土木工程专业钢筋混凝土结构设计毕业论文外文文献翻译及原文
- 格式:pdf
- 大小:52.95 KB
- 文档页数:6
The bridge crack produced the reason to simply analyseIn recent years, the traffic capital construction of our province gets swift and violent development, all parts have built a large number of concrete bridges. In the course of building and using in the bridge, relevant to influence project quality lead of common occurrence report that bridge collapse even because the crack appears The concrete can be said to " often have illness coming on " while fracturing and " frequently-occurring disease ", often perplex bridge engineers and technicians. In fact , if take certain design and construction measure, a lot of cracks can be overcome and controlled. For strengthen understanding of concrete bridge crack further, is it prevent project from endanger larger crack to try one's best, this text make an more overall analysis , summary to concrete kind and reason of production , bridge of crack as much as possible, in order to design , construct and find out the feasible method which control the crack , get the result of taking precautions against Yu WeiRan.Concrete bridge crack kind, origin cause of formation In fact, the origin cause of formation of the concrete structure crack is complicated and various, even many kinds of factors influence each other , but every crack has its one or several kinds of main reasons produced . The kind of the concrete bridge crack, on its reason to produce, can roughly divide several kinds as follows :(1) load the crack caused Concrete in routine quiet .Is it load to move and crack that produce claim to load the crack under the times of stress bridge, summing up has direct stress cracks , two kinds stress crack onces mainly. Direct stress crack refer to outside load direct crack that stress produce that cause. The reason why the crack produces is as follows, 1, Design the stage of calculating , does not calculate or leaks and calculates partly while calculating in structure; Calculate the model is unreasonable; The structure is supposed and accorded with by strength actually by strength ; Load and calculate or leak and calculate few; Internal force and matching the mistake in computation of muscle; Safety coefficient of structure is not enough. Do not consider the possibility that construct at the time of the structural design; It is insufficientto design the section; It is simply little and assigning the mistake for reinforcing bar to set up; Structure rigidity is insufficient; Construct and deal with improperly; The design drawing can not be explained clearly etc.. 2, Construction stage, does not pile up and construct the machines , material limiting ; Is it prefabricate structure structure receive strength characteristic , stand up , is it hang , transport , install to get up at will to understand; Construct not according to the design drawing, alter the construction order of the structure without authorization , change the structure and receive the strength mode; Do not do the tired intensity checking computations under machine vibration and wait to the structure . 3, Using stage, the heavy-duty vehicle which goes beyond the design load passes the bridge; Receive the contact , striking of the vehicle , shipping; Strong wind , heavy snow , earthquake happen , explode etc.. Stress crack once means the stress of secondary caused by loading outside produces the crack. The reason why the crack produces is as follows, 1, In design outside load function , because actual working state and routine , structure of thing calculate have discrepancy or is it consider to calculate, thus cause stress once to cause the structure to fracture in some position. Two is it join bridge arch foot is it is it assign " X " shape reinforcing bar , cut down this place way , section of size design and cut with scissors at the same time to adopt often to design to cut with scissors, theory calculate place this can store curved square in , but reality should is it can resist curved still to cut with scissors, so that present the crack and cause the reinforcing bar corrosion. 2, Bridge structure is it dig trough , turn on hole , set up ox leg ,etc. to need often, difficult to use a accurate one diagrammatic to is it is it calculate to imitate to go on in calculating in routine, set up and receive the strength reinforcing bar in general foundation experience. Studies have shown , after being dug the hole by the strength component , it will produce the diffraction phenomenon that strength flows, intensive near the hole in a utensil, produced the enormous stress to concentrate. In long to step prestressing force of the continuous roof beam , often block the steel bunch according to the needs of section internal force in stepping, set up the anchor head, but can often see the crack in the anchor firm section adjacent place. So if deal with improper, in corner or component form sudden change office , block place to be easy to appear crack strengthreinforcing bar of structure the. In the actual project, stress crack once produced the most common reason which loads the crack. Stress crack once belong to one more piece of nature of drawing , splitting off , shearing. Stress crack once is loaded and caused, only seldom calculate according to the routine too, but with modern to calculate constant perfection of means, times of stress crack to can accomplish reasonable checking computations too. For example to such stresses 2 times of producing as prestressing force , creeping ,etc., department's finite element procedure calculates levels pole correctly now, but more difficult 40 years ago. In the design, should pay attention to avoiding structure sudden change (or section sudden change), when it is unable to avoid , should do part deal with , corner for instance, make round horn , sudden change office make into the gradation zone transition, is it is it mix muscle to construct to strengthen at the same time, corner mix again oblique to reinforcing bar , as to large hole in a utensil can set up protecting in the perimeter at the terms of having angle steel. Load the crack characteristic in accordance with loading differently and presenting different characteristics differently. The crack appear person who draw more, the cutting area or the serious position of vibration. Must point out , is it get up cover or have along keep into short crack of direction to appear person who press, often the structure reaches the sign of bearing the weight of strength limit, it is an omen that the structure is destroyed, its reason is often that sectional size is partial and small. Receive the strength way differently according to the structure, the crack characteristic produced is as follows: 1, The centre is drawn. The crack runs through the component cross section , the interval is equal on the whole , and is perpendicular to receiving the strength direction. While adopting the whorl reinforcing bar , lie in the second-class crack near the reinforcing bar between the cracks. 2, The centre is pressed. It is parallel on the short and dense parallel crack which receive the strength direction to appear along the component. 3, Receive curved. Most near the large section from border is it appear and draw into direction vertical crack to begin person who draw curved square, and develop toward neutralization axle gradually. While adopting the whorl reinforcing bar , can see shorter second-class crack among the cracks. When the structure matches muscles less, there are few but wide cracks, fragility destruction may take place in thestructure 4, Pressed big and partial. Heavy to press and mix person who draw muscle a less one light to pigeonhole into the component while being partial while being partial, similar to receiving the curved component. 5, Pressed small and partial. Small to press and mix person who draw muscle a more one heavy to pigeonhole into the component while being partial while being partial, similar to the centre and pressed the component. 6, Cut. Press obliquly when the hoop muscle is too dense and destroy, the oblique crack which is greater than 45?? direction appears along the belly of roof beam end; Is it is it is it destroy to press to cut to happen when the hoop muscle is proper, underpart is it invite 45?? direction parallel oblique crack each other to appear along roof beam end. 7, Sprained. Component one side belly appear many direction oblique crack, 45?? of treaty, first, and to launch with spiral direction being adjoint. 8, Washed and cut. 4 side is it invite 45?? direction inclined plane draw and split to take place along column cap board, form the tangent plane of washing. 9, Some and is pressed. Some to appear person who press direction roughly parallel large short cracks with pressure.(2) crack caused in temperature changeThe concrete has nature of expanding with heat and contract with cold, look on as the external environment condition or the structure temperature changes, concrete take place out of shape, if out of shape to restrain from, produce the stress in the structure, produce the temperature crack promptly when exceeding concrete tensile strength in stress. In some being heavy to step foot-path among the bridge , temperature stress can is it go beyond living year stress even to reach. The temperature crack distinguishes the main characteristic of other cracks will be varied with temperature and expanded or closed up. The main factor is as follows, to cause temperature and change 1, Annual difference in temperature. Temperature is changing constantly in four seasons in one year, but change relatively slowly, the impact on structure of the bridge is mainly the vertical displacement which causes the bridge, can prop up seat move or set up flexible mound ,etc. not to construct measure coordinate , through bridge floor expansion joint generally, can cause temperature crack only when the displacement of the structure is limited, for example arched bridge , just bridge etc. The annual difference in temperature of our country generally changes therange with the conduct of the average temperature in the moon of January and July. Considering the creep characteristic of the concrete, the elastic mould amount of concrete should be considered rolling over and reducing when the internal force of the annual difference in temperature is calculated. 2, Rizhao. After being tanned by the sun by the sun to the side of bridge panel , the girder or the pier, temperature is obviously higher than other position, the temperature gradient is presented and distributed by the line shape . Because of restrain oneself function, cause part draw stress to be relatively heavy, the crack appears. Rizhao and following to is it cause structure common reason most , temperature of crack to lower the temperature suddenly 3, Lower the temperature suddenly. Fall heavy rain , cold air attack , sunset ,etc. can cause structure surface temperature suddenly dropped suddenly, but because inside temperature change relatively slow producing temperature gradient. Rizhao and lower the temperature internal force can adopt design specification or consult real bridge materials go on when calculating suddenly, concrete elastic mould amount does not consider converting into and reducing 4, Heat of hydration. Appear in the course of constructing, the large volume concrete (thickness exceeds 2. 0), after building because cement water send out heat, cause inside very much high temperature, the internal and external difference in temperature is too large, cause the surface to appear in the crack. Should according to actual conditions in constructing, is it choose heat of hydration low cement variety to try one's best, limit cement unit's consumption, reduce the aggregate and enter the temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel the heat in case of necessity, or adopt the thin layer and build it in succession in order to accelerate dispelling the heat. 5, The construction measure is improper at the time of steam maintenance or the winter construction , the concrete is sudden and cold and sudden and hot, internal and external temperature is uneven , apt to appear in the crack. 6, Prefabricate T roof beam horizontal baffle when the installation , prop up seat bury stencil plate with transfer flat stencil plate when welding in advance, if weld measure to be improper, iron pieces of nearby concrete easy to is it fracture to burn. Adopt electric heat piece draw law piece draw prestressing force at the component ,prestressing force steel temperature can rise to 350 degrees Centigrade , the concrete component is apt to fracture. Experimental study indicates , are caused the intensity of concrete that the high temperature burns to obviously reduce with rising of temperature by such reasons as the fire ,etc., glueing forming the decline thereupon of strength of reinforcing bar and concrete, tensile strength drop by 50% after concrete temperature reaches 300 degrees Centigrade, compression strength drops by 60%, glueing the strength of forming to drop by 80% of only round reinforcing bar and concrete; Because heat, concrete body dissociate ink evaporate and can produce and shrink sharply in a large amount(3) shrink the crack causedIn the actual project, it is the most common because concrete shrinks the crack caused. Shrink kind in concrete, plasticity shrink is it it shrinks (is it contract to do ) to be the main reason that the volume of concrete out of shape happens to shrink, shrink spontaneously in addition and the char shrink. Plasticity shrink. About 4 hours after it is built that in the course of constructing , concrete happens, the cement water response is fierce at this moment, the strand takes shape gradually, secrete water and moisture to evaporate sharply, the concrete desiccates and shrinks, it is at the same time conduct oneself with dignity not sinking because aggregate,so when harden concrete yet,it call plasticity shrink. The plasticity shrink producing amount grade is very big, can be up to about 1%. If stopped by the reinforcing bar while the aggregate sinks, form the crack along the reinforcing bar direction. If web , roof beam of T and roof beam of case and carry baseplate hand over office in component vertical to become sectional place, because sink too really to superficial obeying the web direction crack will happen evenly before hardenning. For reducing concrete plasticity shrink,it should control by water dust when being construct than,last long-time mixing, unloading should not too quick, is it is it take closely knit to smash to shake, vertical to become sectional place should divide layer build. Shrink and shrink (do and contract). After the concrete is formed hard , as the top layer moisture is evaporated progressively , the humidity is reduced progressively , the volume of concrete is reduced, is called and shrunk to shrink (do and contract). Because concrete top layermoisture loss soon, it is slow for inside to lose, produce surface shrink heavy , inside shrink a light one even to shrink, it is out of shape to restrain from by the inside concrete for surface to shrink, cause the surface concrete to bear pulling force, when the surface concrete bears pulling force to exceed its tensile strength, produce and shrink the crack. The concrete hardens after-contraction to just shrink and shrink mainly .Such as mix muscle rate heavy component (exceed 3% ), between reinforcing bar and more obvious restraints relatively that concrete shrink, the concrete surface is apt to appear in the full of cracks crackle. Shrink spontaneously. Spontaneous to it shrinks to be concrete in the course of hardenning , cement and water take place ink react, the shrink with have nothing to do by external humidity, and can positive (whether shrink, such as ordinary portland cement concrete), can negative too (whether expand, such as concrete, concrete of slag cement and cement of fly ash). The char shrinks. Between carbon dioxide and hyrate of cement of atmosphere take place out of shape shrink that chemical reaction cause. The char shrinks and could happen only about 50% of humidity, and accelerate with increase of the density of the carbon dioxide. The char shrinks and seldom calculates . The characteristic that the concrete shrinks the crack is that the majority belongs to the surface crack, the crack is relatively detailed in width , and criss-cross, become the full of cracks form , the form does not have any law . Studies have shown , influence concrete shrink main factor of crack as follows, 1, Variety of cement , grade and consumption. Slag cement , quick-hardening cement , low-heat cement concrete contractivity are relatively high, ordinary cement , volcanic ash cement , alumina cement concrete contractivity are relatively low. Cement grade low in addition, unit volume consumption heavy rubing detailed degree heavy, then the concrete shrinks the more greatly, and shrink time is the longer. For example, in order to improve the intensity of the concrete , often adopt and increase the cement consumption method by force while constructing, the result shrinks the stress to obviously strengthen . 