本例总额为最大?三数据来源:以下的公司于受资方等都是在投资网中找到的,其中一些数据为机密部分,所以根据资料中红杉资本所投资的金额的基础上,去编织了部分的数据,以完成此报告研究。
二、方法选择及结果分析一方法选择:根据自身的知识所学,选用了运筹学线性规划等知识,再结合Lindo软件,也有其他的方法与软件,但是线性规划为运筹学中比较基本的方法,并且运用起来比较方便简捷,也确保了方法的准确性。
二求解步骤:解:设xi1,xi2,xi3,xi4i=1,2,3,4,5为第i年初给项目1,2,3,4的投资额,他们都是待定的未知量。
由于项目4每年年初均可投资,年末收回本利,故每年的投资额应该等于手中拥有的资金额。
管理运筹学lindo案例分析⑻Lindo的数据分析及习题用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。
为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab , 在Dual Computations 列表框中,选择Prices and Ranges 选项。
灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。
下面我们看一个简单的具体例子。
例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:用DESKS TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration:3Objective value:280.0000Variable Value Reduced CostDESKS 2.0000000.000000TABLES0.000000 5.000000CHAIRS8.0000000.000000Row Slack or Surplus Dual Price1280.0000 1.000000224.000000.00000030.00000010.0000040.00000010.000005 5.0000000.000000“ Global optimal solution found at iteration: 3 ”表示 3 次迭代后得到全局最优解。
a Objective value:280.0000 ”表示最优目标值为280。
“Value”给出最优解中各变量的值:造2个书桌(desks), 0 个餐桌(tables ), 8 个椅子(chairs )。
所以desks、chairs 是基变量(非0), tables 是非基变量(0 )。
“ Slack or Surplus ”给出松驰变量的值:第1行松驰变量=280 (模型第一行表示目标函数,所以第二行对应第一个约束)第2行松驰变量=24第3行松驰变量=0第4行松驰变量=0第5行松驰变量=5“ Reduced Cost ”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目标函数的变化率。
其中基变量的reduced cost 值应为0, 对于非基变量X j,相应的reduced cost 值表示当某个变量X j 增加一个单位时目标函数减少的量( max 型问题)。
本例中:变量tables 对应的reduced cost 值为 5,表示当非基变量 tables 的值从 0 变为 1 时(此时假定其他非基变量保持不变 但为了满足约束条件,基变量显然会发生变化) ,最优的目标函数值 = 280 - 5 = 275 。
“ DUAL PRICE (对偶价格)表示当对应约束有微小变动时 ,目标函数的变化率。
输出结果中对 应于每一个约束有一个对偶价格。
若其数值为 p , 表示对应约束中不等式右端项若增加 1 个单位, 目 标函数将增加 p 个单位( max 型问题)。
显然,如果在最优解处约束正好取等号(也就是“紧约束”, 也称为有效约束或起作用约束) ,对偶价格值才可能不是 0。
本例中:第 3、4 行是紧约束,对应的对偶 价格值为 10,表示当紧约束3)4 DESKS + 2 TABLES + 1.5 CHAIRS <= 20 变为 3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 21 时,目标函数值 = 280 +10 = 290 。
对第 4 行也类似。
对于非紧约束(如本例中第 2、5 行是非紧约束) ,DUAL PRICE 的值为 0, 表示对应约束中不等式右端项的微小扰动不影响目标函数。
有时 , 通过分析 DUALPRICE, 也可对产生不可行问题的原因有所了解。
灵敏度分析的结果是Ranges in which the basis is unchanged:Objective Coefficient Ranges Current Allowable AllowableRighthand Side RangesRow CurrentAllowable AllowableRHS Increase Decrease2 48.00000 0.0 0.0 320.00000 0.0 0.0 4 8.000000 0.0 0.0 55.0000000.00.0目标函数中 DESKS 变量原来的费用系数为 60,允许增加(Allowable In crease )=4、允许减少 ( Allowable Decrease )=2,说明当它在 [60-4 , 60+20] = [56 , 80] 围变化时,最优基保持不变。
