八年级数学《几何证明初步》练习题
- 格式:doc
- 大小:76.00 KB
- 文档页数:3
C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。
求证:CD=2CE 。
2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。
求证:BE=CF 。
B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。
(1)试判断∆DEF 的形状,并加以证明。
(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。
6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°.推理过程:○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。
3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。
4. 已知,如图,AE5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°.反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。
求证:AB 与CD 必定相交。
8.2一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD=CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND .∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN .二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF=EF .求证:45EAF ∠=. C B ADE F D A B C B A E D NM B D A C分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE .分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B ADE ∠=∠.∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠.∴BAC DAE ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE .14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90FAB BAE EAD BAE ∠+∠=∠+∠=.∴FBA EDA ∠=∠. 又∵90FBA EDA ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF. 平移第14题图 第15题图 第16题图 第17题图三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长. 分析:延长DC到E使得CE=AB.连接BE.可得ACEB .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为DCEF .∴DM=EM.线段中点的常见技巧 --倍长四、倍长17、已知,AD为ABC 的中线.求证:AB+AC>2AD.分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA .∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC . 分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB. ∵BAD CAD ∠=∠.∴E CAD ∠=∠.∴AC=EC=AB. 19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60ABD C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴CBE BAD ∠=∠.∴60BPQ PBA PAB PBA DBP ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60BPD ∠=.∴ΔBPF 为等边三角形.∴BP=2PQ.中位线五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点, 求证:1()2EF BC AD =-. 分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线. ∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2EF BC AD =-. 直角三角形斜边上的中线等于斜边的一半21、已知,在ABCD 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG. ∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG. 22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G.求证:(1)CG=EG.(2)2B BCE ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL).∴EG=CG.∵DE=BE.∴B BDE DEC BCE ∠=∠=∠+∠.∵DE=CD.∴DEC BCE ∠=∠.∴2B BCE ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分)1、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( )A .20°B .25°C .30°D .40°第2题图 第4题图 第6题图 第7题图3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( )A .有两个角是直角B .有两个角是钝角C .有两个角是锐角D .一个角是钝角,一个角是直角4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( ) A D B E F OC B E F ED G AA.∠2=45° B.∠1=∠3 C.∠AOD+∠1=180° D.∠EOD=75°30’5、下列说法中,正确的个数为()①三角形的三条高都在三角形内,且都相交于一点②三角形的中线都是过三角形的某一个顶点,且平分对边的直线③在△ABC中,若∠A=12∠B=13∠C,则△ABC是直角三角形④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18A.1个 B.2个 C.3个 D.4个6、如图,在AB=AC的△ABC中,D是BC边上任意一点,DF⊥AC于F,E在AB边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于()A、50°B、65°C、70°D、75°7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.9、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为()A.仅小明对 B.仅小亮对 C.两人都对 D.两人都对第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确; B.仅①和②正确; C.仅②③正确; D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5 ⑤A.1 B.2 C.3 D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________ ,结论是___________ 。