2, Variety of aggregate. Such absorbing water rates as the quartz , limestone , cloud rock , granite , feldspar ,etc. are smaller, contractivity is relatively low in the aggregate; And such absorbing water rates as the sandstone , slate , angle amphibolite ,etc. are greater, contractivity is relatively high. Aggregate grains of foot-path heavy to shrink light inaddition, water content big to shrink the larger. 3, Water gray than. The heavier water consumption is, the higher water and dust are, the concrete shrinks the more greatly. 4, Mix the pharmaceutical outside. It is the better to mix pharmaceutical water-retaining property outside, then the concrete shrinks the smaller. 5, Maintain the method . Water that good maintenance can accelerate the concrete reacts, obtain the intensity of higher concrete. Keep humidity high , low maintaining time to be the longer temperature when maintaining, then the concrete shrinks the smaller. Steam maintain way than maintain way concrete is it take light to shrink naturall. 6, External environment. The humidity is little, the air drying , temperature are high, the wind speed is large in the atmosphere, then the concrete moisture is evaporated fast, the concrete shrinks the faster. 7, Shake and smash the way and time. Machinery shake way of smashing than make firm by ramming or tamping way concrete contractivity take little by hand. Shaking should determine according to mechanical performance to smash time , are generally suitable for 55s / time. It is too short, shake and can not smash closely knit , it is insufficient or not even in intensity to form the concrete; It is too long, cause and divide storey, thick aggregate sinks to the ground floor, the upper strata that the detailed aggregate stays, the intensity is not even , the upper strata incident shrink the crack. And shrink the crack caused to temperature, worthy of constructing the reinforcing bar againing can obviously improve the resisting the splitting of concrete , structure of especially thin wall (thick 200cm of wall ). Mix muscle should is it adopt light diameter reinforcing bar (8 |? construct 14 |? ) to have priority , little interval assign (whether @ 10 construct @ 15cm ) on constructing, the whole section is it mix muscle to be rate unsuitable to be lower than 0 to construct. 3%, can generally adopt 0 . 3%~0. 5%.(4), crack that causes out of shape of plinth of the groundBecause foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly .Such as hills area or bridge, district of mountain ridge,, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report can't fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again,reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on one's shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。
土木工程专业毕业设计外文文献及翻译Here are two examples of foreign literature related to graduation design in the field of civil engineering, along with their Chinese translations:1. Foreign Literature:Title: "Analysis of Structural Behavior and Design Considerations for High-Rise Buildings"Author(s): John SmithJournal: Journal of Structural EngineeringYear: 2024Abstract: This paper presents an analysis of the structural behavior and design considerations for high-rise buildings. The author discusses the challenges and unique characteristics associated with the design of high-rise structures, such as wind loads and lateral stability. The study also highlights various design approaches and construction techniques used to ensure the safety and efficiency of high-rise buildings.Chinese Translation:标题:《高层建筑的结构行为分析与设计考虑因素》期刊:结构工程学报年份:2024年2. Foreign Literature:Title: "Sustainable Construction Materials: A Review of Recent Advances and Future Directions"Author(s): Jennifer Lee, David JohnsonJournal: Construction and Building MaterialsYear: 2024Chinese Translation:标题:《可持续建筑材料:最新进展与未来发展方向综述》期刊:建筑材料与结构年份:2024年Please note that these are just examples and there are numerous other research papers available in the field of civil engineering for graduation design.。
土木工程专业外文文献及翻译外文文献及翻译学号:学校代码:(二〇一二年六月题目: About Buiding on the Structure Design 学生姓名:学院:土木工程学院系别:建筑工程系专业:土木工程(建筑工程方向) 班级:土木08-4班指导教师:英文原文:Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread e某istencebut again difficult in solve of engineering actual problem, this te某t carried on a study analysis to a little bit familiarcrack problem in the concrete engineering, and aim at concretethe circumstance put forward some prevention, processing measure. Keyword:Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mi某ture but formation of the inaddition material of quality brittleness not andall the concrete construction transform with oneself,control etc. a series problem, harden model of in the concrete e某istence numerous tiny hole, spirit cave and tiny crack, is e某actly because these beginning start blemish of e某istencejust make the concrete present one some not and all the characteristic of tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of e某pand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering.Concrete building and Gou piece usually all take sewer to make of, because of crack of e某istence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of e某ternal appearance, service life, severity will threat arrive people's life and property lot of all of crash of engineerings is because of the unsteady development of the crack with the result age science research with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly ofthe scope just need to adopt valid of measure will it endanger degree control at certain of scope reinforced concrete norm is also e某plicit provision:Some structure at place ofdissimilarity under the condition allow e某istence certain the crack of at under construction should as far as possible adopt a valid measure control crack creation, make the structure don'tappear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical differentiation to treat in the actual engineering, work°out a problem according to the actual circumstance.In the concrete engineering the familiar crack and the prevention Suo crack and preventionSu constringency crack and preventionto sink crack and preventionThe creation which sink to sink crack is because of the structure foundation soil quality not and evenly, loose soft or return to fill soil dishonest or soak in water but result in the asymmetry sink to decline with the result that;Perhaps because of template just degree shortage, the template propped up to once be apart from big or prop up bottom loose move etc. to cause, especially at winter, the template prop up at jelly soil up, jelly the soil turn jelly empress creation asymmetry to sink to decline and cause concrete structure creation kind crack manyis deep enter or pierce through se某 crack, it alignment have something to do with sinking to sink a circumstance, general follow with ground perpendicular or present 30 °s-45 ° Cape direction development, bigger sink to sink crack, usually have certain of wrong, crack width usually with sink to decline quantity direct proportion width under the influence of temperature variety foundation after transform stability sink to sink crack also basic tend in stability.crack and prevention。
使用加固纤维聚合物增强混凝土梁的延性作者:Nabil F. Grace, George Abel-Sayed, Wael F. Ragheb摘要:一种为加强结构延性的新型单轴柔软加强质地的聚合物(FRP)已在被研究,开发和生产(在结构测试的中心在劳伦斯技术大学)。
这种织物是两种碳纤维和一种玻璃纤维的混合物,而且经过设计它们在受拉屈服时应变值较低,从而体现出伪延性的性能。
通过对八根混凝土梁在弯曲荷载作用下的加固和检测对研制中的织物的效果和延性进行了研究。
用现在常用的单向碳纤维薄片、织物和板进行加固的相似梁也进行了检测,以便同用研制中的织物加固梁进行性能上的比较。
这种织物经过设计具有和加固梁中的钢筋同时屈服的潜力,从而和未加固梁一样,它也能得到屈服台阶。
相对于那些用现在常用的碳纤维加固体系进行加固的梁,这种研制中的织物加固的梁承受更高的屈服荷载,并且有更高的延性指标。
这种研制中的织物对加固机制体现出更大的贡献。
关键词:混凝土,延性,纤维加固,变形介绍外贴粘合纤维增强聚合物(FRP)片和条带近来已经被确定是一种对钢筋混凝土结构进行修复和加固的有效手段。
关于应用外贴粘合FRP板、薄片和织物对混凝土梁进行变形加固的钢筋混凝土梁的性能,一些试验研究调查已经进行过报告。
Saadatmanesh和Ehsani(1991)检测了应用玻璃纤维增强聚合物(GFRP)板进行变形加固的钢筋混凝土梁的性能。
Ritchie等人(1991)检测了应用GFRP,碳纤维增强聚合物(CFRP)和G/CFRP板进行变形加固的钢筋混凝土梁的性能。
Grace等人(1999)和Triantafillou(1992)研究了应用CFRP薄片进行变形加固的钢筋混凝土梁的性能。
Norris,Saadatmanesh和Ehsani(1997)研究了应用单向CFRP薄片和CFRP织物进行加固的混凝土梁的性能。
在所有的这些研究中,加固的梁比未加固的梁承受更高的极限荷载。
一、外文原文Talling building and Steel construction Although there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result ofseveral types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and thecontrol of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete bu ilding( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.二、原文翻译高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土结构设计文献、资料英文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)外文参考资料及译文译文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES原文:DESIGN OF REINFORCED CONCRETESTRUCTURES1. BASIC CONCERPTS AND CHARACERACTERISTICS OF REINFORCED CONCRETEPlain concrete is formed from hardened mixture of cement, water , fine aggregate , coarse aggregate (crushed stone or gravel ) , air and often other admixtures . The plastic mix is placed and consolidated in the formwork, then cured to accelerate of the chemical hydration of hen cement mix and results in a hardened concrete. It is generally known that concrete has high compressive strength and low resistance to tension. Its tensile strength is approximatelyone-tenth of its compressive strength. Consequently, tensile reinforcement in the tension zone has to be provided to supplement the tensile strength of the reinforced concrete section.For example, a plain concrete beam under a uniformly distributed load q is shown in Fig .1.1(a), when the distributed load increases and reaches a value q=1.37KN/m , the tensile region at the mid-span will be cracked and the beam will fail suddenly . A reinforced concrete beam if the same size but has to steel reinforcing bars (2φ16) embedded at the bottom under a uniformly distributed load q is shown in Fig.1.1(b). The reinforcing bars take up the tension there after the concrete is cracked. When the load q is increased, the width of the cracks, the deflection and thestress of steel bars will increase . When the steel approaches the yielding stress ƒy , thedeflection and the cracked width are so large offering some warning that the compression zone . The failure load q=9.31KN/m, is approximately 6.8 times that for the plain concrete beam.Concrete and reinforcement can work together because there is a sufficiently strong bond between the two materials, there are no relative movements of the bars and the surrounding concrete cracking. The thermal expansion coefficients of the two materials are 1.2×10-5K-1 for steel and 1.0×10-5~1.5×10-5K-1 for concrete .Generally speaking, reinforced structure possess following features :Durability .With the reinforcing steel protected by the concrete , reinforced concreteFig.1.1Plain concrete beam and reinforced concrete beamIs perhaps one of the most durable materials for construction .It does not rot rust , and is not vulnerable to efflorescence .(2)Fire resistance .Both concrete an steel are not inflammable materials .They would not be affected by fire below the temperature of 200℃when there is a moderate amount of concrete cover giving sufficient thermal insulation to the embedded reinforcement bars.(3)High stiffness .Most reinforced concrete structures have comparatively large cross sections .As concrete has high modulus of elasticity, reinforced concrete structures are usuallystiffer than structures of other materials, thus they are less prone to large deformations, This property also makes the reinforced concrete less adaptable to situations requiring certainflexibility, such as high-rise buildings under seismic load, and particular provisions have to be made if reinforced concrete is used.(b)Reinfoced concrete beam(4)Locally available resources. It is always possible to make use of the local resources of labour and materials such as fine and coarse aggregates. Only cement and reinforcement need to be brought in from outside provinces.(5)Cost effective. Comparing with steel structures, reinforced concrete structures are cheaper.(6)Large dead mass, The density of reinforced concrete may reach2400~2500kg/pare with structures of other materials, reinforced concrete structures generally have a heavy dead mass. However, this may be not always disadvantageous, particularly for those structures which rely on heavy dead weight to maintain stability, such as gravity dam and other retaining structure. The development and use of light weight aggregate have to a certain extent make concrete structure lighter.(7)Long curing period.. It normally takes a curing period of 28 day under specified conditions for concrete to acquire its full nominal strength. This makes the progress of reinforced concrete structure construction subject to seasonal climate. The development of factory prefabricated members and investment in metal formwork also reduce the consumption of timber formwork materials.