(完整版)高中数学解三角形方法大全
- 格式:doc
- 大小:425.53 KB
- 文档页数:5
高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
高一数学教案解三角形5篇等腰三角形,看似简单平常,实则魅力无穷.许多关键问题三角问题与等腰三角形密切相关,形变解题中若能根据题意恰当构造,则可使一些三角问题别开生面地得以解决,更给人一种形象直观、流畅清晰、解法优美之感.今天在这里整理了一些,我们一起来呢吧!高一数学教案解三角形1[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
[教学准备] 学生、老师剪下附页2中的图2。
[教学过程] 一、画一画,说一说1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。
2、教师巡查练习境况。
3、学生展示练习,说一说为什么是锐角、直角、钝角?二、分一分 1、小组活动;把附页2中的图2中的三角形需要进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分后?2、汇报:进行分类的标准和方法。
可以按角来分,可以按边来分。
二、按角分类: 1、观察观察具体来说三角形有什么共同的特点,从而归纳出来三个角都是锐角的'三角形是锐角三角形。
2、观察共同第三类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形3、观测观察第三类三角形有什么互助的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。
三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边,这样三角形的三角形叫等腰三角形,并透露各部分的名称。
2、引导学生发现有的菱形三角形三条边都相等,这样的矩形是等边三角形。
讨论等边三角形是等腰三角形吗?四、填一填:24、25页让学生辨认各种三角形。
五、练一练:第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能重新考虑是一个锐角三角形,必须三个角都是锐角总算是九个锐角三角形。
第2题:在点子图上画作三角形第3题:剪一剪。
六、完成26页实践活动。
[板书设计] 三角形的分类按角分类:按边分类:高一数学教案可解三角形2教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在一般性的三角形中作出中均它们.教学重点:在具体的三角形中作出三角形的低.教学难点:画出钝角三角形的三条高.活动准备:学生预先剪好三种三角形,一副三角板.教学过程:过菱形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:三角形从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的'三条高在正三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出高德帕伦三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于假脉一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的等腰三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在四边形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的中间层.作业:P127 1、2、3高一数学教案可解三角形3《三角形中位线》教案一、教学目标:1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算2.掌握添加辅助线解题的技巧.3.提高中学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法探究式自主学习:以学生的自主探究为主,教职员加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准三、教学内容﹑教材重、难点分析:三角形中位线定理的学习是继学习-平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中所位线定理,最后是利用中位线定理解答例一所给的环境问题.在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.四、教学内容媒体的选择和设计通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。
