《圆的切线的判定和性质》教学设计与反思
- 格式:doc
- 大小:160.50 KB
- 文档页数:4
《切线的判定和性质》课堂设计与反思教学目的1、掌握判定直线与圆相切的方法,并能运用直线与圆相切的判定方法进行计算与证明2、使学生理解切线的性质定理及推论。
3、通过判定定理和切线判定方法的学习, 培养学生观察、分析、归纳问题的能力。
4、通过学生自己实践发现定理, 培养学生学习的主动性和积极性。
5、通过几何画板直观演示,培养学生用运动的观点看待问题。
教学重点与难点重点:切线的判定定理和切线判定的方法。
切线的性质定理难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径 ; 学生开始时把握不好并极轻易忽视。
利用“反证法”来证实切线的性质定理。
策略方案与学法指导通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力。
教学过程(一)、情境导入生活中下雨天当你快速转动雨伞时飞出的水珠,在砂轮上打磨工件时飞出的火星,都是沿着圆的切线方向飞出的。
怎样的直线是圆的切线?本节课我们一起来研究这个问题。
(二)、探究新知1.直线与圆的三种位置关系l l l(a) (b) (c)2、观察、提出问题、分析发现图(2) 中直线 l 是⊙ O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便。
我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?(1)让学生画图:画一个圆O,在圆 O 上任取一点 A,过点 A 作直线 L ⊥OA。
如图,直线 L 到圆心 O的距离 OA等于圆 O的半径,直线 l 是⊙ O的切线。
这时我们来观察直线 l 与⊙ O的位置 .发现: (1) 直线 L 经过半径 OC的外端点 C;(2)直线 L 垂直于半径 0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理。
3、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
引导学生理解:①经过半径外端;②垂直于这条半径。
圆的切线性质的教学反思圆的切线的性质与判定专题复习教学反思教了什么怎么教的其中道理是什么一是能预测学生在学习某一教学内容时,可能会遇到哪些问题;二是能设想出解决这些问题的策略和方法。
三是能按照学生的接受能力不同,编排梳理知识内容。
2、课中反思课中反思是及时发现问题,并提出解决问题的方法,教师要有较强的调控应变能力,及时反思自己的教学行为、教学方法,采取有效的教学策略和措施,顺应学生的发展需要,这种反思能使教学高质高效地进行,这是教学反思的重要环节。
圆的切线长定理是什么最低0.27元\/天开通百度文库会员,可在文库查看完整内容>原发布者:中小学教育资料切线长定理主讲人麻屯二中贾航宇问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形AP·OP·OP·O问题2、经过圆外一点P,如何作已知⊙O的切线A。
POB思考:假设切线PA已作出,A为切点,则∠OAP为直角,连接OP,可知A在怎样的圆上?用尺规作图:过⊙O外一点做⊙O的切线AOO·PB在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长A·OPB切线与切线长的区别与联系:(1)切线是一条与圆相切的直线;(2)切线长是指切线上某一点与切点间的线段的长。
若从⊙O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论并证明你所发现的结论。
BPA=PB∠OPA=∠OPBO。
PA证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°试用文字语言叙述你所发现的结论∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
B。
OPA几何语言:PA、PB分别切⊙O于A、B供了新的方法。
冀教版九年级数学下册《切线的性质和判定》教案及教学反思教学目标1.了解切线的定义及性质。
2.掌握如何通过切线的性质判断一个点是否在圆内部、外部还是圆上。
3.进一步提高学生的综合运用能力,培养解决实际问题的能力。
教学重点学生要求了解切线的定义及性质,并能熟练运用所学知识解决实际问题。
教学难点如何通过切线的性质判断一个点是否在圆内部、外部还是圆上,学生需要灵活运用所学知识解决实际问题。
教学准备1.手写板、投影仪。
2.以及其他常规教学用具。
教学步骤第一步引入通过讲解圆及圆的相关术语,引导学生理解圆周角、圆心角、弧长等概念。
然后,我们会引入本课讲解的重点——切线。
第二步讲解切线的定义及性质在引入完毕后,开始讲解切线的定义及性质。
1.定义:从圆外一点引一条直线,此直线与圆只有一个交点,则此直线叫做圆的切线。
2.性质:圆上的每个点都可以看做是一个切点,一条切线上有两个切点,切线与圆弦垂直。
第三步判定一个点是否在圆内部、外部还是圆上了解定义及性质后,可以通过切线的性质来判断一个点是否在圆内部、外部还是圆上。
下面我们以实例来说明。
例题一:已知点P(3, 4)与圆O的关系,圆心O(-4, 0),半径4。
解:将点P与圆心O通过线段连接,因此矢量OP的大小为5。
因此我们可以绘制一条以O为圆心,以OP为半径的圆,并且作出切线L。
根据切线的性质,L与OP垂直。
因此可以求得L的方程为:$$ y = -\\frac{4}{3}x +\\frac{16}{3} $$将点P的坐标代入该方程即可得出判断P点的位置的答案。
例题二:已知点Q(4,-3)与圆A的关系,圆心A(1, -2),半径3。