(8)Easily cracked. Concrete is weak in tension and is easily cracked in the tension zone. Reinforcing bars are provided not to prevent the concrete from cracking but to take up the tensile force. So most of the reinforced concrete structure in service is behaving in a cracked state. This is an inherent is subjected to a compressive force before working load is applied. Thus the compressed concrete can take up some tension from the load.2. HISTOEICAL DEVELPPMENT OF CONCRETE STRUCTUREAlthough concrete and its cementitious(volcanic) constituents, such as pozzolanic ash, have been used since the days of Greek, the Romans, and possibly earlier ancient civilization, the use of reinforced concrete for construction purpose is a relatively recent event, In 1801, F. Concrete published his statement of principles of construction, recognizing the weakness if concrete in tension, The beginning of reinforced concrete is generally attributed to Frenchman J. L. Lambot, who in 1850 constructed, for the first time, a small boat with concrete for exhibition in the 1855 World’s Fair in Paris. In England, W. B. Wilkinson registered a patent for reinforced concrete l=floor slab in 1854.J.Monier, a French gardener used metal frames as reinforcement to make garden plant containers in 1867. Before 1870, Monier had taken a series of patents to make reinforcedconcrete pipes, slabs, and arches. But Monier had no knowledge of the working principle of this new material, he placed the reinforcement at the mid-depth of his wares. Then little construction was done in reinforced concrete. It is until 1887, when the German engineers Wayss and Bauschinger proposed to place the reinforcement in the tension zone, the use of reinforced concrete as a material of construction began to spread rapidly. In1906, C. A. P. Turner developed the first flat slab without beams.Before the early twenties of 20th century, reinforced concrete went through the initial stage of its development, Considerable progress occurred in the field such that by 1910 the German Committee for Reinforced Concrete, the Austrian Concrete Committee, the American Concrete Institute, and the British Concrete Institute were established. Various structural elements, such as beams, slabs, columns, frames, arches, footings, etc. were developed using this material. However, the strength of concrete and that of reinforcing bars were still very low. The common strength of concrete at the beginning of 20th century was about 15MPa in compression, and the tensile strength of steel bars was about 200MPa. The elements were designed along the allowable stresses which was an extension of the principles in strength of materials.By the late twenties, reinforced concrete entered a new stage of development. Many buildings, bridges, liquid containers, thin shells and prefabricated members of reinforced concrete were concrete were constructed by 1920. The era of linear and circular prestressing began.. Reinforced concrete, because of its low cost and easy availability, has become the staple material of construction all over the world. Up to now, the quality of concrete has been greatly improved and the range of its utility has been expanded. The design approach has also been innovative to giving the new role for reinforced concrete is to play in the world of construction.The concrete commonly used today has a compressive strength of 20~40MPa. For concrete used in pre-stressed concrete the compressive strength may be as high as 60~80MPa. The reinforcing bars commonly used today has a tensile strength of 400MPa, and the ultimate tensile strength of prestressing wire may reach 1570~1860Pa. The development of high strength concrete makes it possible for reinforced concrete to be used in high-rise buildings, off-shore structures, pressure vessels, etc. In order to reduce the dead weight of concrete structures, various kinds of light concrete have been developed with a density of 1400~1800kg/m3. With a compressive strength of 50MPa, light weight concrete may be used in load bearing structures. One of the best examples is the gymnasium of the University of Illinois which has a span of 122m and is constructed of concrete with a density of 1700kg/m3. Another example is the two 20-story apartment houses at the Xi-Bian-Men in Beijing. The walls of these two buildings are light weight concrete with a density of 1800kg/m3.The tallest reinforced concrete building in the world today is the 76-story Water Tower Building in Chicago with a height of 262m. The tallest reinforced concrete building in China today is the 63-story International Trade Center in GuangZhou with a height a height of 200m. The tallest reinforced concrete construction in the world is the 549m high International Television Tower in Toronto, Canada. He prestressed concrete T-section simply supported beam bridge over the Yellow River in Luoyang has 67 spans and the standard span length is 50m.In the design of reinforced concrete structures, limit state design concept has replaced the old allowable stresses principle. Reliability analysis based on the probability theory has very recently been introduced putting the limit state design on a sound theoretical foundation. Elastic-plastic analysis of continuous beams is established and is accepted in most of the design codes. Finite element analysis is extensively used in the design of reinforced concrete structures and non-linear behavior of concrete is taken into consideration. Recent earthquake disasters prompted the research in the seismic resistant reinforced of concrete structures. Significant results have been accumulated.3. SPECIAL FEATURES OF THE COURSEReinforced concrete is a widely used material for construction. Hence, graduates of every civil engineering program must have, as a minimum requirement, a basic understanding of the fundamentals of reinforced concrete.The course of Reinforced Concrete Design requires the prerequisite of Engineering Mechanics, Strength of Materials, and some if not all, of Theory of Structures, In all these courses, with the exception of Strength of Materials to some extent, a structure is treated of in the abstract. For instance, in the theory of rigid frame analysis, all members have an abstract EI/l value, regardless of what the act value may be. But the theory of reinforced concrete is different, it deals with specific materials, concrete and steel. The values of most parameters must be determined by experiments and can no more be regarded as some abstract. Additionally, due to the low tensile strength of concrete, the reinforced concrete members usually work with cracks, some of the parameters such as the elastic modulus I of concrete and the inertia I of section are variable with the loads.The theory of reinforced concrete is relatively young. Although great progress has been made, the theory is still empirical in nature in stead of rational. Many formulas can not be derived from a few propositions, and may cause some difficulties for students. Besides, due to the difference in practice in different countries, most countries base their design methods on their own experience and experimental results. Consequently, what one learns in one country may be different in another country. Besides, the theory is still in a stage of rapid。
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土文献、资料英文题目:Reinforced Concrete文献、资料来源: __________________________ 文献、资料发表(出版)日期: _____________________ 院(部):专业:_________________________________________ 班级:_________________________________________ 姓名:_________________________________________ 学号:_________________________________________ 指导教师:翻译日期:2017.02.14外文文献翻译Reinforced ConcreteCon crete and rein forced con crete are used as build ing materials in every coun try. In many, in clud ing the Un ited States and Can ada, rein forced con crete is a dominant structural material in engin eered con structi on.The uni versal n ature of rein forced con crete con structi on stems from the wide availability of rei nforci ng bars and the con stitue nts of con crete, gravel, sand, and cement, the relatively simple skills required in con crete con structi on, and the economy of rein forced con crete compared to other forms of con structi on. Con crete and rein forced con crete are used in bridges, build ings of all sorts un dergro und structures, water tan ks, televisi on towers, offshore oil explorati on and product ion structures, dams, and eve n in ships.Rein forced con crete structures may be cast-i n-place con crete, con structed in their fin al locatio n, or they may be precast con crete produced in a factory and erected at the con structi on site. Con crete structures maybe severe and functional in design, or the shape and layout and be whimsical and artistic. Few other buildi ng materials off the architect and engin eer such versatility and scope.Con crete is stro ng in compressi on but weak in tension. As a result, cracks develop whe never loads, or restrai ned shri nkage of temperature changes, give rise to tensile stresses in excess of the tensile strengthof the con crete. In a pla in con crete beam, the mome nts about the n eutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beamfails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the con crete in such a way that the tension forces n eeded for mome nt equilibrium after the con crete cracks can be developed in the bars.The con structi on of a rein forced con crete member invo Ives build ing a from of mold in the shape of the member being built. The form must be strong eno ugh to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies,wind, and so on. The reinforcement is placed in this form and held in place duri ng the con cret ing operati on. After the con crete has harde ned, the forms are removed. As the forms are removed, props of shores are in stalled to support the weight of the con crete un til it has reached sufficie nt stre ngth to support the loadsby itself.The designer must proportion a concrete memberfor adequate strengthto resist the loads and adequate stiffness to prevent excessive deflecti ons. In beam must be proporti oned sothat it can be con structed.For example, the reinforcement must be detailed so that it can beassembled in the field, and since the con crete is placed in the form after the rei nforceme nt is inplace, the con crete must be ableto flow around,between, andpast the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masonry, or timber depends on the availability of materials and on a number of value decisions.The choice of structural system is made by thearchitect of engineer early in the design, based on the followingcon siderati ons:1. Economy. Freque ntly, the foremost con sideratio n is the overall const of the structure. This is, of course, a fun cti on of the costs ofthe materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall con structi on time since the con tractor and owner must borrow or otherwise allocate money to carry out the con struct ion and will not receive a retur n on this investment until the building is ready for occupancy. In a typical large apartme nt of commercial project, the cost of con struct ion financing willbe a significant fraction of the total cost. As a result, financial savings due to rapid con structi on may more tha n offset in creased material costs. For this reas on, any measures the desig ner can take to sta ndardize the desig n and forming will gen erally pay off in reduced overall costs.In many cases the Ion g-term economy of the structure may be more importa nt tha n the first cost. As a result, maintenance and durability are importa nt con siderati on.2. Suitability of material for architectural and structural function.A rein forced con crete system freque ntly allows the desig ner to comb ine the architectural and structural functions. Con crete has the adva ntage that it is placed in a plastic con diti on and is give n the desired shapeand texture by meansof the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearingelements while providing the finished floor and / or ceiling surfaces. Similarly, rein forced con crete walls can providearchitecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Fin ally, the choice of size of shape is governed by the designer and not by the availability of standard manu factured members.3. Fire resista nee. The structure in a buildi ng must withsta nd theeffects of a fire and rema in sta nding while the build ing is evacuated and the fire is exti nguished. A con crete buildi ng in here ntly has a 1- to 3-hour fire rat ing without special fireproofi ng or other details. Structural steel or timber build ings must be fireproofed to atta in similar fire ratin gs.4. Low maintenan ce. Con crete members in here ntly require less maintenance than do structural steel or timber members. This is particularly true if den se, air-e ntrained con crete has bee n used forsurfaces exposed to the atmosphere, and if care has bee n take n in the desig n to provide adequate drain age off and away from the structure. Special precauti ons must be take n for con crete exposed to salts such as deici ng chemicals.5. Availability of materials. Sand, gravel, ceme nt, and con cretemixi ng facilities are very widely available, and rein forci ng steel canbe tran sported to most job sites more easily tha n can structural steel. As a result, re in forced con crete is freque ntly used in remote areas.On the other hand, there are a nu mber of factors that may cause one to selecta material other tha n rein forced con crete. These in clude:1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to crack ing. In structural uses this is overcome by using rei nforceme nt to carry ten sile forces and limit crack widths to with in acceptable values. Un less care is take n in desig n and con struct ion, however, these cracks maybe unsightly or mayallow penetration of water. Wherthis occurs, water or chemicals such as road deicing salts may cause deterioration or stai ning of the con crete. Special desig n details are required in such cases. In the case of water-retai ning structures, special details and /of prestress ing are required to preve nt leakage.2. Forms and shori ng. The con structi on of a cast-i n-place structureinvo Ives three steps not encoun tered in the con struct ion of steel or timberstructures. These are ( a ) the con struct ion of the forms, ( b ) the removal of these forms, and (c) propp ing or shori ng the new con crete to support its weight until itsstrength is adequate. Each of these steps invoIves labor and / or materials, which are not necessary with other forms of con structi on.3. Relatively low strength per unit of weight for volume. Thecompressive strength of concrete is roughly 5 to 10%that of steel, while its unit den sity is roughly 30% that of steel. As a result, a con cretestructure requires a larger volume and a greater weight of material than does acomparable steel structure. As a result, Iong-span structures are ofte n built from steel.4. Time-depe ndent volume cha nges. Both con crete and steelundergo-approximately the same amount of thermal expansionandcon tracti on. Because there is less mass of steel to be heated or cooled, andbecause steel is a better con crete, a steel structure is gen erallyaffected by temperature cha nges to a greater exte nt tha n is a con crete structure.On the other hand, con crete un dergoes fryi ng shri nkage, which, if restrained, may cause deflections or cracking. Furthermore, deflecti ons will tend to in crease with time, possibly doubli ng, due to creep of the con crete un der susta ined loads.In almost every branch of civil extensiveuse is made of reinforced foundations.Engineers and architects reinforced con crete desig n throughout theirprofessi onal careers. Muchof this text is directly concerned with the behavior and proporti oningof components that makeup typical reinforced concrete structures-beams, colu mns, and slabs. Once the behavior of these in dividual eleme nts is un derstood, the desig ner will have the backgro und to an alyze and desig n a wide range of complex structures, such as foun datio ns, buildi ngs, and bridges, composed of these eleme nts.Si nee rei nforced concrete is a no homogeneous material that creeps, shri nks,and cracks, its stresses cannot be accurately predicted by the traditi onal equati ons derived in a course in stre ngth of materials forhomoge neous elastic materials. Much of rein forced con crete desig n in thereforeempirical, i.e., design equations and design methods are based on experime ntal and engineering and architecture con crete for structures and requires basic knowledge oftime-proved results in stead of being derived exclusively from theoretical formulati ons.A thorough un dersta nding of the behavior of rein forced con crete will allow the desig ner to con vert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete ' s desirable characteristics, its high compressive stre ngth, its fire resista nee, and its durability.Concrete, a stone like material, is madeby mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives (that modify properties ) into a workable mixture. In its un harde ned or plastic state, concrete can be placed in forms to produce a large variety of structural eleme nts. Although the harde ned con crete by itself, i.e., without any rein forceme nt, is stro ng in compressi on, it lacks ten sile stre ngth and therefore cracks easily. Because unrein forced con crete is brittle, it cannot undergo large deformations under load and fails sudde nly-without warni ng. The additi on fo steel rein forceme nt to the con crete reduces the n egative effects of its two prin cipal in here nt weaknesses, its susceptibility to cracking and its brittleness. Whenthe rein forceme nt is stro ngly bon ded to the con crete, a