高中数学的解三角形方法大全(总9页) 解三角形的题目在高一数学中是一个重要的内容,以下是一些解三角形题目的技巧:
1.利用三角形内角和定理:三角形内角和为180度。
当已知部分角度时,可以通过180度减去已知角度的和,得到未知角度。
2.利用三角形的相似性:如果两个三角形的对应角度相等,那么它们是相似的。
利用三角形的相似性可以通过已知的比例关系求解未知的边长或角度。
3.利用三角形的正弦、余弦和正切定理:根据三角形的边长关系和对应的角度,可以利用正弦定理、余弦定理和正切定理计算未知边长或角度。
4.利用勾股定理:如果一个三角形是直角三角形,可以利用勾股定理(a²+b²=c²)求解未知边长。
5.利用海伦公式:如果已知三角形的三个边长,可以使用海伦公式(面积=√[s(s-a)(s-b)(s-c)],其中s为半周长)求解三角形的面积。
6.利用角平分线定理:通过角平分线定理,可以求解三角形内部的角度或边长。
7.利用相似三角形的高度比:如果两个三角形相似,可以利用相似三角形的高度比来求解未知高度。
以上是一些常用的解三角形的技巧,根据题目的具体内容选择合适的方法。
在解题时,注意将所给的条件和已知信息合理应用,
进行逻辑推理和计算。
多进行练习和积累经验,逐步提高解题的能力。
三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点.其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决.类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b)sinC 。
(1) 求角A 的大小;(2)求sin sin B C +的最大值.变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边。
(1) 求角C 的大小;(2)求sin sin A B +的最大值。
解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。
解:根据题意得:2R(224R a —224R c )=(2a —b)*R b2化简可得 c 2=a 2+b 2—2ab , 由余弦定理可得: C=45 , A+B=135 S=21absinC=212RsinA *2RsinB*sinC =2sinAsin(135 —A) =22R (2sin (2A+45 )+1 ∵0<A<135 ∴45 <2A+45 <315∴ 当2A+45 =90 即A=15 时,S 取得最大值2212R +。
高中数学解题方法系列:解三角形的几种入手策略解三角形知识一直是高考常考考点,虽然这一块儿只要运用公式、正弦定理与余弦定理便能解决很多问题,但是如何针对试题,灵活、准确、快速地选定相关定理去入手解题,则是同学们很难把握的。
本文结合具体题目,初步探寻一些入手策略,期望对同学们有所帮助。
【正弦定理公式】;【余弦定理公式】;;如果将公式、正弦定理、余弦定理看成是几个“方程”的话,那么解三角形的实质就是把题目中所给的已知条件按方程的思想进行处理,解题时根据已知量与所求量,合理选择一个比较容易解的方程(公式、正弦定理、余弦定理),从而使同学们入手容易,解题简洁。
一、直接运用公式、正弦定理、余弦定理(1)三角公式①在中,已知两角的三角函数值,求第三个角;存在。
证明:有解有解即,要判断是否有解,只需。
(2)正弦定理①在中,已知两角和任意一边,解三角形;②在中,已知两边和其中一边对角,解三角形;(3)余弦定理①在中,已知三边,解三角形;②在中,已知两边和他们的夹角,解三角形。
直接运用正弦定理、余弦定理的上述情况,是我们常见、常讲、常练的,因此,在这里就不加赘述,同学们可以自己从教材中找一些题目看一看!二、间接运用公式、正弦定理、余弦定理(1)齐次式条件(边或角的正弦)若题目条件中出现关于角的齐次式或关于边的齐次式,可以根据角的异同选用公式弦切互化或正弦定理边角互化;有些题中没有明显的齐次式,但经过变形得到齐次式的依然适用。
1.相同角齐次式条件的弦切互化【例】在中,若,,求。
【解析】无论是条件中的,还是都是关于一个角的齐次式。
是关于的一次齐次式;是关于的二次齐次式。
因此,我们将弦化切,再利用三角公式求解。
由;由或;在中,,且。
代值可得:①当,时,;②当,时,(舍去)。
2.不同角(正弦)齐次式条件的边角互化【例】在中,若,且,求的面积。
【解析】条件是关于不同角正弦的二次齐次式。
因此,我们利用正弦定理将角化为边,然后根据边的关系利用余弦定理求解。
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
高中数学解三角形解题方法高中数学解三角形的开放型题型的解法研究也是很重要的只有解决了解三角形的难题,数学成绩才会整体上升,高考成绩也会有所提高。