初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
第5章几何证明初步检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. 下列语句中,不是命题的是()A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角2. 下列语句中属于定义的是()A.直角都相等B.作已知角的平分线C.连接两点的线段的长度,叫做这两点间的距离D.两点之间,线段最短3. 下面关于定理的说法不正确的是()A.定理是真命题B.定理的正确性不需要证明C.定理可以作为推理论证的依据D.定理的正确性需证明4. 如图,在等边△中,,则等于()A. B. C. D.5.如图,已知,,,结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6. 对于图中标记的各角,下列条件能够推理得到∥的是()A.∠1=∠2 B. ∠2=∠4C. ∠3=∠4 D.∠1+∠4=180°7.如图,∥,,若,则等于()A. B. C. D.8.如图,在四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=ADB.CA平分∠BCDC.AB=BDD.△BEC≌△DEC9.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()第6题图A .30°B .45°C .60°D .120°10. 图中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角,关于这七个角的度数关系,下列选项正确的是( )A .∠2=∠4+∠7B .∠3=∠1+∠6C .∠1+∠4+∠6=180°D .∠2+∠3+∠5=360° 二、填空题(每小题3分,共24分)11. 写一个与直角三角形有关的定理 .12. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形, 则∠1+∠2= 度.13. 如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80°,则∠B = 度.14. 若一个三角形的三个内角之比为4∶3∶2,则这个三角形的最大内角为 度. 15. 如图,在△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC = . 16. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2= .17. 请写出一个原命题是真命题,逆命题是假命题的命题: . 18. 如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E = 度. 三、解答题(共46分)19.(6分) 下列句子是命题吗?若是,把它改写成“如果……那么……” 的形式,并判断是否正确.(1)一个角的补角比这个角的余角大多少度? (2)垂线段最短,对吗?(3)等角的补角相等.(4)两条直线相交只有一个交点. (5)同旁内角互补.(6)邻补角的角平分线互相垂直.20.(8分)如图,在四边形ABCD 中,点E 在边CD 上,连接AE 、BE ,给出下列五个关系式:①AD ∥BC ;②DE =CE ;③∠1=∠2;④∠3=∠4;⑤AD +BC =AB .将其中的三个关系式作为题设,另外两个作为结论,便构成一个命题.第10题图第12题图第13题图第9题图第16题图第18题图(1)用序号写出一个真命题(书写形式:如果×××,那么×××),并给出证明. (2)用序号再写出三个真命题(不要求证明).21.(8分)如图,CD =CA ,∠1=∠2,EC =BC ,求证:DE =AB . 22.(8分)如图,是∠内的一点,,,垂足分别为,. 求证:(1); (2)点在∠的平分线上.23.(8分)如图,点B ,F ,C ,E 在一条直线上,∠A =∠D ,AC =DF ,且AC ∥DF .求证:△ABC ≌△DEF .24.(8分)如图,已知DG ⊥BC ,AC ⊥BC ,EF ⊥AB ,∠1=∠2,求证:CD ⊥AB第24题图 第20题图 第23题图 第21题图第5章几何证明初步检测题参考答案1. C 解析:根据命题的定义,可知A、B、D都是命题,而C属于作图语言,不是命题.故选C.2. C 解析:A是直角的性质,不是定义;B是作图语言,不是定义;C是定义;D是公理,不是定义.故选C.3. B 解析:根据定理的定义,可知A,C,D是正确的,B是错误的.故选B.4.C 解析:在等边△中,有,.又因为,所以△≌△,所以.所以.故选C.5. C 解析:因为,,,所以△≌△(AAS),所以,所以,即故③正确.又因为,,所以△≌△(ASA).所以.故①正确. 由△≌△,知,又因为,,所以△≌△,故④正确.由于条件不足,无法证得②故正确的结论有:①③④.6. D 解析:A.∠1与∠2是邻角,不是被第三条直线所截得的同位角或内错角,不能推出平行;B.∠2+∠3与∠4是被截得的同位角,而∠2与∠4不是,不能推出平行;C.∠3与∠4,不是被截得的同位角,不能推出平行;D.∠1+∠4=180°,∠1的对顶角与∠4是被截得的同旁内角,能推出平行.故选D.7. C 解析:因为∥,所以.因为,所以.如图,过点作∠∠交于点,则△≌△,所以,因为,所以.8.C 解析:∵AC垂直平分BD,∴AB=AD,BC=DC,∠BCE=∠DCE,∴CA平分∠BCD.AB与BD不一定相等,故选C.9.C 解析:∵CE∥AB,∴∠DOB=∠ECO=30°.∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT-∠DOB=90°-30°=60°.故选C.10.C 解析:根据四条互相不平行的直线L1、L2、L3、L4所截出的七个角,可知∠1+∠4+∠6=180°.故选C.11.直角三角形两直角边的平方和等于斜边的平方解析:本题是一道开放型题目,只要保证命题是真命题即可.12.270 解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.13.40 解析:∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴ 80°+2(180°-∠B)=360°,第12题答图∴ ∠B =40°.14.80 解析:这个三角形的最大内角为180°×49=80°. 