strong, stiff, and ductile con struct ion material is produced. This material, calledrei nforced con crete, is used exte nsively to con struct foun dati ons,structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Twoother characteristics of concrete that are present even when concrete is rein forced are shri nkage and creep, but the n egative effects of these properties can be mitigated by careful desig n.A code is a set tech ni cal specificati ons and sta ndards that con trol importa nt details of desig n and con struct ion. The purpose of codes it produce structures so that the public will be protected from poor of in adequate and con struct ion.Two types f coeds exist. One type, called a structural code, is orig in ated and con trolled by specialists whoare concerned with the proper use of a specific material or who are invo Ived with the safe desig n of a particular class of structures.The sec ond type of code, called a build ing code, is established to cover con struct ion in a give n region, ofte n a city or a state. The objective of a build ing code is also to protect the public by acco un ti ng for the in flue nee of the local en vir onmen tal con diti ons on con structi on. For example, local authorities may specifyadditional provisions toaccount for such regional conditions as earthquake, heavy snow, ortorn ados. Nati onal structural codes gen rally are in corporated into local build ing codes.The America n Con crete In stitute ( ACI ) Buildi ng Code coveri ng the desig n of rein forced con crete build in gs. It contains provisi ons coveri ngall aspects of re in forced con crete manu facture, desig n, and con structi on. It includes specifications on quality of materials, details on mixing andplacing concrete, design assumptions for the analysis of continuous structures, and equati ons for proporti oning members for desig n forces.All structures must be proporti oned so they will not fail or deform excessively un der any possible con diti on of service. Therefore it is important that an engineer use great care in anticipating all the probable loads to which a structure will be subjected duri ng its lifetime.Although the desig n of most members is con trolled typically by dead and live load acting simultaneously, consideration must also be given tothe forces produced by wind, impact, shrinkage, temperature change, creep and support settleme nts, earthquake, and so forth.The load associated with the weight of the structure itself and its perma nent comp onents is called the dead load. The dead load of con crete members, which is substantial, should never be neglected in design computations. The exact magnitude of the dead load is not known accurately un til members have bee n sized. Since some figure for the dead load must be used in computations to size the members, its magnitude must be estimated at first. After a structure has been analyzed, the memberssized, and architectural details completed, the dead load can be computed more accurately. If the computed dead load is approximately equal to the initial estimate of its value ( or slightly less ), the design is complete,but if a significant differenee exists between the computed and estimated values of dead weight, the computations should be revised using an improved value of dead load. An accurate estimate of dead load is particularly importa nt whe n spa ns are long, say over 75 ft ( 22.9 m ),because dead load con stitutes a major porti on of the desig n load.Live loads associated with building use are specific items of equipme nt and occupa nts in a certa in area of a build ing, buildi ng codes specify values of un iform live for which members are to be desig ned.After the structure has bee n sized for vertical load, it is checkedfor wi nd in comb in ati on with dead and live load as specified in the code. Windloads do not usually con trol the size of members in buildi ng lessthan 16 to 18 stories, but for tall buildings wind loads becomesignificant and cause large forces to develop in the structures. Under these conditions economycan be achieved only by selecting a structural system that is able to tran sfer horiz on tal loads into the ground efficie ntly.钢筋混凝土在每一个国家,混凝土及钢筋混凝土都被用来作为建筑材料。
土木工程混凝土论文中英文资料外文翻译文献外文资料STUDIES ON IMPACT STRENGTH OF CONCRETESUBJECTED TO SUSTAINEDELEVATED TEMPERATUREConcrete has a remarkable fire resisting properties. Damage in concrete due to fire depends on a great extent on the intensity and duration of fire. Spalling cracking during heating are common concrete behaviour observed in the investigation of the fire affected structures. Plenty of literature is available on the studies of concrete based on time temperature cures. In power, oil sectorsand nuclear reactors concrete is exposed to high temperature for considerable period of time. These effects can be reckoned as exposure to sustained elevated temperature. The sustained elevated temperature may be varying from a few hours to a number of years depending upon practical condition of exposures. The knowledge on properties under such conditions is also of prime importance apart from the structures subjected to high intensity fire. Impact studies of structure subjected to sustained elevated temperature becomes more important as it involves sensitive structures which is more prone to attacks and accidents. In this paper impact studies on concrete subjected to sustained elevated temperature has been discussed. Experiments have been conducted on 180 specimens along with 180 companion cube specimens. The temperatures of 100°C, 200°C and 300°C for a duration of exposure of 2 hours 4 hours and 6 hours has been considered in the experiments. The results are logically analyzed and concluded.1. INTRODUCTIONThe remarkable property of concrete to resist the fire reduces the damage in a concrete structure whenever there is an accidental fire. In most of the cases the concrete remains intact with minor damages only. The reason being low thermal conductivity of concrete at higher temperatures and hence limiting the depth of penetration of firedamage. But when the concrete is subjected to high temperature for long duration the deterioration of concrete takes place. Hence it is essential to understand the strength and deformation characteristics of concrete subjected to temperature for long duration. In this paper an attempt has been made to study the variation in Impact Strength of concrete when subjected to a temperature range 100oC, 200oC and 300oC sustained for a period of 2 hrs, 4 hrs and 6 hrs.The review of the literature shows that a lot of research work [1 – 3] has taken place on the effect of elevated temperature on concrete. All these studies are based on time –temperature curves. Hence an attempt has been made to study the effect of sustained elevated temperature on impact strength of concrete and the results are compared with the compressive strength. The experimental programme has been planned for unstressed residual strength test based on the available facilities. Residual strength is the strength of heated and subsequently cooled concrete specimens expressed as percentage of the strength of unheated specimens.2. EXPERIMENTAL INVESTIGATION2.1. TEST SPECIMEN AND MATERIALSA total of 180 specimens were tested in the present study along with 180 companion cubes. An electric oven capable of reaching a maximum temperature of 300oC has been used for investigation. Fine and coarse aggregates conforming to IS383 has been used to prepare the specimen with mix proportions M1 = 1:2.1:3.95 w/c = 0.58, M2 = 1:1.15:3.56 w/c = 0.53, M3 = 1:0.8:2.4 w/c = 0.4.2.2 TEST VARIABLESThe effects of the following variables were studied.2.2.1 Size sSize of Impact Strength Test Specimen was 150 mm dial and 64 mm thickness and size of companion cube 150 x 150 x 150 mm.2.2.2 Maximum TemperatureIn addition to room temperature, the effect of three different temperatures (100oC, 200oC and 300oC) on the compressive strength was investigated.2.2.3 Exposure Time at Maximum TemperatureThree different exposure times were used to investigate the influence of heat on compressive strength; they are 2 hrs, 4 hrs and 6 hrs.2.2.4 Cooling MethodSpecimens were cooled in air to room temperature.3. TEST PROCEDUREAll the specimens were cast in steel moulds as per IS516 and each layer was compacted. Specimens were then kept in their moulds for 24 hours after which they were decoupled and placed into a curing tank until 28 days. After which the specimens were removed and were allowed to dry in room temperature. These specimens were kept in the oven and the required target temperature was set. Depending on the number of specimen kept inside the oven the time taken to reach the steady state was found to vary. After the steady state was reached the specimens were subjected to predetermined steady duration at the end of which the specimens are cooled to room temperature and tested.ACI drop weight impact strength test was adopted. This is the simplest method for evaluating impact resistance of concrete. The size of the specimen is 150 mm dial and 64 mm thickness. The disc specimens were prepared using steel moulds cured and heated and cooled as. This consists of a standard manually operated 4.54 kg hammer with 457 mm drop. A 64 mm hardened steel ball and a flat base plate with positioning bracket and lugs. The specimen is placed between the four guides pieces (lugs) located 4.8 mm away from the sample. A frame (positioning bracket) is then built in order to target the steel ball at the centre of concrete disc. The disc is coated at the bottom with a thin layer of petroleum jelly or heavy grease to reduce the friction between the specimen and base plate. The bottom part of the hammer unit was placed with its base upon the steel ball and the load was applied by dropping weight repeatedly. The loading was continued until the disc failed and opened up such that it touched three of the four positioning lugs. The number of blows that caused this condition is recorded as the failure strength. The companion cubes were tested for cube compression strength (fake).4. ANALYSIS AND RESULTS4.1 RESIDUAL COMPRESSIVE STRENGTH VS. TEMPERATUREFrom Table 1, at 100°C sustained elevated temperature it is seen that the residual strength of air cooled specimens of mixes M1, M2 and M3 has increased in strength 114% for M1 mix, 109% for M2 mix and 111% for M3 mix for 6 hours duration of exposure. When the sustained elevated temperature is to 200°C for air cooled specimens there is a decrease in strength up to 910% approximately for M1 mix for a duration of 6 hours, but in case of M2 mix it is 82% and for M3 mix it is 63% maximum for 6 hours duration of exposure. When the concrete mixes M1, M2 and M3 are exposed to 300°C sustained temperature there is a reduction in strength up to 78% for M1 mix for 6 hour duration of exposure.4.2 RESIDUAL COMPRESSIVE STRENGTH VS DURATION OF EXPOSUREFrom Table 1, result shows that heating up to 100°C for 2 hours and 4 hours, the residual strength of mix M1 has decreased where as the residual strength of mix M2 and M3 has increased. The residual strength is further increased for 6 hours duration of exposure in all the three mixes M1, M2 and M3 even beyond the strength at room temperature. When the specimens of mixes M1, M2 and M3 are exposed to 200°C for 2,4 and 6 hours of duration, it is observed that the residual strength has decreased below the room temperature and has reached 92% for M1 mix, 82 and 73% for M2 and M3 mix respectively. Concrete cubes of mixes M1, M2 and M3 when subjected to 300°C temperature for 2,4 and 6 hours the residual strength for mix M1 reduces to 92% for 2 hours up to 78% for six hours duration of exposure, for M2 mix 90% for 2 hours duration of exposure up to 76% for six hour duration of exposure, for M3 mix 88% up to 68% between 2 and 6 hours of duration of exposure.5. IMPACT STRENGTH OF CONCRETE5.1 RESIDUAL IMPACT STRENGTH VS TEMPERATUREFrom the table 1, it can be observed that for the sustained elevated temperature of 100°C the residual impact strength of all the specimens reduces and vary between 20 and 50% for mix M1, 15 to 40% for mix M2 and M3. When the sustained elevated temperature is 200°C the residual impact strength of all the mixes further decreases. The reduction is around 60-70% for mix M1, 55 to 65% for M2 and M3 mix. When the sustained elevated temperature is 300°C it is observed that the residual impact strength reduces further and vary between 85 and 70% for mix M1 and 85 to 90% for mix M2 and mix M3.5.2 RESIDUAL IMPACT STRENGTH VS DURATION OF EXPOSUREFrom the Table 1 and Figures 1 to 3, it can be observed that there is a reduction in impact strength when the sustained elevated temperature is 100°C for 2 hrs, 4 hrs and 6 hrs, and its range is 15 to 50% for all the mixes M1, M2 and M3. The influence of duration of exposure is higher for mix M1 which decreases more rapidly as compared to mix M2 and mix M3 for the same duration of exposure. When the specimens are subjected to sustained elevated temperature of 200°C for 2,4 and 6 hour of duration, further reduction in residual impact strength is observed as compared to at 100°C. The reduction is in the range of 55-70% for all the mixes. The six hour duration of exposure has a greater influence on the residual impact strength of concrete. When the sustained elevated temperature is 300°C for 2,4 and 6 hours duration of exposure the residualimpact strength reduces. It can be seen that both temperature and duration of exposure have a very high influence on the residual impact strength of concrete which shows a reduction up to 90% approximately for all the mixes.6. CONCLUSIONThe compressive strength of concrete increases at 100oC when exposed to sustained elevated temperature. The compressive strength of concrete decreases when exposed to 200°C and 300°C from 10 to 30% for 6 hours of exposure. Residual impact strength reduces irrespective of temperature and duration. Residual impact strength decreases at a higher rate of 20% to 85% as compared to compressive strength between 15% and 30 % when subjected to sustained elevated temperature. The impact strength reduces at a higher rate as compared to compressive strength when subjected to sustained elevated temperature.混凝土受持续高温影响的强度的研究混凝土具有显着的耐火性能。