解:同样的方法绘制出以A为圆心,以AQ为半径的圆。
作出切线L。
可知L过点Q。
因此可以求得L的方程为:$$ y=-\\frac{1}{3}x +\\frac{11}{3} $$可以将Q点的坐标代入该方程来判断Q点的位置。
在讲解判断方法之后,可以通过课堂练习来让学生强化对该知识点的掌握程度。
第2课时切线的判定和性质【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境 1 下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情境2 用机器打磨铁制零件时,铁屑是沿什么方向飞出的?情境3用一根细线系一个小球,当你快速转动细线时,小球运动形成一个圆,突然这个小球脱落,沿着圆的边缘飞出去,你知道小球会顺着什么方向飞出吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知1.切线的判定定理思考1 如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2 已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1 教材98页例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2 (1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解1.完成教材第98页练习1、2.2.如图,已知PA是∠BAC的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过O点作OF⊥AC于点F,连接OE.则OE⊥AE.∴∠OEA=∠OFA=90°,又∵PA是∠BAC的平分线,∴∠OAE=∠OAF,∵AO=AO,∴△OAF≌△OAE,∴OF=OE.又∵OE是半径,∴OF也为半径长.∴AC是⊙O的切线.五、师生互动,课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.【教学说明】在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.24.2.2直线和圆的位置关系第2课时切线的判定与性质一、新课导入1.导入课题:情景1:下雨天,转动的雨伞上的水滴是顺着伞的什么方向飞出去的?情景2:砂轮转动时,火星是沿着砂轮的什么方向飞出去的?这节课,我们学习切线的判定和性质.(板书课题)2.学习目标:(1)能推导切线的判定定理和性质定理.(2)能初步运用切线的判定定理和性质定理解决简单的几何问题.3.学习重、难点:重点:切线的判定定理与性质定理.难点:切线的判定与性质的初步运用.二、分层学习1.自学指导:(1)自学内容:教材第97页的内容.(2)自学时间:8分钟.(3)自学方法:阅读思考,动手操作,归纳猜想.(4)自学提纲:①如图,OA是⊙O的半径,过A点作直线l⊥OA,那么直线l与⊙O有什么位置关系?a.直线l满足的条件是经过A点且垂直于OA .b.直线l和⊙O的位置关系是相切,为什么?②经过半径的外端并且垂直于这条半径的直线是圆的切线 .③已知一个圆和圆上一点,如何过这个点画圆的切线?试试看.④请总结一下判定切线共有哪几种方法?a.圆心到直线的距离等于半径,这条直线和圆相切.b.切线的判定定理.2.自学:学生参照自学提纲进行自学.3.助学:(1)师助生:①明了学情:关注学生对判定定理的理解和运用(特别是提纲第④题).②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨、改正结论.4.强化:(1)切线的判定定理:①经过半径的外端;②垂直于这条半径.两个条件缺一不可.(2)常见的辅助线作法及证法:①直线与圆的公共点已知(切点已知),连接这个点和圆心,证直线与连线垂直即可.②直线与圆的公共点未知(切点未知),过圆心作直线的垂线段,证“垂线段=半径”即可.(3)练习:如图所示,已知直线AB经过⊙O上的点A,且AB=AT,∠TBA=45°,直线AT是⊙O的切线吗?为什么?解:是.理由:∵AB=AT,又AT过点A,∴∠T=∠B=45°.∴∠A=180°-45°-45°=90°.又AT过点A,∴AT是⊙O的切线.1.自学指导:(1)自学内容:教材第98页“练习”之前的内容.(2)自学时间:5分钟.(3)自学方法:阅读、思考、归纳.(4)自学提纲:①如图,OA是⊙O的半径,直线l与⊙O相切于点A,那么直线l与半径OA有什么位置关系?l⊥OA.②切线的性质定理:圆的切线垂直于过切点的半径.此定理的题设是l是⊙O的切线,l过A点,结论是l⊥OA.用反证法证明该定理时,应假设圆的切线不垂直于过切点的半径.③切线共有哪些性质?a.切线与圆只有一个公共点.b.圆心到切线的距离等于半径.c.圆的切线垂直于过切点的半径(切线的性质定理).d.经过圆心并且垂直于切线的直线一定经过切点.e.经过切点并且垂直于切线的直线一定经过圆心.④如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,求证:AC是⊙O的切线.证明:连接OD,OA,过O作OE⊥AC,则OD⊥AB,∵△ABC是等腰三角形,O是底边BC的中点,则OA是∠BAC的平分线.∴OD=OE.又OE⊥AC,∴AC是⊙O的切线.2.自学:学生参照自学提纲进行自学.3.助学:(1)师助生:①明了学情:观察学生自学参考提纲的完成情况.②差异指导:定理的证明可进行集体指导(不做重点要求).(2)生助生:小组内相互交流、研讨、订正结论.4.强化:(1)①与圆有唯一公共点切线的性质②到圆心的距离等于圆的半径③垂直于过切点的半径..⎧⎪⎨⎪⎩.(2)如图,AB是⊙O的直径,直线l1、l2是⊙O的切线,A、B是切点.