下面是小编为大家整理的关于高中数学解三角形解题方法,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学解三角形解题方法解三角形,要求记忆三角函数公式,不仅要熟练记忆,牢牢掌握解三角形的解题技巧,还要能够将已经掌握的知识灵活运用。
开放型题型更是需要结合题目要求开拓新思路,以一个全新的思考方式去思考解决问题,这也就是开放型题型的新颖之处,也是开放型题型的难点。
一般开放型题型在题目阅读中增加了难度,相应来说,解题的难度就会减少,那么只要能够读懂题目,了解题目要求,理清楚解题的思路就可以轻松的完成三角函数题目的解答。
但是对于高中生来说对于解三角形函数的了解已经很深入了,只是高中生一般就掌握了解三角形的基本解题思路,对照相应的题型进行练习解答,这么一来,高中生也就变成了解题机器,只会一种思路,一种思考方式,不会变通,如果在这时候遇到了开放型题型,就会完全傻了眼。
这时候,在大形势趋向于开放型题型,高中生只能在自己掌握的知识基础上,多练练开放型题型,运用自己了解的三角函数知识根据开放型题型的题目要求去解答问题。
高中生对于三角函数的知识已经掌握的很熟练了,只是对于这些开放型题型就是缺少练习,多找一些开放型题型来练习,增加高中生对开放型题型题目的理解程度,因为题目要求难度增加,对应的解题难度就会减少,这样一来只要能够多练习开放型题型,熟练掌握解题思路,能够读懂题目要求,就会很简单的解答这方面的问题。
2高中数学解三角形的技巧正弦定理●教学目标。
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
五类解三角形题型解三角形问题一般分为五类:类型1:三角形面积最值问题;类型2:三角形周长定值及最值;类型3:三角形涉及中线长问题;类型4:三角形涉及角平分线问题;类型5:三角形涉及长度最值问题。
类型1:面积最值问题技巧:正规方法:面积公式+基本不等式①S=12ab sin Ca2+b2−c2=2ab cos C⇒a2+b2=2ab cos C+c2≥2ab⇒ab≤c221−cos C②S=12ac sin Ba2+c2−b2=2ac cos B⇒a2+c2=2ac cos B+b2≥2ac⇒ac≤b221−cos B③S=12bc sin Ab2+c2−a2=2bc cos A⇒b2+c2=2bc cos A+a2≥2bc⇒bc≤a221−cos A秒杀方法:在ΔABC中,已知B=θ,AC=x则:SΔABC max=AB+BC2max8⋅sin B其中AB+BCmax=2R⋅m2+n2+2mn cosθm,n分别是BA、BC的系数2R=x sinθ面积最值问题专项练习1△ABC的内角A,B,C的对边分别为a,b,c,c=2a cos C-b,c2+a2=b2+3ac,b=2.(1)求A;(2)若M,N在线段BC上且和B,C都不重合,∠MAN=π3,求△AMN面积的取值范围.2已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3c sin B =a -b cos C .(1)求B ;(2)若DC =AD ,BD =2,求△ABC 的面积的最大值.3在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =2b -c sin B +c 2sin C -sin B .(1)求A ;(2)点D 在边BC 上,且BD =3DC ,AD =4,求△ABC 面积的最大值.4△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知c =2a cos C -b ,c 2+a 2=b 2+3ac ,b =2.(1)求A ;(2)若M 是直线BC 外一点,∠BMC =π3,求△BMC 面积的最大值.5在△ABC 中,角A ,B ,C 对边分别为a ,b ,c ,(sin A +sin B )(a -b )=c (sin C -sin B ),D 为BC 边上一点,AD 平分∠BAC ,AD =2.(1)求角A ;(2)求△ABC 面积的最小值.6在①m =2a -c ,b ,n =cos C ,cos B ,m ⎳n ;②b sin A =a cos B -π6;③a +b a -b =a -c c 三个条件中任选一个,补充在下面的问题中,并解决该问题.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足.注:如果选择多个条件分别解答,按第一个解答计分.(1)求角B ;(2)若b =2,求△ABC 面积的最大值.类型2:三角形周长定值及最值类型一:已知一角与两边乘积模型第一步:求两边乘积第二步:利用余弦定理求出两边之和类型二:已知一角与三角等量模型第一步:求三角各自的大小第二步:利用正弦定理求出三边的长度最值步骤如下:第一步:先表示出周长l =a +b +c第二步:利用正弦定理a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角第三步:多角化一角+辅助角公式,转化为三角函数求最值周长定值及最值问题专项练习7在锐角三角形△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,CD 为CA 在CB 方向上的投影向量,且满足2c sin B =5CD .