土木工程专业毕业设计外文文献翻译2篇XXXXXXXXX学院学士学位毕业设计(论文)英语翻译课题名称英语翻译学号学生专业、年级所在院系指导教师选题时间Fundamental Assumptions for Reinforced ConcreteBehaviorThe chief task of the structural engineer is the design of structures. Design is the determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences that will act on it throughout useful life. These influences are primarily the loads and other forces to which it will be subjected, as well as other detrimental agents, such as temperature fluctuations, foundation settlements, and corrosive influences, Structural mechanics is one of the main tools in this process of design. As here understood, it is the body of scientific knowledge that permits one to predict with a good degree of certainly how a structure of give shape and dimensions will behave when acted upon by known forces or other mechanical influences. The chief items of behavior that are of practical interest are (1) the strength of the structure, i. e. , that magnitude of loads of a give distribution which will cause the structure to fail, and (2) the deformations, such as deflections and extent of cracking, that the structure will undergo when loaded underservice condition.The fundamental propositions on which the mechanics of reinforced concrete is based are as follows:1.The internal forces, such as bending moments, shear forces, and normal andshear stresses, at any section of a member are in equilibrium with the effect of the external loads at that section. This proposition is not an assumption but a fact, because any body or any portion thereof can be at rest only if all forces acting on it are in equilibrium.2.The strain in an embedded reinforcing bar is the same as that of thesurrounding concrete. Expressed differently, it is assumed that perfect bonding exists between concrete and steel at the interface, so that no slip can occur between the two materials. Hence, as the one deforms, so must the other. With modern deformed bars, a high degree of mechanical interlocking is provided in addition to the natural surface adhesion, so this assumption is very close to correct.3.Cross sections that were plane prior to loading continue to be plan in themember under load. Accurate measurements have shown that when a reinforced concrete member is loaded close to failure, this assumption is not absolutely accurate. However, the deviations are usually minor.4.In view of the fact the tensile strength of concrete is only a small fraction ofits compressive strength; the concrete in that part of a member which is in tension is usually cracked. While these cracks, in well-designed members, are generally so sorrow as to behardly visible, they evidently render the cracked concrete incapable of resisting tension stress whatever. This assumption is evidently a simplification of the actual situation because, in fact, concrete prior to cracking, as well as the concrete located between cracks, does resist tension stresses of small magnitude. Later in discussions of the resistance of reinforced concrete beams to shear, it will become apparent that under certain conditions this particular assumption is dispensed with and advantage is taken of the modest tensile strength that concrete can develop.5.The theory is based on the actual stress-strain relation ships and strengthproperties of the two constituent materials or some reasonable equivalent simplifications thereof. The fact that novelistic behavior is reflected in modern theory, that concrete is assumed to be ineffective in tension, and that the joint action of the two materials is taken into consideration results in analytical methods which are considerably more complex and also more challenging, than those that are adequate for members made of a single, substantially elastic material.These five assumptions permit one to predict by calculation the performance of reinforced concrete members only for some simple situations. Actually, the joint action of two materials as dissimilar and complicated as concrete and steel is so complex that it has not yet lent itself to purely analytical treatment. For this reason, methods of design and analysis, while using these assumptions, are very largely based on the results of extensive and continuing experimental research. They are modified and improved as additional test evidence becomes available.钢筋混凝土的基本假设作为结构工程师的主要任务是结构设计。
毕业设计(论文)外文文献翻译文献、资料中文题目:混凝土结构配筋设计文献、资料英文题目:Concrete structure reinforcement design 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14英文原文:Concrete structure reinforcement designAbstract:structure in the long-term natural environment and under the use environment's function, its function is weaken inevitably gradually, our structural engineering's duty not just must finish the building earlier period the project work, but must be able the science appraisal structure damage objective law and the degree, and adopts the effective method guarantee structure the security use, that the structure reinforcement will become an important work. What may foresee will be the 21st century, the human building also by the concrete structure, the steel structure, the bricking-up structure and so on primarily, the present stage I will think us in the structure reinforcement this aspect research should also take this as the main breakthrough direction.Key word:Concrete structure reinforcement bricking-up structure reinforcement steel structure reinforcement1 Concrete structure reinforcementConcrete structure's reinforcement divides into the direct reinforcement and reinforces two kinds indirectly, when the design may act according to the actual condition and the operation requirements choice being suitable method and the necessary technology.1.1the direct reinforcement's general method1)Enlarges the section reinforcement lawAdds the concretes cast-in-place level in the reinforced concrete member in bending compression zone, may increase the section effective height, the expansion cross sectional area, thus enhances the component right section anti-curved, the oblique section anti-cuts ability and the section rigidity, plays the reinforcement reinforcement the role.In the suitable muscle scope, the concretes change curved the component right section supporting capacity increase along with the area of reinforcement and the intensity enhance. In the original component right section ratio of reinforcement not too high situation, increases the main reinforcement area to be possible to propose the plateau component right section anti-curved supporting capacity effectively. Is pulled in the section the area to add the cast-in-place concrete jacket to increase the component section, through new Canada partial and original component joint work, but enhances the component supporting capacity effectively, improvement normal operational performance.Enlarges the section reinforcement law construction craft simply, compatible, and has the mature design and the construction experience; Is suitable in Liang, the board, the column, the wall and the general structure concretes reinforcement; But scene construction's wet operating time is long, to produces has certain influence with the life, and after reinforcing the building clearance has certain reduction.2) Replacement concretes reinforcement lawThis law's merit with enlarges the method of sections to be close, and after reinforcing, does not affect building's clearance, but similar existence construction wet operating time long shortcoming; Is suitable somewhat low or has concretes carrier's and so on serious defect Liang, column in the compression zone concretes intensity reinforcement.3) the caking outsourcing section reinforcement lawOutside the Baotou Steel Factory reinforcement is wraps in the section or the steel plate is reinforced component's outside, outside the Baotou Steel Factory reinforces reinforced concrete Liang to use the wet outsourcing law generally, namely uses the epoxy resinification to be in the milk and so on methods with to reinforce the section the construction commission to cake a whole, after the reinforcement component, because is pulled with the compressed steel cross sectional area large scale enhancement, therefore right section supporting capacity and section rigidity large scale enhancement.This law also said that the wet outside Baotou Steel Factory reinforcement law, the stress is reliable, the construction is simple, the scene work load is small, but is big with the steel quantity, and uses in above not suitably 600C in the non-protection's situation the high temperature place; Is suitable does not allow in the use obviously to increase the original component section size, but requests to sharpen its bearing capacity large scale the concrete structure reinforcement.4) Sticks the steel reinforcement lawOutside the reinforced concrete member in bending sticks the steel reinforcement is (right section is pulled in the component supporting capacity insufficient sector area, right section compression zone or oblique section) the superficial glue steel plate, like this may enhance is reinforced component's supporting capacity, and constructs conveniently.This law construction is fast, the scene not wet work or only has the plastering and so on few wet works, to produces is small with the life influence, and after reinforcing, is not remarkable to the original structure outward appearance and the original clearance affects, but the reinforcement effect is decided to a great extent by the gummy craft and the operational level; Is suitable in the withstanding static function, and is in the normal humidity environment to bend or the tension member reinforcement.5) Glue fibre reinforcement plastic reinforcement lawOutside pastes the textile fiber reinforcement is pastes with the cementing material the fibre reinforcement compound materials in is reinforced the component to pull the region, causes it with to reinforce the section joint work, achieves sharpens the component bearing capacity the goal. Besides has glues the steel plate similarmerit, but also has anticorrosive muddy, bears moistly, does not increase the self-weight of structure nearly, durably, the maintenance cost low status merit, but needs special fire protection processing, is suitable in each kind of stress nature concrete structure component and the general construction.This law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.6) Reeling lawThis law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.7) Fang bolt anchor lawThis law is suitable in the concretes intensity rank is the C20~C60 concretes load-bearing member transformation, the reinforcement; It is not suitable for already the above structure which and the light quality structure makes decent seriously.1.2The indirect reinforcement's general method1)Pre-stressed reinforcement law(1)Thepre-stressed horizontal tension bar reinforces concretes member in bending,because the pre-stressed and increases the exterior load the combined action, in the tension bar has the axial tension, this strength eccentric transmits on the component through the pole end anchor (, when tension bar and Liang board bottom surface close fitting, tension bar can look for tune together with component, this fashion has partial pressures to transmit directly for component bottom surface), has the eccentric compression function in the component, this function has overcome the bending moment which outside the part the load produces, reduced outside the load effect, thus sharpened component's anti-curved ability. At the same time, because the tension bar passes to component's pressure function, the component crack development can alleviate, the control, the oblique section anti-to cut the supporting capacity also along with it enhancement.As a result of the horizontal lifting stem's function, the original component's section stress characteristic by received bends turned the eccentric compression, therefore, after the reinforcement, component's supporting capacity was mainly decided in bends under the condition the original component's supporting capacity 。
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土土方工程文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.141 外文翻译1.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, andwalls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.1.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where thedistance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.1.3 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was desi gned for. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failureby fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) 。
Civil engineering introduction papers[英语原文]Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development. Mechanics findings, material of update, ever more scientific technology into the building. But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.[key words] : civil engineering; Architecture; Mechanics, Materials.Civil engineering is build various projects collectively. It was meant to be and "military project" corresponding. In English the history of Civil Engineering, mechanical Engineering, electrical Engineering, chemical Engineering belong to to Engineering, because they all have MinYongXing. Later, as the project development of science and technology, mechanical, electrical, chemical has gradually formed independent scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the investigation, design and construction, maintenance, repair and other professional technology.Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with "live" relationship is directly. Because, to solve the "live" problem must build various types of buildings. To solve the "line, food and clothes" problem both direct side, but also a indirect side. "Line", must build railways, roads, Bridges, "Feed", must be well drilling water, water conservancy, farm irrigation, drainage water supply for the city, that is direct relation. Indirectly relationship is no matter what you do, manufacturing cars, ships, or spinning and weaving, clothing, or even production steel, launch satellites, conducting scientific research activities are inseparable from build various buildings, structures and build all kinds of project facilities.Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, waterand wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.Construction project is housing planning, survey, design, construction of the floorboard. Purpose is for human life and production provide places.Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.Building materials in building and has a pivotal role. Building material is with human society productivity and science and technologyimproves gradually developed. In ancient times, the human lives, the line USES is the rocks andTrees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality, performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the precondition of choice of different material is different, use method of engineering cost has direct impact.In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient hole JuChao place to now skyscrapers, from rural to urban country road elevated road all need through "construction" means. A construction project, including many jobs such as dredging engineering, deep foundation pit bracing engineering, foundation engineering, reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation. Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is theinteraction of the whole. Foundation can be divided into natural foundation and artificial foundation, basic according to the buried depth is divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the oceanBridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a morecomfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer, high-tech introduction to wait to will make civil engineering have a new leap.This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.Reference:[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007[2] WangFuChuan, palace rice expensive editor. Construction engineering materials. Beijing. Science and technology literature press. 2002[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992土木工程概论 [译文]摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。
英文原文:Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP compositesAhmed Khalifa a,*, Antonio Nanni ba Department of Structural Engineering,University of Alexandria,Alexandria 21544,Egyptb Department of Civil Engineering,University of Missouri at Rolla,Rolla,MO 65409,USAReceived 28 April 1999;received in revised form 30 October 2001;accepted 10 January 2002AbstractThe present study examines the shear performance and modes of failure of rectangular simply supported reinforced concrete(RC) beams designed with shear deficiencies。
These members were strengthened with externally bonded carbon fiber reinforced polymer (CFRP)sheets and evaluated in the laboratory. The experimental program consisted of twelve full—scale RC beams tested to fail in shear. The variables investigated within this program included steel stirrups, and the shear span-to—effective depth ratio, as well as amount and distribution of CFRP。