求证:l1∥l2.证明:∵l1,l2是⊙O的切线.∴OA⊥l1,OB⊥l2.又O,A,B三点共线,∴l1∥l2.三、评价1.学生的自我评价(围绕三维目标):这节课你有哪些收获?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、学习的积极性、学习的方法、效果等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法正确的是(B)A.与圆有公共点的直线是圆的切线B.到圆心的距离等于圆的半径的直线是圆的切线C.垂直于圆的半径的直线是圆的切线D.过圆的半径的外端的直线是圆的切线2.(10分)如图,已知⊙O的直径AB与弦AC的夹角为31°,过C点的切线PC与AB的延长线交于点P,则∠P等于(C)A.24°B.25°C.28°D.30°3.(10分)如图,AB与⊙O切于点C,OA=OB,若⊙O的半径为8cm,AB=10cm,则OA的长为89cm.4.(20分)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,求证:AP=BP.证明:连接OP.∵AB切⊙O于点P,∴OP⊥AB.∴AP=BP(垂径定理).5.(20分)如图,AB是⊙O的直径,∠B=∠CAD.求证:AC是⊙O的切线.证明:∵AB是⊙O的直径,∴∠BDA=90°.∴∠B+∠BAD=90°.又∵∠B=∠CAD.∴∠CAD+∠BAD=∠BAC=90°.∵AC过点A,∴AC是⊙O的切线.二、综合应用(20分)6.(20分)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE 是⊙O的切线,交AC的延长线于点E.求证:DE⊥AC.证明:连接OD.∵AD是∠BAC的平分线,∴∠EAD=∠DAO.又∵OA=OD.∴∠DAO=∠ODA.∴∠ODA=∠EAD.∴OD∥AC.又∵DE是⊙O的切线,∴∠ODE=90°.∴∠E=90°.即DE⊥AC.三、拓展延伸(10分)7.(10分)如图,利用刻度尺和三角尺可以测量圆形工件的直径,说明其中的道理.解:因为两个三角尺的一条直角边与圆相切,另一条直角边在一条直线上,所以两条切线互相平行.则连接两切点之间的线段就是圆的直径,利用图中刻度尺就可以测量出图形工件的直径.。
切线的性质与判定课标说明理解切线与过切点的半径的关系掌握切线的概念;利用切线的判定与性质解决有关的简单问题;运用圆的切线的有关内容解决有关问题复习目标:1.理解切线的判定定理与性质定理;2.会应用切线的判定定理和性质定理解决简单问题.复习重点:切线的判定定理和性质定理的应用.基础知识回顾1.切线的性质定理及几何语言2.切线的判定定理及几何语言例1. 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线.例2.已知:△ABC为等腰三角形,O 是底边BC的中点,腰AB 与⊙O 相切于点D.求证:AC 是⊙O 的切线.中考再现1.如图,在Rt△ABC中,∠ACB=90∘,以AC为直径的O交AB于点D,E是BC的中点。
求证:DE是O的切线;4.课堂小结1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.切线的性质定理:圆的切线垂直于过切点的半径.3.运用切线的性质和判定定理时常作的辅助线:连接半径、过圆心作直线的垂线.谈一谈这节课你收获了哪些?切线的性质和判定一、复习目标:1.理解切线的判定定理与性质定理;2.会应用切线的判定定理和性质定理解决简单问题.复习重点:切线的判定定理和性质定理的应用.二、基础知识梳理切线的性质内容:几何语言切线的判定定理:几何语言三、例题精讲1. 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线.例2.已知:△ABC为等腰三角形,O 是底边BC的中点,腰AB 与⊙O 相切于点D.求证:AC 是⊙O 的切线.三、变式训练中考再现1.如图,在Rt△ABC中,∠ACB=90∘,以AC为直径的O交AB于点D,E是BC的中点。
求证:DE是O的切线;中考再现2.如图,BC为半⊙O的直径,点A,E是半圆周上的三等分点,AD ⊥BC,垂足为D,联结BE交AD于F,过A作AG∥BE交CB的延长线于G.判断直线AG与⊙O的位置关系,并说明理由。
《24.2.2切线的判定和性质》教学设计【学习目标】1、知识与技能(1)能判定一条直线是否为圆的切线。
(2)切线的性质定理的应用。
2、过程与方法(1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力。
(2)通过切线的判定定理和性质定理的学习,提高学生的综合运用能力。
3、情感态度与价值观(1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.(2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.【学习重点】圆的切线的判定定理和性质定理,并能灵活运用。
【学习难点】圆的切线的判定定理灵活运用。
【教学过程】二、探究讨论,发现新知探究切线的判定定理1、通过画图发现:(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径OA.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.反例巩固知识点:图(1)中直线了l经过半径外端,但不与半径垂直;图(2)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.图1 图23、总结切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.4、应用定理,强化训练'例1 如图,直线AB 经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.oCA B5、切线的性质定理如图,已知直线l为⊙O的切线,A为切点,观察并猜想直线l与半径OA有怎样的位置关系?答问题,教师引导学生总结切线的前两种判定方法。