(1)求cos C 的值;(2)若b =3,a =3c cos B ,求△ABC 的周长.8如图,在梯形ABCD 中,AB ⎳CD ,∠D =60°.(1)若AC =3,求△ACD 周长的最大值;(2)若CD =2AB ,∠BCD =75°,求tan ∠DAC 的值.9已知△ABC的面积为S,角A,B,C所对的边为a,b,c.点O为△ABC的内心,b=23且S=3 4(a2+c2-b2).(1)求B的大小;(2)求△AOC的周长的取值范围.10在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,已知sin A-sin B3a-c=sin Ca+b.(1)求角B的值;(2)若a=2,求△ABC的周长的取值范围.11在△ABC中,角A,B,C的对边分别是a,b,c,a-ca+c+b b-a=0.(1)求C;(2)若c=3,△ABC的面积是32,求△ABC的周长.类型3:三角形涉及中线长问题①中线长定理:(两次余弦定理推导可得)+(一次大三角形一次中线所在三角形+同余弦值)如:在ΔABC与ΔABD同用cos B求ADAB2+AC2=AD2+CD22②中线长常用方法cos∠ADB+cos∠ADC=0③已知AB+AC,求AD的范围∵AB+AC为定值,故满足椭圆的第一定义∴半短轴≤AD<半长轴三角形涉及中线长问题专项练习12在△ABC中,角A,B,C的对边分别为a,b,c,且b=7,c=5.(1)若sin B=78,求cos C的值;(2)若BC边上的中线长为21,求a的值.13在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=2,b=5,c=1.(1)求sin A,sin B,sin C中的最大值;(2)求AC边上的中线长.14在△ABC中,角A,B,C所对的边分别为a,b,c,且满足3b sin A=a cos B+a.(1)求角B的值;(2)若c=8,△ABC的面积为203,求BC边上中线AD的长.15如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,sin2C=sin B,且AD 为BC边上的中线,AE为∠BAC的角平分线.(1)求cos C及线段BC的长;(2)求△ADE的面积.16在△ABC中,∠A=2π3,AC=23,点D在AB上,CD=32.(1)若CD为中线,求△ABC的面积;(2)若CD平分∠ACB,求BC的长.17在①3b=a sin C+3cos C;②a sin C=c sin B+C2;③a cos C+12c=b,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求角A;(2)若b=1,c=3,求BC边上的中线AD的长.注:若选择多个条件分别进行解答,则按第一个解答进行计分.类型4:三角形涉及角平分线问题张角定理如图,在ΔABC中,D为BC边上一点,连接AD,设AD=l,∠BAD=α,∠CAD=β则一定有sinα+βl=sinαb+sinβc三角形涉及角平分线问题专项练习18设a,b,c分别是△ABC的内角A,B,C的对边,sin B-sin Cb=a-csin A+sin C.(1)求角A的大小;(2)从下面两个问题中任选一个作答,两个都作答则按第一个记分.①设角A的角平分线交BC边于点D,且AD=1,求△ABC面积的最小值.②设点D为BC边上的中点,且AD=1,求△ABC面积的最大值.19在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且c sin B+33b cos A+B=33b.(1)求角C的大小;(2)若c=3,角A与角B的内角平分线相交于点D,求△ABD面积的取值范围.20已知△ABC的三个内角A,B,C的对边分别为a,b,c满足b cos C+c cos Bsin B+3b cos A= 0.(1)求A;(2)若c=2,a=23,角B的角平分线交边AC于点D,求BD的长.21已知△ABC的内角A,B,C的对应边分别为a,b,c,且有3cos A c cos B+b cos C+a sin A=0.(1)求A;(2)设AD是△ABC的内角平分线,边b,c的长度是方程x2-6x+4=0的两根,求线段AD的长度.22在①b sin B+c sin C=233b sin C+asin A;②cos2C+sin B sin C=sin2B+cos2A;③2b=2a cos C+c这三个条件中任选一个,补充在下面的问题中并作答.