【精品】北师大版八年级数学下册全套教案

  • 格式:doc
  • 大小:247.50 KB
  • 文档页数:45

下载文档原格式

  / 45
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.3 相似三角形

教学目的:

1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义.

2.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)

3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光.

教学重点:

.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)

教学难点:

准确找出相似三角形的对应边和对应角度。

教学方法:

学情分析:

教学过程:

一、讨论相似三角形的定义

请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.

二、给出定义

1.从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’可知ABC

∽△A’B’C’

2.板书定义.叫学生写在笔记本上.

3.什么叫相似比,说明相似比的意义.

注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边) △ABC和△A’B’C’的比与△A’B’C’和△ABC的比不一定相等,而是成倒数的关系.

三、导出定理

1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?”

如图:如果DE∥BC,∠ADE =∠B

∠AED=∠C;

AD:AB=DE D E

:BC=AE:AC

B C

2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原三角形的三边对应成比例.(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)

四、学生练习

1、讨论224页练习1

(1)所有的等腰三角形相似吗?等边三角形呢?为什么?

(2)所有的直角三角形相似吗?等腰直角三角形呢?为什么?演示课件

2、课堂练习224页2(目的,找对应边对应角)

3、练习:

找出哪些对三角形是相似的.找出对应角、对应边,列出比例式.

五、课堂小结:

1、相似三角形的定义;

2、会准确找出两三角形的对应边和对应角;

六、课外作业:

P235 N1(1)、(2),N 2。

板书设计:

教学后记:

三角形相似的判定(一)

教学目的:

1、使学生能通过三角形全等的判定来发现三角形相似的判定。

2、使学生掌握相似三角形判定定理1,并了解它的证明。

3、使学生初步掌握相似三角形的判定定理1的应用。

重点:

掌握相似三角形判定定理1及其应用。

难点

定理1的证明方法。

教学方法:

学情分析:

教学过程

一.复习

1、什么叫相似三角形?相似三角形与全等三角形有何联系?

2、到目前为止判定三角形相似的方法有几个?

3、判定两个三角形全等的定理有几个?说出它们的内容。

二、新授

1、导入新课

两个角对应相等的两个三角形相似吗?这就是我们今天研究的问题。板书2、要证明以上命题是真命题,目前只有两条途径,一个是相似三角形的定义,

显然条件不够。二是用三角形相似判定的预备定理,但它不具备预备定理的基本图形,为了使用它,就得创造呢?(把小的三角形移到大的三角形中)老师肯定他们的思路后然后师生一起用不着几何作图的办法完成。

证明(略)

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。

这个定理的出现为判定两三角形相似增加了一条新的途径。

3、范例:

例1:已知:△ABC和△DEF中∠A=40,∠B=80,∠E=80,∠F=60 求证:△ABC∽△DEF

分析:

由于条件中有角的关系,所以我们可以联想到“对应角相等”的问题,从已知可以证明∠C=∠F,这样就有了两个角对应相等,三角形相似的条件,所以△ABC∽△DEF

证明:(略)

例2:

直角三角形被斜边上的高分成的两个直三角形的与原三角形相似

(像这样只用文字说明的题目,必须画出相应的图形写出已知,求证。然后才能着手证明)

分析:

欲证明两个三角形相似,只需证明两个对应角相等。

证明:见教材

三、巩固练习:

1、P226 N1、

2、3;

2、错例辨析:∵△ABC的∠B=∠C,△ABC的∠B=∠C

∴△ABC∽△ABC

四、小结

本节主要学习了相似三角形的判定定理1一定要掌握好这个定理。

五、作业:

P235 N3、4。

板书设计:

教学后记

三角形相似的判定(二)

教学目的:

1、使学生掌握三角形相似的判定定理2,3,和它们的应用。

2、了解上述两定理的证明。

教学重点:

判定定理的应用

教学难点

定理的证明

教学方法:

学情分析:

教学过程:

一、复习:

1、判定三角形相似目前有哪些方法?

2、回忆三角形相似判定定理1的证明的方法。

二、新授

1、导入新课

三角形全等的判定中AAS 和ASA对应于相似三角形的判定的判定定理

1,那么SAS和SSS对应的三角形相似的判定命题是否正确,这就是本