低NOx燃烧技术
- 格式:ppt
- 大小:7.44 MB
- 文档页数:51
(1)两级燃烧• 空气量分两段送入炉膛,第一级的空气量大约为80%左右,从主燃烧区送入;第二级的空气量占20%左右,从燃烧区的上方送入,两级喷口之间的距离为1.5~2m。
• 可以降低燃料型和温度型NOx 的生成。
• 应保证第二级空气与燃尽区火焰的混合良好,避免造成不完全燃烧。
• 一次燃烧区内由于缺氧,形成还原性气氛,这样使灰熔点降低,不仅容易引起结渣,还会产生腐蚀。
• 由于燃烧分段进行,火焰拉长,如果组织不好,焦炭难以燃尽,还会引起炉膛出口处的受热面结渣。
(2)MACT与A-MACT炉内脱氮技术 MACT炉内脱氮技术:• 控制主燃烧区的燃料与空气比为0.8~0.9。
• 在主燃烧器上方设置OFA(Over Fuel Air)供风,使主燃烧区生成的NOx 到达OFA区时,由于缺氧而被还原成N2。
• 在上二次风OFA喷口上部再设置一层附加空气AA (Additional Air),还原区的未燃物进入燃尽区后与 AA供风混合,被充分燃烧。
A-MACT燃烧技术:• 将AA供风进一步细分为上下两层,以促进未燃物与空气的均匀混合,提高燃烧效率• 可将NOx 控制在60~150ppm内。
(3)扩大还原燃烧技术• 在主燃烧区与燃尽区之间留有较大的空间,并注入IAP供风(分级风),形成HCN、NH3、HC等还原性气氛,促使NOx还原。
• 与两段燃烧法相比,NOx 减少了35%,由210ppm降低到130~140ppm。
燃煤锅炉的低NO x燃烧技术NOx是对N2O、NO2.NO、N2O5以及PAN等氮氧化物的统称。
在煤的燃烧过程中, NOx生成物重要是NO和NO2, 其中尤以NO是最为重要。
实验表白, 常规燃煤锅炉中NO生成量占NOx总量的90%以上, NO2只是在高温烟气在急速冷却时由部分NO转化生成的。
N2O之所以引起关注, 是由于其在低温燃烧的流化床锅炉中有较高的排放量, 同是与地球变暖现象有关, 对于N2O的生成和克制的内容我们将结合流化床燃烧技术进行介绍。
因此在本章的讨论中, NOx即可以理解为NO和NO2。
一、燃煤锅炉NO x的生成机理根据NOx中氮的来源及生成途径, 燃煤锅炉中NOx的生成机理可以分为三类: 即热力型、燃料型和快速型, 在这三者中, 又以燃料型为主。
它们各自的生成量和炉膛温度的关系如图3-1所示。
实验表白, 燃煤过程生成的NOx中NO占总量的90%, NO2只占5%~10%。
1.热力型NOx热力型NOx是参与燃烧的空气中的氮在高温下氧化产生的, 其生成过程是一个不分支的链式反映, 又称为捷里多维奇(Zeldovich)机理→(3-1)O2O2→+O+NONN(3-2)2→+N+NOOO(3-3)2如考虑下列反映→+(3-4)N+NOHOH则称为扩大的捷里多维奇机理。
由于N≡N三键键能很高, 因此空气中的氮非常稳定, 在室温下, 几乎没有NOx生成。
但随着温度的升高, 根据阿仑尼乌斯(Arrhenius)定律, 化学反映速率按指数规律迅速增长。
实验表白, 当温度超过1200℃时, 已有少量的NOx生成, 在超过1500℃后, 温度每增长100℃, 反映速率将增长6~7倍, NOx的生成量也有明显的增长, 如图3-1所示。
但总体上来说, 热力型NOx的反映速度要比燃烧反映慢, 并且温度对其生成起着决定性的影响。
对于煤的燃烧过程, 通常热力型NOx不是重要的, 可以不予考虑。
一般来说通过减少火焰温度、控制氧浓度以及缩短煤在高温区的停留时间可以克制热力型NOx的生成。
低 NOx 燃烧技术原理及其技术性能分析摘要:简要介绍了燃煤电厂NOx产生机理以及目前主流的低NOx燃烧技术原理。