15. 108° 解析:如图,连接OB ,OC . ∵ ∠BAC =54°,AO 为∠BAC 的平分线, ∴又∵ AB =AC , ∴.∵ DO 是AB 的垂直平分线, ∴ OA =OB ,∴ ∠ABO =∠BAO =27°,∴ ∠OBC=∠ABC-∠ABO =63°-27°=36°.∵ DO 是AB 的垂直平分线,AO 为∠BAC 的平分线, ∴ 点O 是△ABC 的外心, ∴ OB=OC ,∴ ∠OCB =∠OBC =36°,∵ 将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合, ∴ OE=CE , ∴ ∠COE =∠OCB =36°. 在△OCE 中,∠OEC =180°-∠COE -∠OCB =180°-36°-36°=108°. 16. 50° 解析:如图,由三角形的外角性质可得∠4=∠1+∠3=50°,∵ ∠2和∠4是两平行线间的内错角,∴ ∠2=∠4=50°.17. 对顶角相等(答案不唯一) 解析:本题是一道开放性题目,答案不唯一,只要符合条件即可.把一个命题的条件和结论互换就得到它的逆命题.正确的命题叫真命题,错误的命题叫假命题.18. 12 解析:∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°. 在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.19.分析:根据命题的定义先判断出哪些是命题,再把命题的题设写在“如果”后面,结论放在“那么”后面.解:对一件事情做出判断的句子是命题,因为(1)(2)是问句,所以(1)(2)不是命题,其余4个都是命题.(3)如果两个角相等,那么它们的补角相等,正确; (4)如果两条直线相交,那么它们只有一个交点,正确; (5)如果两个角是同旁内角,那么它们互补,错误;(6)如果两条射线是邻补角的角平分线,那么它们互相垂直,正确. 20.分析:(1)如果①②③,那么④⑤.过E 点作EF ∥AD ,与AB 交于点F ,根据平行线的性质推出EF 为梯形ABCD 的中位线,根据平行线的性质和等量代换,即可推出∠4=∠3,AB =2EF ,通过2EF =AD +BC ,即可推出AB =AD +BC .(2)根据真命题的定义,写出命题即可. 解:(1)如果①②③,那么④⑤.证明如下:如图,过E 点作EF ∥AD ,与AB 交于点F . ∵ AD ∥BC ,∴ EF ∥BC .∵ DE =CE ,∴ AF =BF .即EF为梯形ABCD 的中位线,∴ 2EF =AD +BC ,第20题答图 第16题答图∴∠1=∠AEF,∠4=∠FEB.∵∠1=∠2,∴∠2=∠AEF,∴AF=EF.∵AF=BF,∴BF=EF,∴∠3=∠FEB,∴∠4=∠3.∵AB=AF+BF,∴AB=2EF.∵ 2EF=AD+BC,∴AB=AD+BC.(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①②⑤,那么③④.21.分析:根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC,继而可得出结论.证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ACE,即∠ACB=∠DCE.在△ABC和△DEC中,∵CA=CD,∠ACB=∠DCE,BC=EC,∴△ABC≌△DEC(SAS).∴DE=AB.22.分析:(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.证明:(1)如图,连接AP并延长,∵ PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=90°.在Rt△AEP和Rt△AFP中,AE=AF,AP=AP,∴ Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵ Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴ AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.23.分析:利用ASA证明两个三角形全等即可.证明:∵AC∥DF,∴∠ACB=∠DFE.在△ABC和△DEF中,∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF.24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直的定义),∴DG∥AC(同位角相等,两直线平行).∴∠2=∠ACD(两直线平行,内错角相等).∵∠1=∠2(已知),∴∠1=∠ACD(等量代换),∴EF∥CD(同位角相等,两直线平行).∴∠AEF=∠ADC(两直线平行,同位角相等).∵EF⊥AB(已知),∴∠AEF=90°(垂直的定义),∴∠ADC=90°(等量代换).∴CD⊥AB(垂直的定义).。
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG ,即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。
APDAFGCEBOD2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=、CD的中点,AD、BC的延长线交求证:∠DEN=∠F.D2C2B2A2D1C1B1C BD AA1经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(2)若∠BAC=600,求证:AH=AO.F2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于条直线,交圆于B 、C 及D 、E ,直线EB 及Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,ACAF与直线PO相交于B、D经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PC =5.求:∠APB的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA. 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L求证:≤L<2.2、已知:P 是边长为1的正方形ABCD的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
青岛版八年级上册数学第5章几何证明初步含答案一、单选题(共15题,共计45分)1、为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1-500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1-250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号)。