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.用反例加深印象。
师生共同总结切线的三种判定方法。
《圆的切线的判定和性质》说课课稿尊敬的各位评委,老师们:大家早上好!非常高兴能有机会参加这次说课活动。
请允许我做个自我介绍,我叫周灯平,来自博罗县柏塘中学。
我说课的内容是人教版九年级数学上册《圆的切线的判定和性质》。
下面我将从教材分析,学情分析,教学教法,教学过程,板书设计,教学评价六个方面来和大家交流我的教学理念和教学设计思想。
一、教材分析:首先,本节课主要是在学生学习了直线和圆的三种位置关系的基础上,继续探究圆的切线的判定和性质。
它起到承前启后的作用,并常常作为考点出现在中考题中,所以掌握好本节课的内容对今后学生的学习有着积极的意义。
其次,本节课的教学目标有:(1)理解切线的判定定理和性质定理,并能初步运用它们解决一些实际问题;(2)通过观察和实际操作培养学生解决问题的能力,提高学生对学习的自主性和积极性;(3)培养学生勇于发现的创新精神,培养学生合作学习,从而在教学中渗透德育。
最后,根据本班学生的特点,我把理解圆的切线的判定定理和性质定理作为重点,而运用它们解决一些实际问题作为难点去突破。
二、学情分析:九年级的学生有了一定的逻辑思维能力和掌握了一定的数学知识。
本节课我将借助多媒体平台来更好的完成我的教学任务。
我所担任的两个班的学生有一个共同的特点,就是女生比男生多。
经过多次的教学经验总结,我抓住女生比较自觉听话的特点,一直非常重视让学生养成自主学习的习惯,提倡合作学习,注重在课堂上对知识点进行整合,并尽量把思考的时间拉长,以便照顾一些接受能力比较弱的学生。
三、教学教法:按照新课标的要求,我将从生活的实物中产生新知识,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、多动手、多动脑、勤钻研”的研讨式学习方法。
教学中积极利用多媒体向学生提供更多的表现机会,使学生从中获得充足的体验,并符合学生身心发展规律,从而快乐地学习数学知识,最终实现以学生为主体。
四、教学过程:下面,我将着重介绍我的教学设计过程,为了引入新课做好铺垫,我设计了温故而知新这个板块,让同学们对上一节的知识进行一个简单的回顾,并做了一个小归纳。
《圆的切线的判定》教学反思在讲《圆的切线的判定》一节内容时:教学过程我设置了三大环节。
【1】回顾复习。
【2】情境引入。
【3】授新。
好:首先咱们分别来看一下各个环节:1、回顾复习:1)直线和圆的位置关系有哪些?怎样判断直线和圆的位置关系?你认为在这些位置关系中,那种关系式最特殊的?2)圆的切线有什么性质?2、情景导入:生活中你看到哪些现象是直线和圆相切的位置关系的?(学生回答,教师补充)如:下雨天,转动雨伞,雨伞上的水滴会沿着什么方向飞出?车轮和笔直的公路等。
3、新授课:活动一:在练习本上画一个圆O,做一个半径OA,做一条直线L,使L经过点A且垂直于OA。
这样的直线能画几条?这条直线和圆是什么位置关系?为什么?你得到了什么结论?活动二:分析定理。
这个定理有什么用?要证明一条直线是圆的切线,需要几个条件?分别是什么?画图说明,总结两种思路。
(1)连半径,证垂直。
(2)做垂直,证半径。
活动三:圆的切线的判定的应用。
总结→练习→布置作业设计理念:基于学生的实际情况,根据学校的教研活动的主题:整节课在设计时都是以此为出发点,让学生在动手、动脑中,发现问题,解决问题。
在动手、动脑中观察、思考、验证、归纳、总结。
反思:一、合理设计课堂结构和问题。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,我认为“动”不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,才是数学课堂需要的动。
动得有序,动而不乱。
课堂教学要的不是热闹场面,而是对问题的深入研究和思考。
因此,根据这节课的教学内容,我设计了三个活动:(一)、在动手画图的过程中,经历动脑思考、归纳、总结的过程。
得到“经过半径外端且垂直于这条直径的直线是圆的切线”的结论。
(二)、分析结论。
应用好命题的前提是理解好命题。
为了能让学生更好的理解命题我设置了三个问题,并且画图帮助学生理解分析。
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。
通过图形和实例解释圆的切线的性质和特点。
1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。
通过几何证明和实例来加深对圆的切线性质的理解。
第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。
通过图形和实例来展示切线判定定理的应用。
2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。
通过证明过程来加深对切线判定定理的理解和应用。
第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。
通过图形和实例来展示切线方程的应用。
3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。
通过例题和练习来掌握切线方程的求解方法。
第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。