关键词:低NOx燃烧技术;燃烧调整;锅炉燃烧效率;1低NOx燃烧技术原理及技术性能分析1.1空气分级燃烧空气分级燃烧技术(Air Staging)最早是在美国发展起来的,是目前国内外普遍应用,比较成熟的低NOx燃烧技术。
其基本原理是将燃烧所需空气分成两级送入,一级送入过量空气系数小于1,对于燃煤锅炉一般为理论空气量的70%~75%。
其余空气经由布置在燃烧器上游的专门空气喷口OFA(Over Fire Air)送入炉膛继续完成燃烧。
人为地形成准双区燃烧,即主燃烧区和燃烧完全区[6]。
主燃烧区内由于缺氧使燃烧处于“富燃料燃烧(贫氧燃烧)”状态,燃烧速度和温度降低,抑制了热力型NOx的生成。
此外,燃烧过程中生成的CO、NO、以及燃料中氮分解产生的CO、NO、HCN和NH等化合物相互复合作用同样也抑制了3燃料型NOx的生成。
燃烧完全区内燃烧所需其余空气以二次空气输入,调整过量空气系数(过量空气系数大于1)使未燃尽燃料燃烧完全。
此时虽然送入空气量较多,同样会使一些中间产物被氧化成NO,但由于空气分级技术此时反应区已由温度高的主燃烧区转移到温度低的燃烧完全区,抑制了燃料型NOx的生成。
采用空气分级燃烧技术后可使NOx排放量降低30%~60%。
尽管空气分级燃烧弥补了简单的降低过量空气系数燃烧所导致的燃料未完全燃烧损失和飞灰含碳量增加的缺点,但是,若主燃烧区,燃烧完全区两级空气比例分配不合理,或者燃烧混合条件不好,则会增加不完全燃烧带来的损失。
同时,主燃烧区的还原性气氛将导致灰熔点降低从而引起锅炉结渣和受热面腐蚀。
1.2燃料分级燃烧燃料分级燃烧通常采用的形式是燃料再燃烧技术,将燃烧过程设在三个区(主燃区、再燃区和燃尽区)进行,也称为三级燃烧技术,如图2-3所示。
其所依据原理为主燃区形成的NOx会在次燃烧区和烃根CHi、未完全燃烧产物(CO、C、。
低NOx燃烧技术简介一概述:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。
在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。
二低NOx燃烧技术方法:1、空气分级燃烧空气分级法是将燃烧用的空气分阶段送入,进行“缺氧燃烧”和“富氧燃尽”,使其避开温度过高和大过剩空气系数同时出现,降低NOx的生成。
在“缺氧燃烧”阶段,由于氧气浓度较低,燃料的燃烧速度和温度降低,抑制了热力型NOx生成;由于不能完全燃烧,部分中间产物如HCN和NH3会将部分已生成的NOx还原成N2,从而抑制了燃料NOx的排放;然后在将燃烧所需空气的剩下部分以二次风形式送入,即“富氧燃尽”阶段,虽然空气量多,但此阶段的温度已经降低,新生成的NOx量十分有限,因此总体上NOx的排放量明显减少。
2、燃料分级燃烧燃料分级法是把燃料分为两股或多股燃料流,这些燃料流经过三个燃烧区发生燃烧反应。
把80%-85%的燃料送入主燃烧区进行富氧燃烧,余下15%-20%经主燃烧器上部送入再燃烧区,在空气系数小于1的条件下进行缺氧燃烧,主燃烧区产生的NOx被还原,从而减少NOx的排放量;为减少不完全燃烧需加空气进行燃尽。
3、烟气再循环燃烧烟气再循环法是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉膛,或渗入一次或二次风中,降低氧浓度、火焰温度,使NOx的生成受到抑制,降低NOx 的排放。
将部分低温烟气直接送入炉内或与空气一次风或与二次风混合后送入炉内,因烟气的吸热和对氧浓度的稀释作用,会降低燃烧速度和炉内温度,因而减少了热力型NOx。
三低NOx燃烧器根据上述低NOx燃烧技术,我公司引进开发出以下型号的低NOx燃烧器:1、HDRB型低NOx燃烧器;2、HHT-NR型低NOx燃烧器;3、HXCL型低NOx燃烧器;4、HWS型低NOx燃烧器;5、HDS型低NOx燃烧器;6、HSM型低NOx燃烧器;7、 HPM型低NOx燃烧器。
什么是低氮燃烧技术?