又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,……,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是()A.48B.250C.256D.5002、已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( ).A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形3、如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=200°,则∠P=()A.10°B.20°C.30°D.40°4、如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()A.10°B.15°C.30°D.35°5、如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠D=∠DCEB.∠D+∠ACD=180°C.∠1=∠2D.∠3=∠46、在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,满足下列条件的△ABC 不是直角三角形的是()A.∠A∶∠B∶∠C = 1∶1∶2B.a∶b∶c =1∶1∶C.D.∠A+∠B=2∠C7、如图,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中的度数和是()A. B. C. D.8、如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°9、如图,点D在BA的延长线上,AE∥BC.若∠DAC=100°,∠B=65°,则∠ACB 的度数为()A.65°B.35°C.30°D.40°10、如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC、∠ACB的平分线分别交DE于点E、D,若AC=3,AB=4,则DE的长为()A.6B.7C.8D.911、如图,BE,CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB,CF相交于D,则∠CDE的度数是()A.130°B.70°C.80°D.75°12、如图,在中,,的外角,则的度数是()A.30°B.45°C.60°D.75°13、如图,已知∠1=∠2=∠3=55º,则∠4=()A.135ºB.125ºC.110ºD.无法确定14、如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠4=∠7,(3)∠2+∠3=180°;(4)∠1=∠7;其中能判定a∥b的条件的序号是()A.(1),(2)B.(2),(3)C.(1),(4)D.(3),(4)15、小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是( )A.①④B.②③C.①②D.③④二、填空题(共10题,共计30分)16、如图,若,,则________.17、将一张矩行纸片按图中方式折叠,若∠1 =50°,则∠2为________度.18、如图,AD是△ABC的高,BE是△ABC的内角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD=________°.19、在△ABC中,∠A﹣∠B=10°,,则∠C=________20、如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相平行的直线有________ 对.21、按要求完成下列证明如图,AB∥CD,CB∥DE,求证:∠B+∠D=180°.证明:∵AB∥CD,∴∠B=________(________).∵CB∥DE,∴∠C+________=180°(________).∴∠B+∠D=180°.22、完成推理过程如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.求证:AE=CF.证明∵AB∥DC,∴∠1=________.∵AE⊥BD,CF⊥BD,∴∠AEB=________∵BF=DE,∴BF﹣EF=DE﹣EF∴________=________.∴△ABE≌△CDF________.∴AE=CF________23、阅读下面解答过程,并填空或填理由.已知如下图,点E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,∠A=∠D,∠1=∠2.试说明:∠B=∠C.解:∵∠1=∠2(已知)∠2=∠3(________)∴∠3=∠1(等量代换)∴AF∥DE(________)∴∠4=∠D(________)又∵∠A=∠D(已知)∴∠A=∠4(等量代换)∴AB∥CD(________)∴∠B=∠C(________).24、如图,一个正方形和两个等边三角形的位置如图所示,若∠2=52°,则∠1+∠3=________°.25、平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是________.三、解答题(共5题,共计25分)26、如图,,,,求、的度数.27、如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.28、如图,已知∠A=∠F,∠C=∠E,求证:BE∥CD.29、已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数.30、在平面上有三条直线a,b,c,它们之间有哪几种可能的位置关系?你能画出来吗?参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、B5、C6、D7、C8、C9、B10、B11、B12、A13、B14、C15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
证明题
1、一个零件的形状如图,按规定∠A=90°,∠B=32°,∠C=21°,求∠BDC 的度数?
2.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:(2)CF=DF.
3、如图所示,BC=DE,BE=DC,求证:(1)BC//DE;(2)∠A=∠ADE.
4、如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.
5、已知AB=CD,AD=BC
,点O为BD的中点,过点O的直线分别与AD,BC交于点E F,求证:DE=BF
6、P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF
求证:(1)PE=PF (2)点P在∠BAC的角平分线上
7、已知AB=DC,AE=DF,CE=BF,证明:AF=DE
9、如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。
10、如图,在△ABC中,∠ACB=90°,∠A=30°,BD平分∠ABC.求证:AD=2CD.