通过图形和实例来展示切线与圆相切的特点和性质。
4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。
通过图形和实例来展示切线与圆相离和相交的特点和性质。
第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。
通过例题和练习来展示切线在几何问题中的应用方法。
5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。
通过实例来展示切线在日常生活中的重要性和作用。
第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。
通过图形和实例来展示切线判定定理的推广应用。
6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。
通过例题和练习来展示切线判定定理与其他数学概念的结合应用。
圆的切线判定和性质(复习课)教学设计【教学目标】1. 掌握圆的切线判定和性质,并能熟练运用切线的判定与性质进行证明和计算。
2. 掌握圆的切线常用添加辅助线的方法【教学重点】对切线的判定方法及其性质的准确、熟炼、灵活地运用.【教学难点】综合型例题分析和论证的思维过程.【教学方法】讲练结合,培养思维,提升能力【教学过程】一、复习提问:二、1、切线的判定方法有那些?(1)定义:一条直线和圆只有一个公共点,这条直线叫做 O 圆的切线.这个点叫做圆的切点. A L (2)设⊙O 的半径为r,圆心到直线的距离为d.当d=r 时,直线和圆相切.(3)切线的判定定理:经过半径的外端并且垂直与这条半径的直线是圆的切线. 几何语言表述:∵ OA 是半径, 直线l ⊥OA 于点A∴ 直线l 是⊙O 的切线2、切线的性质有那些?(1)圆的切线和圆有唯一的公共点.(2)设⊙O 的半径为r ,圆心到直线的距离为d.当直线和圆相切时,d=r.(3)切线的性质定理:圆的切线垂直与经过切点的半径.几何语言表述:∵ 直线l 是⊙O 的切线,A 为切点 0 ∴ OA 是半径,直线l ⊥OA A LoA r o A r练习:判断下列各句是否正确(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()二、知识运用1、已知:如图,直线AB经过⊙O上的点C,O并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
A C B2、已知:如图,O为∠BAC平分线上一点, D B OD⊥AB于D, 以O为圆心,OD为半径作⊙O。
A O求证:⊙O与AC相切。
C3、已知:如图, ⊙O切PB于点B,PB=4,PA=2.求:⊙O的半径长是多少?4、已知:如图,AB为⊙O的直径,C为⊙O上一点, DAD和过C点的切线互相垂直,垂足为D. C求证:AC平分∠DAB. O B 5、(能力提升)已知:如图,CD 是∆ABC 中的AB 边上的高,以CD 为直径的⊙O 分别交 CA ,CB 于点E 、F ,点G 是AD 的中点. C 求证:GE 与⊙O 相切. E O O O 【课堂小结】 A E D B1、切线判定定理内容 辅助线作法(1)有交点,连半径,做垂直(2)无交点,作垂直,证半径2、切线性质定理内容【布置作业】练习题1、2、3、4【板书布置】圆的切线判定和性质(复习课)1、切线的判定定理内容 O 辅助线作法: A2、切线的性质定理内容OA G DB E Co A r。
数学教案:切线的判定和性质一、教学目标1.知道什么是切线,什么是切点。
2.掌握切线的判定方法。
3.理解切线的性质,能应用切线的性质解决问题。
二、教学重点1.切线的判定方法。
2.切线的性质,包括切线与圆心的关系、切线与弦的关系等。
三、教学难点1.切线的判定方法,包括几何判定和代数判定。
2.切线的性质的应用,尤其是解决实际问题的能力。
四、教学过程1. 切线的定义圆上一个点的切线是通过这个点,且与圆相切的一条直线。
点P在圆O上,直线l过点P,与圆O相切于点T。
则l是圆O在点P处的切线,PT是切线。
2. 切线的判定方法2.1 几何判定几何上,点P在圆O上的切线有以下几种情况:•过圆心的直线是圆的切线。
•与圆相交的直线的斜率等于过圆心与该线垂直的直线的斜率,那么该直线与圆的交点处的切线就是该直线。
2.2 代数判定代数上,已知圆心坐标为(a,b),半径为r,点P(x,y)在圆上,则点P到圆心的距离为:d=sqrt((x-a)^2 + (y-b)^2)若点P在圆上,则d=r。
将d代入上式,得到方程:(x-a)^2 + (y-b)^2 = r^2此为圆的标准方程。
点P在圆上的切线可由圆的标准方程求得。
3. 切线的性质3.1 切线与圆心的关系在圆的同侧,以切线为直线的两个角互补。
在圆的异侧,以切线为一条直线,圆心角等于此角所对的弧的度数。
3.2 切线与弦的关系在圆的同侧,以切线为直线的两个角相等。
在圆的异侧,以切线和弦为直线的两个角互补。
4. 应用实例4.1 切线的长度已知圆O半径r,点P(x1,y1)在圆上,求线段PT的长度。
解法:由切线和弦的性质可知,直线PT的长度等于点P到圆心的距离。
设圆心坐标为(a,b),则PT的长度为:PT=sqrt((x1-a)^2 + (y1-b)^2)4.2 切线与切线的交点的位置已知圆O的方程(x-a)^2 + (y-b)^2 = r^2,过圆外一点P的直线l1与圆O相交于点A,直线l2与圆O相交于点B,若AB的斜率为k,求证:PA=PB。
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引导学生回顾圆的定义,理解圆上所有点到圆心的距离相等。
引入切线的概念:与圆相切且与圆心的连线垂直的直线。