低氮燃烧技术一直是应用最广泛、经济实用的措施。
它是通过改变燃烧设备的燃烧条件来降低NO x的形成,具体来说,是通过调节燃烧温度、烟气中的氧的浓度、烟气在高温区的停留时间等方法来抑制NO x的生成或破坏已生成的NO x。
低氮燃烧技术的方法很多,这里用通俗的文字介绍二种常用的方法。
(1)排烟再循环法
利用一部分温度较低的烟气返回燃烧区,含氧量较低,从而降低燃烧区的温度和氧浓度,从而抑制氮氧化物的生成,此法对温度型N O x比较有效,对燃烧型NO x基本上没有效果。
(2)二段燃烧法
该法是目前应用最广泛的分段燃烧技术,将燃料的燃烧过程分阶段来完成。
第一阶段燃烧中,只将总燃烧空气量的70%—75%(理论空气量的80%)供入炉膛,使燃料在先在缺氧的富燃料条件下燃烧,由于富燃料缺,该区的燃料只能部分燃烧(含氧量不足),降低了燃烧区内的烘烘速度和温度水平,能抑制NO x的生成;第二阶段通过足量的空气,使剩余燃料燃尽,此段中氧气过量,但温度低,生成的NO x也较少。
这种方法可使烟气中的NO x减少25%—50%。
低氮燃烧的原理采用空气分级燃烧技术,将一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
这种方法可以降低NOx排放20%-30%。
3低氮燃烧器采用低氮燃烧器可以将NOx排放降低到30mg/m³以下,是目前最有效的降低NOx排放的方法之一。
低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。
浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。
总之,低NOx燃烧技术是降低NOx排放的有效手段,采用不同的方法可以达到不同的降低效果,应根据具体情况选择最合适的方法。
燃料分级燃烧是一种有效降低NOx排放浓度的方法,可使排放浓度降低50%以上。
为了保证未完全燃烧产物的燃尽,需要在再燃区上方布置"火上风"喷口,形成第三级燃烧区。
这种方法也称为燃料分级燃烧。
二次燃料可以是和一次燃料相同的燃料,也可以是碳氢类气体或液体燃料,但需要选择高挥发分易燃的煤种,并磨得更细。
在再燃区中影响NOx浓度值的因素需要进行研究。
烟气再循环法是常用的一种降低NOx排放浓度的方法。
可以在锅炉的空气预热器前抽取一部分低温烟气直接送入炉内,或与一次风或二次风混合后送入炉内,降低燃烧温度和氧气浓度,从而降低NOx的排放浓度。
烟气再循环率为15-20%时,煤粉炉的NOx排放浓度可降低25%左右。
燃烧温度越高,烟气再循环率对NOx降低率的影响越大。
电站锅炉和烟气再循环率一般控制在10-20%。
采用更高的烟气再循环率时,燃烧会不稳定,未完全燃烧热损失会增加。
烟气再循环法可单独使用或与其它低NOx燃烧技术配合使用,但需要进行技术经济比较。
低氮燃烧工作原理及技术低氮燃烧是一种重要的环保技术,通过对燃烧过程进行优化,减少氮氧化物(NOx)的排放量。
本文将从低氮燃烧的原理和技术两个方面进行探讨。
一、低氮燃烧的原理低氮燃烧的核心原理是在燃烧过程中控制燃料和空气的混合比例,以降低燃烧温度和燃料中的氮氧化物生成量。
具体来说,低氮燃烧可以通过以下几种方式实现:1. 燃料优化:通过调整燃料的成分和供应方式,降低燃料中的氮含量。
例如,在煤炭燃烧过程中,可以采用低氮煤或混合燃烧的方式,减少氮氧化物的生成。