在△ABC中,内角A,B,C的对边分别为a,b,c,已知△ABC外接圆的半径为1,且.(1)求角A;(2)若AC=2,AD是△ABC的内角平分线,求AD的长度.注:如果选择多个条件分别解答,按第一个解答计分.类型5:三角形涉及长度最值问题秒杀:解三角形中最值或范围问题,通常涉及与边长常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值三角形涉及长度最值问题专项练习23设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为34c 2-a 2-b 2 .(1)求C ;(2)延长BC 至D ,使BD =3BC ,若b =2,求AD AB 的最小值.24在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2-b 2=ac cos B -12bc(1)求A ;(2)若a =6,2BD =DC ,求线段AD 长的最大值.25锐角△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos A sin B +π3 .(1)求A ;(2)若b +c =6,求BC 边上的高AD 长的最大值.26在△ABC中,角A,B,C的对边分别是a,b,c,a sin B+C=b-csin B+c sin C.(1)求A;(2)若D在BC上,a=2,且AD⊥BC,求AD的最大值.27记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为312b2.(1)若A=π6,求sin B sin C;(2)求a2+c2ac的最大值.。
高中数学竞赛讲义(七)──解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。
1.正弦定理:=2R(R为△ABC外接圆半径)。
推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得证。
2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcos,所以c2=AD2+p2-2AD·pcos①同理b2=AD2+q2-2AD·qcos,②因为ADB+ADC=,所以cos ADB+cos ADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2A=b2c2(1-cos2A)= b2c2[(b+c)-a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c).这里所以S△ABC=二、方法与例题1.面积法。
高中数学解三角形(有答案)高中数学解三角形在高中数学中,解三角形是一个重要的概念和技巧。
掌握解三角形的方法对于理解和解决几何问题至关重要。
本文将介绍几种常见的解三角形的方法,并附上相应的答案,帮助读者巩固和拓展数学知识。
一、解决直角三角形直角三角形是指其中一个角为90度的三角形。
解决直角三角形的方法主要有三种:勾股定理、正弦定理和余弦定理。
勾股定理适用于已知两条边求第三边的情况,其公式为:c² = a² + b²,其中c为斜边的长度,a和b分别为两个直角边的长度。
正弦定理适用于已知一个角和两条角边的情况,其公式为:sinA/a = sinB/b = sinC/c,其中A、B、C分别为三角形的三个内角,a、b、c 分别为对应的边长。
余弦定理适用于已知三条边求角度的情况,其公式为:cosA = (b² + c² - a²) / (2bc),其中A为夹在b和c之间的角,a为对应的边长。
二、解决等腰三角形等腰三角形是指两边长度相等的三角形。
解决等腰三角形的方法主要有两种:勾股定理和正弦定理。
勾股定理适用于已知两条等腰边求底边的情况,其公式与直角三角形相同。
正弦定理适用于已知一个角和两条等腰边的情况,其公式与直角三角形相同,只是此时的两条边为等腰边。
三、解决一般三角形一般三角形是指三个角和三个边都不相等的三角形。
解决一般三角形的方法主要有两种:正弦定理和余弦定理。
正弦定理适用于已知一个角和两条边的情况,公式同上。
余弦定理适用于已知三条边求角度的情况,公式同上。
答案示例:1. 已知直角三角形的两个直角边分别为3cm和4cm,请计算斜边的长度。
解法:根据勾股定理,斜边的长度c² = 3² + 4² = 9 + 16 = 25,所以斜边的长度c = √25 = 5cm。
2. 已知一等腰三角形的底边长度为5cm,两条等腰边的长度分别为4cm,请计算顶角的度数。
数学解三角形技巧大全解三角形是数学中的一个重要内容,也是高中数学中的一项基本知识。
掌握一些解三角形的技巧可以让我们更加方便地求解各种三角形的性质和关系。
本文将介绍一些常用的数学解三角形的技巧大全。
一、利用正弦定理求解三角形正弦定理是解三角形最基本也是最常用的方法之一。