外文原文:Design of Reinforced Concrete StructuresSecond Edition(USA) Williams·Alan2Structure in Design of Architecture And StructuralMaterial,China Water Power Press,Beijing,2002. P37~57钢筋混凝土结构设计第二版(美)艾伦·威廉斯著第二章,在建筑学的设计构成和结构的材料,中国水利水电出版社,北京,2002.P37页~57页.Structure in Design of Architecture And Structural Material We have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , atconceptual stages of design thinking ,by the myriad detail issues that candistract attention from more basic considerations .In fact , we can say thatan architect’s ability to distinguish the more basic form the more detailedissues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overallsite-plan, activity-interaction, and building-configuration options .To do sothe architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift to approximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stagethe emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents . Of course this success comes from the development of the Structural Material. The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in themfor iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water. Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other.They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond─ the force that unites them─ that the steel cannot slip within the concrete. Still another advantage is that steel does not rust in concrete. Acid corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid. The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer necessary to use thickwalls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible to erect buildings with greater heights and longer spans.Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.Another advance in steel construction is the method of fastening together the beams. For many years the standard method was riveting. A rivet is a bolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the other end by hammering it to hold it in place. Riveting has now largely been replaced by welding, the joining together of pieces of steel by melting a steel material between them under high heat.Priestess’s concrete is an improved form of reinforcement. Steel rods are bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other (and more common) method, the priestesses steel rods are placed in the lower part of a form that corresponds to the shape of the finished structure, and the concrete is poured around them. Priestess’s concrete uses less steel and less concrete. Because it is a highly desirable material. Progressed concrete has made it possible to develop buildings with unusualshapes, like some of the modern, sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.中文译文:在建筑学的设计构成和结构的材料我们有,并且建筑师一定在一个如此的方法中处理活动,身体检查和代号需要的空间方面全部的表现正直被保证。
7 Rigid-Frame StructuresA rigid-frame high-rise structure typically comprises parallel or orthogonally arranged bents consisting of columns and girders with moment resistant joints. Resistance to horizontal loading is provided by the bending resistance of the columns, girders, and joints. The continuity of the frame also contributes to resisting gravity loading, by reducing the moments in the girders.The advantages of a rigid frame are the simplicity and convenience of its rectangular form.Its unobstructed arrangement, clear of bracing members and structural walls, allows freedom internally for the layout and externally for the fenestration. Rigid frames are considered economical for buildings of up to' about25 stories, above which their drift resistance is costly to control. If, however,a rigid frame is combined with shear walls or cores, the resulting structure is very much stiffer so that its height potential may extend up to 50 stories or more. A flat plate structure is very similar to a rigid frame, but with slabs replacing the girders As with a rigid frame, horizontal and vertical loadings are resisted in a flat plate structure by the flexural continuity between the vertical and horizontal components.As highly redundant structures, rigid frames are designed initially on the basis of approximate analyses, after which more rigorous analyses and checks can be made. The procedure may typically include the following stages:1. Estimation of gravity load forces in girders and columns by approximate method.2. Preliminary estimate of member sizes based on gravity load forces witharbitrary increase in sizes to allow for horizontal loading.3. Approximate allocation of horizontal loading to bents and preliminary analysisof member forces in bents.4. Check on drift and adjustment of member sizes if necessary.5. Check on strength of members for worst combination of gravity and horizontalloading, and adjustment of member sizes if necessary.6. Computer analysis of total structure for more accurate check on memberstrengths and drift, with further adjustment of sizes where required. This stage may include the second-order P-Delta effects of gravity loading on the member forces and drift..7. Detailed design of members and connections.This chapter considers methods of analysis for the deflections and forces for both gravity and horizontal loading. The methods are included in roughly the order of the design procedure, with approximate methods initially and computer techniques later. Stability analyses of rigid frames are discussed in Chapter 16.7.1 RIGID FRAME BEHAVIORThe horizontal stiffness of a rigid frame is governed mainly by the bending resistance of the girders, the columns, and their connections, and, in a tall frame, by the axial rigidity of the columns. The accumulated horizontal shear above any story of a rigid frame is resisted by shear in the columns of that story (Fig. 7.1). The shear causes the story-height columns to bend in double curvature with points of contraflexure at approximately mid-story-height levels. The moments applied to a joint from the columns above and below are resisted by the attached girders, which also bend in double curvature, with points of contraflexure at approximately mid-span. These deformations of the columns and girders allow racking of the frame and horizontal deflection in each story. The overall deflected shape of a rigid frame structure due to racking has a shear configuration with concavity upwind, a maximum inclination near the base, and a minimum inclination at the top, as shown in Fig.7.1.The overall moment of the external horizontal load is resisted in each story level by the couple resulting from the axial tensile and compressive forces in the columns on opposite sides of the structure (Fig. 7.2). The extension and shortening of the columns cause overall bending and associated horizontal displacements of the structure. Because of the cumulative rotation up the height, the story drift dueto overall bending increases with height, while that due to racking tends to decrease. Consequently the contribution to story drift from overall bending may, in. the uppermost stories, exceed that from racking. The contribution of overall bending to the total drift, however, will usually not exceed 10% of that of racking, except in very tall, slender,, rigid frames. Therefore the overall deflected shape of a high-rise rigid frame usually has a shear configuration.The response of a rigid frame to gravity loading differs from a simply connected frame in the continuous behavior of the girders. Negative moments are induced adjacent to the columns, and positive moments of usually lesser magnitude occur in the mid-span regions. The continuity also causes the maximum girder moments to be sensitive to the pattern of live loading. This must be considered when estimating the worst moment conditions. For example, the gravity load maximum hogging moment adjacent to an edge column occurs when live load acts only on the edge span and alternate other spans, as for A in Fig. 7.3a. The maximum hogging moments adjacent to an interior column are caused, however, when live load acts only on the spans adjacent to the column, as for B in Fig. 7.3b. The maximum mid-span sagging moment occurs when live load acts on the span under consideration, and alternate other spans, as for spans AB and CD in Fig. 7.3a.The dependence of a rigid frame on the moment capacity of the columns for resisting horizontal loading usually causes the columns of a rigid frame to be larger than those of the corresponding fully braced simply connected frame. On the other hand, while girders in braced frames are designed for their mid-span sagging moment, girders in rigid frames are designed for the end-of-span resultant hogging moments, which may be of lesser value. Consequently, girders in a rigid frame may be smaller than in the corresponding braced frame. Such reductions in size allow economy through the lower cost of the girders and possible reductions in story heights. These benefits may be offset, however, by the higher cost of the more complex rigid connections.7.2 APPROXIMATE DETERMINATION OF MEMBER FORCES CAUSED BY GRAVITY LOADSIMGA rigid frame is a highly redundant structure; consequently, an accurate analysis can be made only after the member sizes are assigned. Initially, therefore, member sizes are decided on the basis of approximate forces estimated either by conservative formulas or by simplified methods of analysis that are independent of member properties. Two approaches for estimating girder forces due to gravity loading are given here.7.2.1 Girder Forces—Code Recommended ValuesIn rigid frames with two or more spans in which the longer of any two adjacent spans does not exceed the shorter by more than 20 %, and where the uniformly distributed design live load does not exceed three times the dead load, the girder moment and shears may be estimated from Table 7.1. This summarizes the recommendations given in the Uniform Building Code [7.1]. In other cases a conventional moment distribution or two-cycle moment distribution analysis should be made for a line of girders at a floor level.7.2.2 Two-Cycle Moment Distribution [7.2].This is a concise form of moment distribution for estimating girder moments in a continuous multibay span. It is more accurate than the formulas in Table 7.1, especially for cases of unequal spans and unequal loading in different spans.The following is assumed for the analysis:1. A counterclockwise restraining moment on the end of a girder is positive anda clockwise moment is negative.2. The ends of the columns at the floors above and below the considered girder are fixed.3. In the absence of known member sizes, distribution factors at each joint aretaken equal to 1 /n, where n is the number of members framing into the joint in the plane of the frame.Two-Cycle Moment Distribution—Worked Example. The method is demonstrated by a worked example. In Fig, 7.4, a four-span girder AE from a rigid-frame bent is shown with its loading. The fixed-end moments in each span are calculated for dead loading and total loading using the formulas given in Fig, 7.5. The moments are summarized in Table 7.2.The purpose of the moment distribution is to estimate for each support the maximum girder moments that can occur as a result of dead loading and pattern live loading.A different load combination must be considered for the maximum moment at each support, and a distribution made for each combination.The five distributions are presented separately in Table 7.3, and in a combined form in Table 7.4. Distributions a in Table 7.3 are for the exterior supports A andE. For the maximum hogging moment at A, total loading is applied to span AB with dead loading only on BC. The fixed-end moments are written in rows 1 and 2. In this distribution only .the resulting moment at A is of interest. For the first cycle, joint B is balanced with a correcting moment of- (-867 + 315)/4 = - U/4 assigned to M BA where U is the unbalanced moment. This is not recorded, but half of it, ( - U/4)/2, is carried over to M AB. This is recorded in row 3 and then added to the fixed-end moment and the result recorded in row 4.The second cycle involves the release and balance of joint A. The unbalanced moment of 936 is balanced by adding-U/3 = -936/3 = -312 to M BA (row 5), implicitly adding the same moment to the two column ends at A. This completes the second cycle of the distribution. The resulting maximum moment at A is then given by the addition of rows 4 and 5, 936 - 312 = 624. The distribution for the maximum moment at E follows a similar procedure.Distribution b in Table 7.3 is for the maximum moment at B. The most severe loading pattern for this is with total loading on spans AB and BC and dead load only on CD. The operations are similar to those in Distribution a, except that the T first cycle involves balancing the two adjacent joints A and C while recording only their carryover moments to B. In the second cycle, B is balanced by adding - (-1012 + 782)/4 = 58 to each side of B. The addition of rows 4 and 5 then gives the maximum hogging moments at B. Distributions c and d, for the moments at joints C and D, follow patterns similar to Distribution b.The complete set of operations can be combined as in Table 7.4 by initially recording at each joint the fixed-end moments for both dead and total loading. Then the joint, or joints, adjacent to the one under consideration are balanced for the appropriate combination of loading, and carryover moments assigned .to the considered joint and recorded. The joint is then balanced to complete the distribution for that support.Maximum Mid-Span Moments. The most severe loading condition for a maximum mid-span sagging moment is when the considered span and alternate other spans and total loading. A concise method of obtaining these values may be included in the combined two-cycle distribution, as shown in Table 7.5. Adopting the convention that sagging moments at mid-span are positive, a mid-span total; loading moment is calculated for the fixed-end condition of each span and entered in the mid-span column of row 2. These mid-span moments must now be corrected to allow for rotation of the joints. This is achieved by multiplying the carryover moment, row 3, at the left-hand end of the span by (1 + 0.5 D.F. )/2, and the carryover moment at the right-hand end by -(1 + 0.5 D.F.)/2, where D.F. is the appropriate distribution factor, and recording the results in the middle column. For example, the carryover to the mid-span of AB from A = [(1 + 0.5/3)/2] x 69 = 40 and from B = -[(1+ 0.5/4)/2] x (-145) = 82. These correction moments are then added to the fixed-end mid-span moment to give the maximum mid-span sagging moment, that is, 733 + 40 + 82 = 855.7.2.3 Column ForcesThe gravity load axial force in a column is estimated from the accumulated tributary dead and live floor loading above that level, with reductions in live loading as permitted by the local Code of Practice. The gravity load maximum column moment is estimated by taking the maximum difference of the end moments in the connected girders and allocating it equally between the column ends just above and below the joint. To this should be added any unbalanced moment due to eccentricity of the girderconnections from the centroid of the column, also allocated equally between the column ends above and below the joint.第七章框架结构高层框架结构一般由平行或正交布置的梁柱结构组成,梁柱结构是由带有能承担弯矩作用节点的梁、柱组成。