2. 空气优化:通过调整燃烧过程中的空气供应方式,使燃料和空气的混合更加均匀充分,提高燃料的燃烧效率,减少氮氧化物的生成。
例如,可以采用预混合燃烧技术,将燃料和空气提前混合,并在燃烧室中均匀分布,以降低燃烧温度和氮氧化物的生成。
3. 燃烧控制:通过调整燃烧过程中的温度、压力和时间等参数,控制燃烧的速率和程度,以降低氮氧化物的生成。
例如,可以采用分级燃烧技术,将燃烧过程分为多个阶段,逐步降低燃烧温度和氮氧化物的生成。
二、低氮燃烧的技术低氮燃烧技术主要包括燃烧器设计和燃烧过程控制两个方面。
1. 燃烧器设计:燃烧器是燃烧过程中的关键设备,其设计合理与否直接影响到燃烧效率和氮氧化物的生成。
在低氮燃烧器的设计中,通常采用以下几种技术手段:(1)风分级技术:通过在燃烧器中设置多个风道,分别控制燃料和空气的供应量,使其达到最佳的混合比例,降低氮氧化物的生成。
(2)预混合技术:将燃料和空气提前混合,并在燃烧室中均匀分布,以实现燃烧的均匀和充分,降低燃烧温度和氮氧化物的生成。
(3)燃烧室设计:通过优化燃烧室的结构和形状,使燃料和空气的混合更加均匀,燃烧过程更加稳定,减少氮氧化物的生成。
2. 燃烧过程控制:在低氮燃烧过程中,燃烧过程的控制至关重要。
通过控制燃烧过程中的温度、压力、空气和燃料供应量等参数,可以有效地降低氮氧化物的生成。
常用的燃烧过程控制技术包括:(1)燃烧温度控制:通过控制燃烧过程中的空气供应量和燃料供应量,控制燃烧温度在适当范围内,以降低氮氧化物的生成。
低NO X燃烧技术及应用热动08-02班吴思知 200823060215摘要:煤在燃烧过程中会产生大量的污染物:NO X、O X、CO2、CO及粉尘等,可造成严重的大气污染、酸雨和水污染,环境问题已成为当今社会日益关注的问题。
而电站燃煤锅炉是大气NOX污染的主要污染源之一,所以在燃烧过程中采取低NOX 燃烧技术降低NOX排放量,会减少对环境的危害。
通过组织良好的燃烧控制NOX的形成,从而满足环保要求是比较经济的技术措施。
关键词:低NO X燃烧技术;低NO X燃烧器;脱硝1.低NO X燃烧技术用改变燃烧条件的方法来降低NOX 的排放,统称为低NOX燃烧技术。
在各种降低NOX 排放的技术中,低NOX燃烧技术是采用最广、相对简单、经济和有效的方法。
1.1 NOX生成机理在燃烧过程中,NOX生成的途径有3种:一是空气中氮在高温下氧化产生称为热力型NOX;二是由于燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOX,称为快速型NOX ;三是燃料中含氮化合物在燃烧中氧化生成的NOX,称为燃料型NOX。
1.2 低NOX燃烧的基本原理研究表明热力型NOX 生成速度与燃烧温度关系很大,升温有利于生成NOX,相反,降温会使热力型NOX形成受到明显抑制。
在温度小于1300℃时,几乎看不到NO的生成反应,NOX生成量很小,只有当温度高于1300℃以上,NO的生成反应才逐渐明显,NOX生成量逐渐增大。
因此,在一般的煤粉炉固态排渣燃烧方式下,热力型NOX所占的比例极小。
氧气浓度的增加和在高温区停留时间的延长,都会促进热力型NOX生成。
在典型的煤粉火焰中,热力型NOX占总排放量的20%左右。
若降低燃烧温度,就能有效降低热力型NOX 的生成。
快速型NOX只有在较富燃的情况下,即在碳氢化合物较多,氧气浓度相对较低时才能发生。
在燃煤锅炉中,其生成量很小一般在5%以下,往往可以忽略不计。