对于任意一个三角形ABC,假设它的三个角度分别为∠A,∠B,∠C,边长分别为a,b,c。
正弦定理可以表达为:$\dfrac{a}{\sin{\angle A}} = \dfrac{b}{\sin{\angle B}} =\dfrac{c}{\sin{\angle C}}$利用正弦定理可以轻松求解三角形的任意边长或角度,只需知道已知边长或角度之间的比例关系即可。
二、利用余弦定理求解三角形余弦定理也是解三角形的重要方法之一。
当我们已知一个三角形的两边和夹角时,可以利用余弦定理求解第三边的长度。
对于任意一个三角形ABC,假设它的三个角度分别为∠A,∠B,∠C,边长分别为a,b,c。
余弦定理可以表达为:$c^2=a^2+b^2-2ab\cos{\angle C}$利用余弦定理可以解决一些不规则的三角形,或者求解已知两边和一个角的三角形。
三、利用解析几何方法求解三角形解析几何是利用坐标系和代数方法来解决几何问题的一种方法。
对于三角形ABC,如果我们已知三个顶点的坐标,可以利用解析几何的方法来求解三角形的各种性质。
首先,假设点A的坐标为$(x_1,y_1)$,点B的坐标为$(x_2,y_2)$,点C的坐标为$(x_3,y_3)$。
我们可以利用距离公式来求解三边的长度,即:$a=\sqrt{(x_2-x_3)^2+(y_2-y_3)^2}$$b=\sqrt{(x_1-x_3)^2+(y_1-y_3)^2}$$c=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$其中,$\sqrt{\cdot}$表示开根号运算。
通过解析几何方法,我们可以很方便地求解三角形的各种性质,如边长、角度、重心、外心等。
高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。
⾼中数学解三⾓形知识点总结 三⾓形⼀直是数学中较难的知识点之⼀,⾝为⾼三的同学该如何学号三⾓形知识呢。
以下是由店铺编辑为⼤家整理的“⾼中数学解三⾓形知识点总结”,仅供参考,欢迎⼤家阅读。
⾼中数学解三⾓形知识点总结 解斜三⾓形 1、解斜三⾓形的主要定理:正弦定理和余弦定理和余弦的射影公式和各种形式的⾯积的公式。
2、能解决的四类型的问题:(1)已知两⾓和⼀条边(2)已知两边和夹⾓(3)已知三边(4) 已知两边和其中⼀边的对⾓。
解直⾓三⾓形 1、解直⾓三⾓形的主要定理:在直⾓三⾓形ABC中,直⾓为⾓C,⾓A和⾓B是它的两锐⾓,所对的边A、B、C,(1) ⾓A和⾓B的和是90度;(2) 勾股定理:A的平⽅加上+B的平⽅=C的平⽅;(3) ⾓A的正弦等于A⽐上C,⾓A的余弦等于B⽐上C,⾓B的正弦等于B⽐上C,⾓B的余弦等于A⽐上C;(4)⾯积的公式S=AB/2;此外还有射影定理,内外切接圆的半径。
2、解直⾓三⾓形的四种类型:(1)已知两直⾓边:根据勾股定理先求出斜边,⽤三⾓函数求出两锐⾓中的⼀⾓,再⽤互余关系求出另⼀⾓或⽤三⾓函数求出两锐⾓中的两⾓;(2)已知⼀直⾓边和斜边,根据勾股定理先求出另⼀直⾓边,问题转化为(1);(3)已知⼀直⾓边和⼀锐⾓,可求出另⼀锐⾓,运⽤正弦或余弦,算出斜边,⽤勾股定理算出另⼀直⾓边;(4)已知斜边和⼀锐⾓,先算出已知⾓的对边,根据勾股定理先求出另⼀直⾓边,问题转化为(1)。
拓展阅读:⾼中数学快速提分的学习⽅法 ⼀、回归基础查缺漏 ⾼中数学快速提分考⽣应当结合数学课本,把⾼中数学知识点从整体上再理⼀遍,要特别重视新课程新增的内容,看看有⽆知识缺漏,若有就应围绕该知识点再做⼩范围的⾼考复习,消灭知识死⾓。
⼆、重点知识再强化 ⾼中数学以三⾓、概率、⽴体⼏何、数列、函数与导数、解析⼏何、解三⾓形、选做题为主,也是数学⼤题必考内容,这些板块应在⽼师指导下做⼀次⼩专题的强化训练,熟悉不同题型的解法。
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。
注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos 2cos cos βαβαβα-+=+ ④2sin 2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
解三角形
1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。
已知三角形的几个元素求
其他元素的过程叫作解三角形。
以下若无特殊说明,均设ABC ∆的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<<C B A 、、0,π<+<B A 0,ππ<-<-B A ,
0sin >A , C B A sin )sin(=+,C B A cos )cos(-=+,2
cos 2sin
C
B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形