11、E为等边三角形ABC的边AC上一点,∠1=∠2,CD=BE,判断△ADE的形状
12、如下图,己知等边三角形ABC,D是AC的中点,E为BC延长线上一点,且
∠E=30°,DM⊥BC垂足为M .(1)若DM=2,求DE的长;(2)求证:M是BE的中点。
13、如图,在△ABC中,已知AB=AC,∠A=120°,AB的垂直平分线交BC于点D,交AB于点E.求BC的长。
14、在△ABC中BD=DC,AD⊥ AC,∠BAD=30°,求证AC= 1
2
AB。
A DB C EBCD FEFEBAC D最新(一)中考数学几何证明(平行四边形,菱形矩形正方形)经典1.(本题10分)如图,已知: ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.2.在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.3.(本小题满分5分)如图,在△ABC 中,点D 、E 分别在边AC 、AB 上,BD=CE ,∠DBC=∠ECB 。
求证:AB=AC 。
4.(本小题满分7分)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形。
求证:四边形ADCE 是矩形。
5.(10分)在□ABCD 中,AC 是一条对角线,∠B =∠CAD ,延长BC 至点E ,使CE =BC ,连接DE .(1)求证:四边形ABED 是等腰梯形.(2)若AB =AD =4,求梯形ABED 的面积. 6、(本小题7分)如图,点A 、E 、B 、D 在同一条直线上,AE=DB ,AC=DF ,AC ∥DF.请探索BC 与EF 有怎样的位置关系?并说明理由。
7.如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .(1) 请你判断AD 是△ABC 的中线还是角平分线?请证明你的结论.(2)连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应添加一个条件▲8.(广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC .求证:∠A +∠C =180°AB CD10.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B 的度数.A B C E F GEB D AC F A FDE B C11.(本题6分)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE. 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是: ▲ ;(2)证明:.12.(8分)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B .已知:在四边形ABCD 中,,; 求证:四边形ABCD 是平行四边形. 13.(本题满分9分)将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展平纸片,如图(1);再次折叠该三角形纸片,使得点A 与点D 重合,折痕为EF ,再次展平后连接DE 、DF ,如图2,证明:四边形AEDF 是菱形.14.如图10,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于点F ,连接CD ,EB .(1)图中还有几对全等三角形,请你一一列举. (2)求证:.CF EF = 15.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF . A CBDFE (第11题)AB C(1) (2) 第13题图 ABDCCDBF AEABDFB CDE FAA EB FC DA GEB CF D 能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE . 16.(6分)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M . (1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).17.(6分)如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CF 交AD 于点F .点E 是AB 的中点,连接EF .(1)求证:EF ∥BC ;(2)若△ABD 的面积是6,求四边形BDFE 的面积.18.(本小题满分8分) 如图,四边形ABCD 的对角线AC 、DB 相交于点O ,现给出如下三个条件:AB DC AC DB OBC OCB ==∠=∠①②③.(1)请你再增加一个..条件:________,使得四边形ABCD 为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件________(用序号表示,只填一种情况),使得AOB DOC △≌△,并加以证明.19.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90º,AB =AD =6,DE ⊥CD交AB 于E ,DF 平分∠CDE 交BC 于F ,连接EF . (1)证明:CF =EF ; (2)当tan ∠ADE = 13时,求EF 的长.20.(10分)如图,在□ABCD 中,E 、F 分别是边AB 、CD的中点,AG ∥BD 交CB 的延长线于点G .(1)求证:△ADE ∽≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?请说明你的理由. 21.(本题满分8分)如图,在ABCD 中,点E 、F 是对角线AC 上两点,且CF AE =.求证:FDE EBF =∠.22.(8分)如图,四边形ABCD 是矩形,∠EDC=∠CAB , ∠DEC=90°。