2 外文翻译Introduction to reinforced concrete and earthworksAbstract: As a designer must first clear the building structure itself was designed and intensity levels, as well as related issues in-depth discussion and research, this paper describes on the reinforced concrete, earthwork engineering knowledge, let more in-depth understanding of this Discusses the key, and the rational application of knowledge to help us design more excellent buildingKeywords: concrete, earthwork, structural safety2.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars,1adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°temperatures above 50°F. It is necessary to maintain such a condition in order that F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and The trial-and ––adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once atrial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig withforce into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest heaped. The largest self-propelled scrapers are of 19 m ³self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ struck capacity ( 25 m ³ struck capacity ( 25 m ³ heaped )and they are heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³0.5 m ³, and the largest standard types are of about 4.5 m ³, and the largest standard types are of about 4.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include . Special types include the self-loading dumper of up to 4 m ³the self-loading dumper of up to 4 m ³ and the articulated type of about 0.5 m ³ and the articulated type of about 0.5 m ³ and the articulated type of about 0.5 m ³. . The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.2.3 Safety of StructuresThe principal scope of specifications is to provide general principles andcomputational methods i computational methods in order to verify safety of structures. The “ safety factor ”, n order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. There are two categories of limit state : (1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into: (1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactoredlive and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which arethen combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter ofmechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon theload acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions( semi-probabilistic methods ) .References:1. Hanjing Yun. Building decoration materials and their application. China Building Industry Press .2000.2. Xia Yan eds. Civil engineering materials. Wuhan University Press .2009.3. From before the king, Huoman Lin. Building materials (first edition). Lanzhou University Press .19974. Zhang Xiong editor. Building functional materials. China Building Industry Press .2000.5. Yanhan Dong, Qian Xiao Qian ed. New Building Materials tutorial. China Building Materials Industry Press .2005.6. Zhang Fen Qin, Zhao Man ed. Building decoration materials. Chongqing University Press, .2007.7. Xuyou Hui ed. Building materials and learning. Southwest Jiaotong University Press .2007.1 中文翻译钢筋混凝土及土方工程简介摘要:作为设计人员首先必须明确自身设计的建筑构筑物得等级和强度,作为设计人员首先必须明确自身设计的建筑构筑物得等级和强度,以及对相关问题进以及对相关问题进行深入的讨论和研究,本文主要叙述了关于钢筋混凝土,土方工程方面的相关知识,让我们更加深入的了解这方面的主要关键论述,以及合理应用知识来帮助我们设计更加优良的建筑。
使用加固纤维聚合物增强混凝土梁的延性作者:Nabil F. Grace, George Abel-Sayed, Wael F. Ragheb摘要:一种为加强结构延性的新型单轴柔软加强质地的聚合物(FRP)已在被研究,开发和生产(在结构测试的中心在劳伦斯技术大学)。
这种织物是两种碳纤维和一种玻璃纤维的混合物,而且经过设计它们在受拉屈服时应变值较低,从而体现出伪延性的性能。
通过对八根混凝土梁在弯曲荷载作用下的加固和检测对研制中的织物的效果和延性进行了研究。
用现在常用的单向碳纤维薄片、织物和板进行加固的相似梁也进行了检测,以便同用研制中的织物加固梁进行性能上的比较。
这种织物经过设计具有和加固梁中的钢筋同时屈服的潜力,从而和未加固梁一样,它也能得到屈服台阶。
相对于那些用现在常用的碳纤维加固体系进行加固的梁,这种研制中的织物加固的梁承受更高的屈服荷载,并且有更高的延性指标。
这种研制中的织物对加固机制体现出更大的贡献。
关键词:混凝土,延性,纤维加固,变形介绍外贴粘合纤维增强聚合物(FRP)片和条带近来已经被确定是一种对钢筋混凝土结构进行修复和加固的有效手段。
关于应用外贴粘合FRP板、薄片和织物对混凝土梁进行变形加固的钢筋混凝土梁的性能,一些试验研究调查已经进行过报告。
Saadatmanesh和Ehsani(1991)检测了应用玻璃纤维增强聚合物(GFRP)板进行变形加固的钢筋混凝土梁的性能。
Ritchie等人(1991)检测了应用GFRP,碳纤维增强聚合物(CFRP)和G/CFRP板进行变形加固的钢筋混凝土梁的性能。
Grace等人(1999)和Triantafillou(1992)研究了应用CFRP薄片进行变形加固的钢筋混凝土梁的性能。
Norris,Saadatmanesh和Ehsani(1997)研究了应用单向CFRP薄片和CFRP织物进行加固的混凝土梁的性能。
在所有的这些研究中,加固的梁比未加固的梁承受更高的极限荷载。
⼟⽊⼯程(钢结构和钢筋混凝⼟结构)外⽂⽂献翻译⽂献信息:⽂献标题:Recent research and design developments in steel and composite steel–concrete structures in USA(近期美国在钢结构和钢筋混凝⼟结构研究和设计⽅⾯的发展)国外作者:Theodore V.Galambos⽂献出处:《Journal of Constructional Steel Research》,2000, 55(1-3):289-303字数统计:英⽂4718单词,23395字符;中⽂7671汉字外⽂⽂献:Recent research and design developments in steel and composite steel–concrete structures in USA Abstract A brief review of the status of structural steel research in the US at the end of the Twentieth Century is presented in this paper to show that while many problems are being solved, there are new and challenging problems remaining. The chief impetus for continued research is that provided by natural disasters, such as earthquakes, tropical storms, tornadoes and floods occurring in densely populated urban areas. New materials and new experimental and computational technologies also give rise to new and exciting research problems.Keywords: Bridges; Buildings; Design; Research; Steel structures; United States of America; Seismic behavior; High-performance materials1. IntroductionThe purpose of this paper is to give a brief overview of the current developments in structural steel research in the US, and of the future directions that the structural steel engineering research may take in the coming Century. The drivingforces of research in this field are the following:new construction methods and construction productsnew materialseconomic considerationsnatural disastersThree of these motivations are common to all engineering developments, not just to structural engineering. However, the impetus due to natural disasters is unique to our field. Recent major natural disasters in the US, such as the Northridge earthquake in California and hurricane Andrew in Florida, have spurred much of the current research activity.The presentation here is of necessity incomplete, because the author is not aware of all research going on everywhere in the country and there is not enough space in this presentation. The overview is meant to give a general flavor of the research activities, and to show that a significant effort is going on in the US. The following is a list of 10 major topics in steel research: 1.Limit States Design for bridges2.Monitoring of structural performance in the field3.Design of seismically resistant connections4.Curved girder bridges/doc/c0cdca1fb8f67c1cfbd6b81b.html posite columns with high-performance concrete6.Building frames with semi-rigid joints7.“Advanced Structural Analysis” for buildings8.Repair and retrofit of structures9.Steel structures with high-performance steels10.Cold-formed steel structuresThe next parts of this paper will give brief discussions on some of these topics. Several topics will then be elaborated in more detail. The paper will conclude with a look toward the future of structural steel research.2.Research on steel bridgesThe American Association of State Transportation and Highway Officials (AASHTO) is the authority that promulgates design standards for bridges in the US. In 1994 it has issued a new design specification which is a Limit States Design standard that is based on the principles of reliability theory. A great deal of work went into the development of this code in the past decade, especially on calibration and on the probabilistic evaluation of the previous specification. The code is now being implemented in the design office, together with the introduction of the Systeme Internationale units. Many questions remain open about the new method of design, and there are many new projects that deal with the reliability studies of the bridge as a system. One such current project is a study to develop probabilistic models, load factors, and rational load-combination rules for the combined effects of liveload and wind; live-load and earthquake; live-load, wind and ship collision; and ship collision, wind, and scour. There are also many field measurements of bridge behavior, using modern tools of inspection and monitoring such as acoustic emission techniques and other means of non-destructive evaluation. Such fieldwork necessitates parallel studies in the laboratory, and the evolution of ever more sophisticated high-technology data transmission methods.America has an aging steel bridge population and many problems arise from fatigue and corrosion. Fatigue studies on full-scale components of the Williamsburg Bridge in New York have recently been completed at Lehigh University. A probabilistic AASHTO bridge evaluation regulation has been in effect since 1989, and it is employed to assess the future useful life of structures using rational methods that include field observation and measurement together with probabilistic analysis. Such an activity also fosters additional research because many issues are still unresolved. One such area is the study of the shakedown of shear connectors in composite bridges. This work has been recently completed at the University of Missouri.In addition to fatigue and corrosion, the major danger to bridges is the possibility of earthquake induced damage. This also has spawned many research projects on the repair and retrofit of steel superstructures and the supporting concrete piers. Many bridges in the country are being strengthened for earthquake resistance.One area that is receiving much research attention is the strengthening of concrete piers by “jacketing” them by sheets of high-performance reinforced plastic.The previously described research deals mainly with the behavior of existing structures and the design of new bridges. However, there is also a vigorous activity on novel bridge systems. This research is centered on the application of high-performance steels for the design of innovative plate and box-girder bridges, such as corrugated webs, combinations of open and closed shapes, and longer spans for truss bridges. It should be mentioned here that, in addition to work on steel bridges, there is also very active research going on in the study of the behavior of prestressed concrete girders made from very high strength concrete. The performance and design of smaller bridges using pultruded high-performance plastic composite members is also being studied extensively at present. New continuous bridge systems with steelconcrete composite segments in both the positive moment and the negative moment regions are being considered. Several researchers have developed strong capabilities to model the three-dimensional non-linear behavior of individual plate girders, and many studies are being performed on the buckling and post-buckling characteristics of such structures. Companion experimental studies are also made, especially on members built from high-performance steels. A full-scale bridge of such steel has been designed, and will soon be constructed and then tested under traffic loading. Research efforts are also underway on the study of the fatigue of large expansion joint elements and on the fatigue of highway sign structures.The final subject to be mentioned is the resurgence of studies of composite steelconcrete horizontally curved steel girder bridges. A just completed project at the University of Minnesota monitored the stresses and the deflections in a skewed and curved bridge during all phases of construction, starting from the fabrication yard to the completed bridge. Excellent correlation was found to exist between the measured stresses and deformations and the calculated values. The stresses and deflections during construction were found to be relatively small, that is, the construction process did not cause severe trauma to the system. The bridge has now been tested under service loading, using fully loaded gravel trucks, for two years, and it will continue tobe studied for further years to measure changes in performance under service over time. A major testing project is being conducted at the Federal Highway Administration laboratory in Washington, DC, where a half-scale curved composite girder bridge is currently being tested to determine its limit states. The test-bridge was designed to act as its own test-frame, where various portions can be replaced after testing. Multiple flexure tests, shear tests, and tests under combined bending and shear, are thus performed with realistic end-conditions and restraints. The experiments are also modeled by finite element analysis to check conformance between reality and prediction. Finally design standards will be evolved from the knowledge gained. This last project is the largest bridge research project in the USA at the present time.From the discussion above it can be seen that even though there is no large expansion of the nation’s highway and railr oadsystem, there is extensive work going on in bridge research. The major challenge facing both the researcher and the transportation engineer is the maintenance of a healthy but aging system, seeing to its gradual replacement while keeping it safe and serviceable.3.Research on steel members and framesThere are many research studies on the strength and behavior of steel building structures. The most important of these have to do with the behavior and design of steel structures under severe seismic events. This topic will be discussed later in this paper. The most significant trends of the non-seismic research are the following: ?“Advanced” methods of structural analysis and design are actively studied at many Universities, notably at Cornell, Purdue, Stanford, and Georgia Tech Universities. Such analysis methods are meant to determine the load-deformation behavior of frames up to and beyond failure, including inelastic behavior, force redistribution, plastic hinge formation, second-order effects and frame instability. When these methods are fully operational, the structure will not have to undergo a member check, because the finite element analysis of the frame automatically performs this job. In addition to the research on the best approaches to do this advanced analysis, there are also many studies on simplifications that can be easilyutilized in the design office while still maintaining the advantages of a more complex analysis. The advanced analysis method is well developed for in-plane behavior, but much work is yet to be done on the cases where bi-axial bending or lateraltorsional buckling must be considered. Some successes have been achieved, but the research is far from complete. Another aspect of the frame behavior work is the study of the frames with semirigid joints. The American Institute of Steel construction (AISC) has published design methods for office use. Current research is concentrating on the behavior of such structures under seismic loading. It appears that it is possible to use such frames in some seismic situations, that is, frames under about 8 to 10 stories in height under moderate earthquake loads. The future of structures with semi-rigid frames looks very promising, mainly because of the efforts of researchers such as Leon at Georgia Tech University , and many others. Research on member behavior is concerned with studying the buckling and postbuckling behavior of compact angle and wide-flange beam members by advanced commercial finite element programs. Such research is going back to examine the assumptions made in the 1950s and 1960s when the plastic design compactness and bracing requirements were first formulated on a semi-empirical basis. The non-linear finite element computations permit the “re-testing” of the old experiments a nd the performing of new computer experiments to study new types of members and new types of steels. White of Georgia Tech is one of the pioneers in this work. Some current research at the US military Academy and at the University of Minnesota by Earls is discussed later in this report. The significance of this type of research is that the phenomena of extreme yielding and distortion can be efficiently examined in parameter studies performed on the computer. The computer results can be verified with old experiments, or a small number of new experiments. These studies show a good prospect for new insights into old problems that heretofore were never fully solved.4.Research on cold-formed steel structuresNext to seismic work, the most active part of research in the US is on cold-formed steel structures. The reason for this is that the supporting industry is expanding, especially in the area of individual family dwellings. As the cost of wood goes up, steel framed houses become more and more economical. The intellectual problems of thin-walled structures buckling in multiple modes under very large deformations have attracted some of the best minds in stability research. As a consequence, many new problems have been solved: complex member stiffening systems, stability and bracing of C and Z beams, composite slabs, perforated columns, standing-seam roof systems, bracing and