1.2 圆的切线判定条件利用几何图形和实际情境,引导学生理解切线的判定条件。
判定条件1:直线过圆外一点,且与圆的切点在圆的直径上。
判定条件2:直线过圆内一点,且与圆的切点在圆的半径上。
第二章:圆的切线性质2.1 圆的切线性质1:切线与半径垂直通过几何证明和实际情境,引导学生理解切线与半径垂直的性质。
引导学生运用性质1解决相关问题。
2.2 圆的切线性质2:切线与圆心连线垂直通过几何证明和实际情境,引导学生理解切线与圆心连线垂直的性质。
引导学生运用性质2解决相关问题。
第三章:圆的切线方程3.1 圆的切线方程的定义引导学生理解切线方程的概念:描述切线位置和方向的方程。
3.2 圆的切线方程的求法引导学生运用点斜式和一般式求解切线方程。
引导学生运用判定条件和性质求解切线方程。
第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切引导学生理解圆的切线与圆相切的概念。
引导学生运用判定条件和性质判断圆的切线与圆相切。
4.2 圆的切线与圆相离引导学生理解圆的切线与圆相离的概念。
引导学生运用判定条件和性质判断圆的切线与圆相离。
第五章:圆的切线应用5.1 圆的切线长度引导学生理解圆的切线长度的概念。
引导学生运用切线性质和几何证明求解切线长度。
5.2 圆的切线与弦的关系引导学生理解圆的切线与弦的关系。
引导学生运用切线性质和几何证明解决相关问题。
第六章:圆的切线与圆的切点6.1 圆的切线与圆的切点的定义引导学生理解圆的切线与圆的切点的概念。
强调切线与圆的切点是切线与圆的唯一交点。
6.2 圆的切线与圆的切点的性质引导学生理解圆的切线与圆的切点的性质。
性质1:切线与圆的切点,圆心与切点的连线垂直。
性质2:切线与圆的切点,切线与半径的交点在圆心与切点连线上。
圆的切线判定和性质(教案)章节一:圆的切线判定教学目标:1. 理解圆的切线的定义2. 学习圆的切线的判定方法教学内容:1. 圆的切线的定义2. 圆的切线的判定方法教学步骤:1. 引入圆的切线的定义,引导学生理解圆的切线与圆的关系。
2. 讲解圆的切线的判定方法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的定义。
2. 组织学生进行小组讨论,探讨圆的切线的判定方法。
教学评价:1. 通过测试题检查学生对圆的切线的定义的理解。
2. 通过解答题检查学生对圆的切线的判定方法的掌握。
章节二:圆的切线性质教学目标:1. 理解圆的切线的性质2. 学习圆的切线的性质的证明和应用教学内容:1. 圆的切线的性质2. 圆的切线的性质的证明和应用教学步骤:1. 引入圆的切线的性质,引导学生理解圆的切线的性质。
2. 讲解圆的切线的性质的证明和应用,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的性质。
2. 组织学生进行小组讨论,探讨圆的切线的性质的证明和应用。
教学评价:1. 通过测试题检查学生对圆的切线的性质的理解。
2. 通过解答题检查学生对圆的切线的性质的证明和应用的掌握。
章节三:圆的切线方程教学目标:1. 理解圆的切线的方程2. 学习圆的切线的方程的求法教学内容:1. 圆的切线的方程2. 圆的切线的方程的求法教学步骤:1. 引入圆的切线的方程,引导学生理解圆的切线的方程的概念。
2. 讲解圆的切线的方程的求法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的方程的概念。
2. 组织学生进行小组讨论,探讨圆的切线的方程的求法。
教学评价:1. 通过测试题检查学生对圆的切线的方程的理解。
2. 通过解答题检查学生对圆的切线的方程的求法的掌握。
章节四:圆的切线与圆的位置关系教学目标:1. 理解圆的切线与圆的位置关系2. 学习圆的切线与圆的位置关系的判定方法教学内容:1. 圆的切线与圆的位置关系2. 圆的切线与圆的位置关系的判定方法教学步骤:1. 引入圆的切线与圆的位置关系,引导学生理解圆的切线与圆的位置关系的概念。
24.2.2直线和圆的位置关系——圆的切线判定定理一、教材分析:切线的判定是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是今后学习解析几何等知识.学习圆的切线长和切线长定理等知识的基础。
由于本章所研究的问题往往是直线形与曲线形交织在一起,解决问题常需要综合运用代数、几何、三角等多方面知识。
二、教学目标:((1)掌握切线的判定定理. 使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法,应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力(3)培养学生动手操作能力.观察、探索、分析、总结、推理论证等能力.(4)通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.三、教学重点、难点1.重点:切线的判定定理.内心的性质2.难点:圆的切线证明问题中,辅助线的添加方法四、教学方法:动手操作观察归纳.教具:圆模型圆规三角板多媒体五、教学过程设计教学过程:(一)课前复习(5分钟)回答下列问题:(投影显示)1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?(要求学生举手回答,教师用教具演示)设计目的|:为探究圆的切线的判定方法做铺垫二)引如课题(1分钟):我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.三)提出问题、分析发现归纳结论(教师引导)(8分钟)1.切线判定定理的导出师:上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上书步骤作图(一同学到黑板上作):先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?