板块一:正弦定理及其应用
1.正弦定理:
R C
c
B b A a 2sin sin sin ===,其中R 为AB
C ∆的外接圆半径
2.正弦定理适用于两类解三角形问题:
(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;
(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解
【例1】考查正弦定理的应用
(1)ABC ∆中,若
60=B ,4
2
tan =
A ,2=BC ,则=AC _____; (2)ABC ∆中,若
30=A ,2=
b ,1=a ,则=C ____;
(3)ABC ∆中,若
45=A ,24=b ,8=a ,则=C ____;
(4)ABC ∆中,若A c a sin =,则c
b
a +的最大值为_____。
总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能
如图,在ABC ∆中,已知a 、b 、A
(1)若A 为钝角或直角,则当b a >时,ABC ∆有唯一解;否则无解。
(2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <<sin 时,三角形有两解; 当b a ≥时,三角形有唯一解
实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。
板块二:余弦定理及面积公式
1.余弦定理:在ABC ∆中,角C B A 、、的对边分别为c b a 、、,则有
余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 22222
22222 , 其变式为:⎪⎪⎪
⎩
⎪⎪
⎪
⎨⎧-+=
-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2
22222222
2.余弦定理及其变式可用来解决以下两类三角形问题:
(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或
由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;
(2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦
定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决
3.三角形的面积公式 (1)c b a ABC ch bh ah S 21
2121===∆ (a h 、b h 、c h 分别表示a 、b 、c 上的高)
; (2)B ac A bc C ab S ABC sin 2
1
sin 21sin 21===∆ (3)=∆ABC S C B A R sin sin sin 22 (R 为外接圆半径) (4)R
abc
S ABC 4=∆; (5)))()((c p b p a p p S ABC ---=∆ 其中)(2
1
c b a p ++=
(6)l r S ABC
⋅=∆2
1
(r 是内切圆的半径,l 是三角形的周长)
板块三:解三角形综合问题
【例】(09全国2)
在ABC ∆中,角C B A 、、的对边分别为a 、b 、c ,2
3cos )cos(=+-B C A ,ac b =2
,求B
【例】(11西城一模)在ABC ∆中,角C B A 、、的对边分别为c b a 、、,且5
4
cos =B ,2=b (1)当3
5
=a 时,求角A 的度数; (2)求ABC ∆面积的最大值
【例】在∆ABC 中,sin cos A A +=2
2
,AC =2,AB =3,求A sin 的值和∆ABC 的面积
【例】在ABC ∆中,角C B A 、、的对边分别为c b a 、、,已知2c =,3
π
=
C
(1)若ABC ∆的面积等于3,求b a 、;
(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积
【例5】(09江西理)在ABC ∆中,角C B A 、、的对边分别为c b a 、、,且sin sin tan cos cos A B
C A B
+=
+,
sin()cos B A C -=
(1)求C A 、 (2)若33ABC S ∆=+,求c a 、
【例】(09安徽理)在ABC ∆中,sin()1C A -=, 3
1
sin =
B (1)求A sin 的值; (2)设6=
AC ,求ABC ∆的面积
【例】(10辽宁理)在ABC ∆中,角C B A 、、的对边分别为c b a 、、,
且C b c B c b A a sin )2(sin )2(sin 2+++=
(1)求A 的大小; (2)求C B sin sin +的最大值。