stability of beams with very complicated shapes, cold-formed members with steels of high yield stress-to-tensile strength ratio, and many other interesting applications. The American Iron and Steel Institute (AISI) has issued a new expanded standard in 1996 that brought many of these research results into the hands of the designer.5.Research on steel-concrete composite structuresAlmost all structural steel bridges and buildings in the US are built with composite beams or girders. In contrast, very few columns are built as composite members. The area of composite column research is very active presently to fill up the gap of technical information on the behavior of such members. The subject of steel tubes filled with high-strength concrete is especially active. One of the aims of research performed by Hajjar at the University of Minnesota is to develop a fundamental understanding of the various interacting phenomena that occur in concrete-filled columns and beam-columns under monotonic and cyclic load. The other aim is to obtain a basic understanding of the behavior of connections of wide-flange beams to concrete filled tubes.Other major research work concerns the behavior and design of built-up composite wide-flange bridge girders under both positive and negative bending. This work is performed by Frank at the University of Texas at Austin and by White of Georgia Tech, and it involves extensive studies of the buckling and post-buckling of thin stiffened webs. Already mentioned is the examination of the shakedown of composite bridges. The question to be answered is whether a composite bridgegirder loses composite action under repeated cycles of loads which are greater than the elastic limit load and less than the plastic mechanism load. A new study has been initiated at the University of Minnesota on the interaction between a semi-rigid steel frame system and a concrete shear wall connected by stud shear connectors.6.Research on connectionsConnection research continues to interest researchers because of the great variety of joint types. The majority of the connection work is currently related to the seismic problems that will be discussed in the next section of this paper. The most interest in non-seismic connections is the characterization of the monotonic moment-rotation behavior of various types of semi-rigid joints.7.Research on structures and connections subject to seismic forcesThe most compelling driving force for the present structural steel research effort in the US was the January 17, 1994 earthquake in Northridge, California, North of Los Angeles. The major problem for steel structures was the extensive failure of prequalified welded rigid joints by brittle fracture. In over 150 buildings of one to 26 stories high there were over a thousand fractured joints. The buildings did not collapse, nor did they show any external signs of distress, and there were no human injuries or deaths. A typical joint is shown in Fig. 1.In this connection the flanges of the beams are welded to the flanges of the column by full-penetration butt welds. The webs are bolted to the beams and welded to the columns. The characteristic features of this type of connection are the backing bars at the bottom of the beam flange, and the cope-holes left open to facilitate the field welding of the beam flanges. Fractures occurred in the welds, in the beam flanges, and/or in the column flanges, sometimes penetrating into the webs.Once the problem was discovered several large research projects were initiated at various university laboratories, such as The University of California at San Diego, the University of Washington in Seattle, the University of Texas at Austin, Lehigh University at Bethlehem, Pennsylvania, and at other places. The US Government under the leadership of the Federal Emergency Management Agency (FEMA) instituted a major national research effort. The needed work was deemed so extensive that no single research agency could hope to cope with it. Consequently three California groups formed a consortium which manages the work:1.Structural Engineering Association of California2.Applied Technology Council3.California Universities for Research in Earthquake EngineeringThe first letters in the name of each agency were combined to form the acronym SAC, which is the name of the joint venture that manages the research. We shall read much from this agency as the results of the massive amounts of research performed under its aegis are being published in the next few years.The goals of the program are to develop reliable, practical and cost-effective guidelines for the identification and inspection of at-risk steel moment frame buildings, the repair or upgrading of damaged buildings, the design of new construction, and the rehabilitation of undamaged buildings. As can be seen, the scope far exceeds the narrow look at the connections only.The first phase of the research was completed at the end of 1996, and its main aim was to arrive at interim guidelines so that design work could proceed. It consisted of the following components:A state-of-the-art assessment of knowledge on steel connectionsA survey of building damageThe evaluation of ground motionDetailed building analyses and case studiesA preliminary experimental programProfessional training and quality assurance programsPublishing of the Interim Design GuidelinesA number of reports were issued in this first phase of the work. A partial list of these is appended at the end of this paper.During the first phase of the SAC project a series of full-scale connection tests under static and, occasionally, dynamic cyclic tests were performed. Tests were of pre-Northridge-type connections (that is, connections as they existed at the time of the earthquake), of repaired and upgraded details, and of new recommended connection details. A schematic view of the testing program is illustrated in Fig. 2. Some recommended strategies for new design are schematically shown in Fig. 3.The following possible causes, and their combinations, were found to have contributed to the connection failures: Inadequate workmanship in the field weldsInsufficient notch-toughness of the weld metalStress raisers caused by t he backing barsLack of complete fusion near the backing barWeld bead sizes were too bigSlag inclusion in the weldsWhile many of the failures can be directly attributed to the welding and the material of the joints, there are more serious questions relative to the structural system that had evolved over the years mainly based on economic considerations. The structural system used relatively few rigid-frames of heavy members that were designed to absorb the seismic forces for large parts of the structure. These few lateral-force resistant frames provide insufficient redundancy. More rigid-frames with smaller members could have provided a tougher and more ductile structural system. There is a question of size effect: test results from joints of smaller members were extrapolated to joints with larger members without adequate test verification. The effect of a large initial pulse may have triggered dynamic forces that could have caused brittle fracture in joints with fracture critical details and materials. Furthermore, the yield stress of the beams was about 30 to 40% larger than the minimum specified values assumed in design, and so the connection failed before the beams, which were supposed to form plastic hinges.As can be seen, there are many possible reasons for this massive failure rate, and there is blame to go around for everyone. No doubt, the discussion about why and how the joints failed will go on for many more years. The structural system just did not measure up to demands that were more severe than expected. What should be kept in mind, however, is that no structure collapsed or caused even superficial nonstructural damage, and no person was injured or killed. In the strictest sense the structure sacrificed itself so that no physical harm was done to its users. The economic harm, of course, was enormous. Phase 2 of the SAC project started on Jan. 1, 1996 and is planned to be completed on Dec. 31, 1999. Its aims are to provide advice and guidance to code officials, designers, steel makers, welding engineers, and fabricators, in fact, to anyone connected with earthquake resistant design of steel buildings. The work includes the development of design-criteria for new buildings, and inspection, evaluation, repair and retrofit procedures for existing buildings that are at risk. A broad scope of professional issues is being examined. Ultimately, a performance-based methodology will be recommended to the professions dealing with seismic design problems. All types of moment-frame connections will be studied: bolted and welded connections, semi-rigid connections, connections made with special steels, energy-dissipating connections, etc. The research consists of many new experiments on joints, as well as a systems-reliability-based probabilistic method for optimizing the best structural design and evaluation procedures.The research work of the Phase 2 SAC Project is essentially complete as of the date of this conference (Sep. 1999). The basic analytical and experimental work consists of the following topics:Materials and fracture issuesWelding, joining and inspectionAnalysis and testing of connectionsEarthquake performance of structural systemsSimulation of seismic responseData and concepts from these five teams have been absorbed and utilized by theteam working on the development of the reliability framework for performance prediction and evaluation. A number of extensive State-Of-The-Art (SOA) reports based on the research are now in the final stages of completion. The material from these SOA reports, as well as results from trial designs, cost analyses, loss analyses, and from an evaluation of social, economic and policy issues, will then be the basis of new seismic design criteria for use by building codes.Phase 2 of the SAC Project is by far the largest and most expensive cooperative structural engineering effort in the history of US structural steel research. Much is expected to come of it. The way steel structures will be designed for steel structures is going to be deeply affected. The Northridge earthquake of January 17, 1994 proved a warning and a lesson, as well as a major impetus to learn more and to apply this knowledge more effectively.8.Research on the required properties of high-performance steelsOne other example will be elaborated on a research topic that is not motivated by natural disaster but by technological development, as an illustration among many which could have been presented. Steel makers have recently developed the capability to produce so-called “high-performance” stee ls economically, and there is a desire to use these steels in civil and military construction. Such steels are of high strength, with yield points of around 500 to 700 MPa, they can be produced to a variety of weldability, corrosion and toughness characteristics. Much work has been done on these steels in Japan with theirapplication in seismic structures in mind. Structures from a steel, HSLA80, have been extensively studied at Lehigh University in the US . The research question to be answered is not “Give n a steel of certain properties, what are the member and structural characteristics?” but “Given the desired structural characteristics, what should the properties of the steel be?”. These questions were discussed in a workshop sponsored by the US National Institute of Standards in Technology (NIST) at the University of Minnesota on July 1, 1996. The purpose of this meeting was to define the research needs to adapt the high-performance steels to the requirements of the structural design standards. Many issues were raised, but hereonly the subject of compactness and lateral bracing will be briefly touched. The shape of the stress–strain curve has a profound effect on the inelastic load-deformation behavior of members, as illustrated by the following example. The idealized form of a tensile stress–strain diagram is shown in Fig. 4. Data for four representative steels are given in Table 1. Steel A is a new steel in Japan that has very good ductility and a low yield stress-to-tensile strength ratio (yield ratio), that is, it has about the same capacity to strainharden at structural carbon steel (Steel C; Steel B is a quenched and tempered steel with a very high yield stress but a high yield ratio; Steel D is the steel HSLA80 from the research at Lehigh).The load-deflection curves in Fig. 5 were obtained from a finite element analysis using the commercial program ABAQUS. The structure was a simply supported beam under a three-point loading. Lateral bracing was provided at the end-supports and under the central load-point. The section was a W200×46 (W8×31 in US units) profile, with a flange slenderness ratio b f/t f=7.8, a web slenderness ratioof h/t w=29.9 and an unbraced length slenderness of L b/r y=71. As seen from Fig. 5, the shape of the stress–strain curve can have a tremendous difference on the inelastic rotation capacity of a structural member. The most important parameter appears to be the yield ratio and the ductility of the steel.In addition to research on the high-performance steels, new work on the definition and improvement of conventional steels is also being conducted, spurred by the realization that the physical properties of steels as they are presently being produced are quite different from the steels for which the plastic design research was done 30 years ago. The yield stress is higher and it seems that due to the rotary straightening process the larger shapes end up with zones in their cross section where the ductility is unacceptably low.Further work on this subject is being pursued by Earls at the US Military Academy and by Ricles and his co-workers at Lehigh University. More finite element analyses and laboratory experiments are being conducted to establish the desired stress–strain characteristics of high-performance steel to achieve optimal dimensions for compactness limits, so that this material can be effectively used in seismic design applications. Additional work is done on the design of the best shapes for bridgegirders, and a full-scale girder bridge will be fabricated and tested at the structural laboratory of the Federal Highway Administration at Washington, DC.9.Future directions of structural steel research and conclusionThe future holds many challenges for structural steel research. The ongoing work necessitated by the two recent earthquakes that most affected conventional design methods, namely, the Northridge earthquake in the US and the Kobe earthquake in Japan, will continue well into the first decade of the next Century. It is very likely that future disasters of this type will bring yet other problems to the steel research community. There is a profound change in the philosophy of design for disasters: we can no longer be content with saving lives only, but we must also design structures which will not be so damaged as to require extensive repairs.Another major challenge will be the emergence of many new materials such as high-performance concrete and plastic composite structures. Steel structures will continually have to face the problem of having to demonstrate viability in the marketplace. This can only be accomplished by more innovative research. Furthermore, the new comprehensive limit-states design codes which are being implemented worldwide, need research to back up the assumptions used in the theories.Specifically, the following list highlights some of the needed research in steel structures:Systems reliability tools have been developed to a high degree of sophistication. These tools should be applied to the studies of bridge and building structures to define the optimal locations of monitoring instruments, to assess the。