(引导学生总结出):①经过关径外端,②垂直于这条半径.(设计意图:培养学生动手操作和观察归纳能力、及组织语言能力)师;如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)圆的切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:(引导学生理解):①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.提问:判定一条直线是圆的切线,我们有多少种方法呢?(学生讨论后,师生小结以下三种方法)(师板书):①与圆有唯一公共点的直线是圆的切线.②与圆心的距离等于半径的直线是圆的切线.③经过半径外端并且垂直于这条半径的直线是圆的切线.(四)应用定理,强化训练。
《切线的性质与判定的复习》教学设计执教者教学目标知识与技能目标:通过回顾与探索交流,使学生巩固梳理切线的性质与判定方法,并使知识系统化,提高学生运用相关知识解决有关切线问题的能力。
过程与方法目标:通过问题解决中的分析、交流、展示等手段,让学生充分体验推理结论的过程,培养学生运用所学知识综合分析问题的能力。
让学生在分析中学会体验与感悟,在交流中学会合作,在展示中体验成功。
情感态度价值观目标:在探究问题的过程中,发展学生的思维能力,让学生体会事物间互相联系、互相转化的思想。
教学重点切线的性质与判定方法的系统认识教学难点切线的性质与判定的灵活应用教学方法自主研讨、合作交流教学过程一、知识梳理1.直线和圆的位置关系2.圆的切线的性质与判定3、切线长定理切线长定理 从圆外一点引圆的两条切线,它们的____相等,这点和圆心的连线__________两条切线的夹角符号语言∵PA 、PB 分别切⊙O 于点A 、B ,∴____________________,_________________.学生先独立填写以上知识点,教师再引导学生共同回顾,使知识系统化。
二、牛刀小试 1.如图,在Rt△ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,r 为半径作圆,2.当r 满足____________ 时,⊙C 与直线AB 相切。
2.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C=65º,则∠P 的度数为( )3、如图,PA 、PB 、DE 分别切⊙O 于A 、B 、C ,DE 分别交PA 、PB 于D 、E ,PA=8cm ,则Δ PDE 的周长为( )A.16cmB.14cmC.12cmD.8cm学生独立完成以上的基础应用,然后教师再让学生说出解决方法,并回答出分别应用了切线的什么知识,以题带知识点,再次让学生系统掌握切线的有关知识。
教师根据学生的回答情况,适时强调讲解知识点。
切线的判定和性质数学教案切线的判定和性质数学教案切线的判定和性质(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O 的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥O B。
“切线的判定与性质”教学设计及反思《切线的判定和性质》教学设计与反思教材分析:“切线的判定和性质”是学生已经学习了直线和圆的三种位置关系之后提出来的。
切线的判定定理、性质定理是研究三角形的内切圆、切线长定理以及后面研究两圆的位置关系和正多边形与圆的关系的基础。
学好它,对今后数学、物理等学科的学习会有很大的帮助。
教学目标:1、通过学生自己探究(猜想、类比、演绎)过程,让学生发现切线的判定定理,并能说明方法的正确性。
2、在定理的发现过程中,让学生体验“观察―猜想―论证―归纳”的数学研究的方法。
3、通过这节内容的教学,使学生获得猜想的认识过程以及“添加辅助线”的解决问题的方法。
4、培养学生动手操作的能力,通过直观教具的演示好指导学生动手操作的过程,激发学生学习几何的主动性和积极性。
教学重点:发现并证明切线的判定定理,认识切线在实际生活中的应用。
教学难点:体验圆的切线证明问题中辅助线的添加方法。
教学过程:一、问题的提出:(多媒体显示问题)1.直线与圆有哪三种位置关系?判断的标准是什么?2.什么叫圆的切线?怎样判定一条直线是不是圆的切线?(学生先观察、猜想,在让学生和教师一道用自制教具进行演示)通过以上演示探究,我们发现可以用切线的定义来判定一条直线是不是圆的切线,但有时使用起来很不方便。
为此,我们有必要学习切线的判定定理。
(设计意图:通过简单作图和复习指导,①回顾直线与圆的三种位置关系:相交、相切、相离,并能从公共点个数判断,得出切线概念;②从数的角度即数量关系上体会圆的切线判别方法:当圆心到直线的距离等于半径时,直线与圆相切,体会数形结合思想)二、定理的发现:上节课学习了“圆心到一条直线的距离等于该圆的半径,则该直线就是圆的一条切线”这一定义。
下面请同学们把我们刚刚的实验操作用作图步骤归纳出来:画出⊙O;在⊙O上任取一点A;连接OA;过点A作直线l⊥OA.(完成后,请同学们猜想,直线l是不是⊙O的切线?它满足哪些条件?)。
《圆的切线的判定和性质》教学设计与反思
教学目标
1、记住圆的切线的判定定理,并能判定一条直线是否是圆的切线;
2、记住切线的性质定理;
3、会运用切线的判定定理和性质定理解决问题。
重点:
切线的判定定理和切线判定的方法
难点:
切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径。
学习流程
一、揭示目标
二、自学指导
1、复习下列内容
(1)、直线与圆的位置关系有几种?分别是那些关系?直线与圆的位置关系的判断方法有哪几种?