八年级数学《几何证明初步》练习题
一、选择题
1.下列命题中,真命题是()
A.互补的两个角若相等,则两角都是直角 B.直线是平角
C.不相交的两条直线叫平行线 D.和为180°的两个角叫做互补角2.如图2,AB∥CD,AF 分别交AB、CD于A、C并且CE平分∠DCF,∠1=800,则等于()A.40° B.50° C.60° D.70°
2 3
3.如图3,,那么等于()
A.180° B.360° C.540° D.720°
4.下列结论中不正确的是()
A.如果一条直线与两条平行线中的一条平行,那么这条直线与另一条也平行
B.如果一条直线与两条平行线中的一条垂直,那么这条直线与另一条也垂直
C.如果一条直线与两条平行线中的一条相交,那么这条直线与另一条也相交
D.以上结论中只有一个不正确
5、在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构
成△PAB, △PBC,△PAC均为等腰三角形,则满足上述条件的所有点P的个数为()
A.3个
B.4个
C.6个
D.7个
6、△ABC中,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为点E,若AB=10
则△DBE周长为()
A.10 B.8 C.12 D.9
7.如图点D在AB上,点E在AC上并且∠B=∠C,那么补充下列一个
件后,仍无法判断△ABE≌△ACD的是()
A.AD=AE
B.∠AEB=∠ADC
C. BE=CD
D. AB=AC
8. 下列推理正确的是()
A.如果a>b,b>c,则a>c
B.因为∠AOB=∠BOC,所以∠AOB与∠BOC是对顶角
D.因为两角的和是1800,所以两角互为邻补角 D. 若a>b,则ac>bc E
B
D
C A
9.举反例说明“一个角的余角大于这个角”是假命题,错误的是( )
A.设这个角是450,它的余角是450,但450=450 B .设这个角是600,它的余角是300但300<600 C .设这个角是300,它的余角是600但300<600 D .设这个角是500,它的余角是400但400<500
10、如图∠1=∠2,PM ⊥OA 于点M,则P 点到OB 的距 离等于( )
A.OA 的长
B.OP 的长
C.PM 的长
D.都不正确
11、如图所示,AB 的垂直平分线为MN ,点P 在MN 上,则下列结论中,错误的是( )
A 、PA=P
B B 、OA=OB
C 、OP=OB
D 、ON 平分∠APB
12、如图,直角三角形ABC 中,AB ⊥AC ,AD ⊥BC,BE 平分∠ABC ,交AD 于点E ,EF ∥AC ,
下列结论一定成立的是( )
A 、AB=BF
B 、AE=EB
C 、AD=DC
D 、∠ABE=∠DFE
10 11 12 14.下列语句属于命题的是( )
A 、作线段A
B =5 cm 。
B 、平角是一条直线。
C 、你好吗?
D 、2a 一定大于0吗? 15、“等腰三角形的两个底角相等”的条件是 ,结论是 。
16、已知命题:两直线平行,同旁内角互补。
它的逆命题是 二、填空题
17、在△ABC 中,(1) ,则∠B= 度.
(2)
,则∠B= 度; (3)
,则∠B= 度;
18、将命题“钝角大于它的补角”写成“如果…那么”的形式: 19、等腰三角形腰上的高与底边夹角为15°,则顶角的度数为
20、在△ABC 中,D 、E 分别在AB 、CD 上并且DE ‖BC,AE=1,CE=2,则S △ADE:S △ABC= 21、如图,已知:DE ⊥AB ,且∠A=∠D=290则∠ACB=
N
A
P
M
O B
A
F
E
D
C
B
2
1 P
B
M
A
22、如图,已知:在△ABC 中,∠B=900
, ∠1=∠2, ∠3=∠4,则的度数为
三、解答题
23、已知:如图,AB ‖DC,点E 是BC 上一点,∠1=∠2,∠3=∠4.求证:AE ⊥DE
24、 如图,在△ABC 中两个外角∠EAC 和∠FCA 的平分线交于D 点,求证:∠ADC=900
-2
1
∠ABC
25.如图,△ABC 中,∠B >∠C,AD ⊥BC,AE 平分∠BAC,求证:。
26、如图,△ABC 中,AB >AC,AD 平分∠BAC,E 点在AD 上.求证:∠ABE <∠ACE
3、如图:已知△ABC 中,延长AC 边上的中线BE 到G ,使EG=BE ,
延长AB 边上的中线CD 到F ,使CD=DE ,连接AF 、AG , (1)、补全图形。
(2)、AF 与AG 的大小关系如何?证明你 的结论。
(3)、F 、A 、G 三点的位置关系如何?证明你的结论》
A
E
D
C
B。