对 TABLES CHAIRS 变量,可以类似解释。
由于此时约束没有变化(只是目标函数中某个费用系数发生变 化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所 以最优值会变化) 。
第2行约束中右端项(Right Hand Side ,简写为 RHS 原来为48,当它在[48-24 , 48+^] = [24 , R ]围变化时,最优基保持不变。
第 3、4、5行可以类似解释。
不过由于此时约束发生变化,最优基即 使不变,最优解、最优值也会发生变化。
灵敏性分析结果表示的是最优基保持不变的系数围。
由此, 也可以进一步确定当目标函数的费用系 数和约束右端项发生小的变化时, 最优基和最优解、 最优值如何变化。
下面我们通过求解一个实际问题 来进行说明。
例 5.2 一奶制品加工厂用牛奶生产 A 1,A 2两种奶制品, 1 桶牛奶可以在甲车间用 12小时加工成 3 公斤A,或者在乙车间用8小时加工成4公斤A 。
根据市场需求,生产的 A,A 2全部能售出,且每公斤A获利24元,每公斤A 2获利16元。
现在加工厂每天能得到 50桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A 1,乙车间的加工能力没有限制。
试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下 3个附加问题:1) 若用 35 元可以买到 1 桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶? 2) 若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? 3) 由于市场需求变化,每公斤 A 1 的获利增加到 30 元,应否改变生产计划? 模型代码如下:max=72*x1+64*x2; x1+x2<=50;12*x1+8*x2<=480; 3*x1<=100;求解这个模型并做灵敏性分析,结果如下。
Global optimal solution found at iteration: 0 Objective value: 3360.000Variable Value Reduced CostX1 20.00000 0.000000 X2 30.00000 0.000000Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 30.000000 2.000000Variable Coefficient IncreaseDESKS 60.00000 0.0TABLES 30.00000 0.0 CHAIRS 20.00000 0.0 Decrease 0.0 0.00.0440.000000.000000Ranges in which the basis is unchanged:Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase DecreaseX172.0000024.000008.000000X264.000008.00000016.00000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease250.0000010.00000 6.6666673480.000053.3333380.000004100.0000INFINITY40.00000结果告诉我们:这个线性规划的最优解为x i=20, X2=30,最优值为z=3360,即用20桶牛奶生产A,30桶牛奶生产A,可获最大利润3360元。
输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析结果有用的信息,下面结合题目中提出的 3 个附加问题给予说明。
3 个约束条件的右端不妨看作 3 种“资源”:原料、劳动时间、车间甲的加工能力。
输出中Slack or Surplus 给出这 3 种资源在最优解下是否有剩余:原料、劳动时间的剩余均为零,车间甲尚余40(公斤)加工能力。
目标函数可以看作“效益”,成为紧约束的“资源”一旦增加,“效益”必然跟着增长。
输出中DUAL PRICES 给出这3种资源在最优解下“资源”增加 1 个单位时“效益”的增量:原料增加1 个单位( 1 桶牛奶)时利润增长48(元),劳动时间增加1个单位(1 小时)时利润增长2(元),而增加非紧约束车间甲的能力显然不会使利润增长。
这里,“效益”的增量可以看作“资源”的潜在价值,经济学上称为影子价格,即 1 桶牛奶的影子价格为48元,1小时劳动的影子价格为 2 元,车间甲的影子价格为零。
读者可以用直接求解的办法验证上面的结论,即将输入文件中原料约束milk )右端的50 改为51,看看得到的最优值(利润)是否恰好增长48(元)。
用影子价格的概念很容易回答附加问题1):用35元可以买到1桶牛奶,低于1 桶牛奶的影子价格48,当然应该作这项投资。
回答附加问题2):聘用临时工人以增加劳动时间,付给的工资低于劳动时间的影子价格才可以增加利润,所以工资最多是每小时 2 元。