(2)、直线与圆相切有哪几种判断方法?
(3)、思考作图:已知:点A为⊙o上的一点,如和过点A作⊙o的切线呢?
交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA的垂线
2、知识导入:
______
如图:直线BC和⊙O的位置关系是____,直线BC叫⊙O的_____,公共点A叫
思考:如图所示,它的数学语言该怎样表示呢?
3、思考探索;
(1)、直线l垂直于半径OA,直线l是⊙O的切线吗?
(2)、直线l经过半径OA的外端A,直线l是⊙O的切线吗?
小结:
判定一条直线是圆的切线的三种方法
(1)、利用定义:与圆有唯一公共点的直线是圆的切线。
(2)、利用定理:与圆心距离等于圆的半径的直线是圆的切线。
(3)、利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
4、例题精析:
例1、(教材103页例1)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,
求证:直线AB是⊙O的切线。
o
A B
C
练习1: AB是⊙O的直径,TB=AB, ∠TAB=45°直线BT是⊙O的切线吗?为什么?
练习2、如图已知直线AB过⊙O上的点C,并且OA=OB,CA=CB
求证:直线AB是⊙O的切线
例2.如图:点O为∠ABC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作圆。
求证:BC是⊙O 的切线。
练习3、如图,⊙O的半径为8厘米,圆内的弦AB为83厘米,以O为圆心,4厘米为半径作小圆,求证:小圆与直线AB相切。
O
A B
方法小结:如何证明一条直线是圆的切线
四、当堂检测
1、下列说法正确的是()
A.与圆有公共点的直线是圆的切线.
B.和圆心距离等于圆的半径的直线是圆的切线;
C.垂直于圆的半径的直线是圆的切线;
D.过圆的半径的外端的直线是圆的切线
2、填空:如图AB是⊙O的直径∠ABT=45°AT=AB则AT与⊙O的位置关系是________。
练习4:已知:如图,ABCD为直角梯形,AB⊥BC,CD=AD+BC,求证:以CD为直径的圆与AB相切
练习5.判断:
(1)经过半径的一个端点,并且垂直于这条半径的直线是圆的切线()
(2)若一条直线与圆的半径垂直,则这条直线是圆的切线。
()
(3)过圆的半径的外端的直线一定是这个圆的切线()
(4)以直角边为半径的圆一定与另一条直角边相切。
()
(5)以等腰直角三角形斜边的中点为圆心,直角边的一半为半径的圆,与两条直角边相切。
()
(6)和圆有一个公共点的直线是圆的切线()
五、归纳总结
小结:
判定一条直线是圆的切线的三种方法
(1)、利用定义:与圆有唯一公共点的直线是圆的切线。
(2)、利用定理:与圆心距离等于圆的半径的直线是圆的切线。
(3)、利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
六、作业:课本P49习题1—4题
教学反思
反思:一、合理设计课堂结构和问题。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,我认为“动”不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,才是数学课堂需要的动。
动得有序,动而不乱。
课堂教学要的不是热闹场面,而是对问题的深入研究和思考。
因此,根据这节课的教学内容,我设计了三个活动:(一)、在动手画图的过程中,经历动脑思考、归纳、总结的过程。
得到“经过半径外端且垂直于这条直径的直线是圆的切线”的结论。
(二)、分析结论。
应用好命题的前提是理解好命题。
为了能让学生更好的理解命题我设置了三个问题,并且画图帮助学生理解分析。
得到证明一条直线是圆的切线的两个思路“连半径,证垂直和做垂直,证半径”。
(三)、应用命题。
根据活动二的两个结论,我设计了两个不同类型的例题。
因为有活动二做铺垫,所以例题解决的很顺利。
二、注意培养学生的解题能力。
根据学生的数学学习情况和明年就面临中考的现实,教学中我注意引
导学生分析认真分析每个已知条件,由每个条件可以得到哪些信息,结合要证明的结论及信息之间的联系,分析哪些信息有用,哪些没用。
再理清思路,然后整理出来。
三、注意多种评价手段的运用。
教学中面向大多数学生,并且给予及时的鼓励和评价。
一个会心的微
笑、学生的掌声、翘起的拇指、真诚的语言…让学生及时感觉到被认可,他就更有动力投入到下面的学习中。