数学史学习体会
- 格式:docx
- 大小:21.09 KB
- 文档页数:7
数学史学习体会
——浅析古希腊及古代中国数学发展
摘要:古希腊数学的成就在世界上是首屈一指的,它为人类创造了巨大的精神财富。古希腊数学家注重推理,更多的依靠逻辑思维。而作为世界四大文明古国之一的中国,从很早开始就发展出了自己的数学体系。商代的甲骨文上出现了完整的十进制,春秋时代严格的筹算已经成型并得到了广泛的应用。本论文旨在使大家认识到数学这门学科的伟大和重要性,以及对世界的历史进步起到的巨大的推动作用。
关键字:古希腊、中国古代数学、数学、发展、逻辑
正文:
1.古希腊数学发展及成就
古希腊数学的成就在世界上是首屈一指的,它为人类创造了巨大的精神财富。不论从哪方面来衡量它都足以称得上辉煌。希腊数学产生了数学精神,即数学证明的演绎推理方法。这时的数学精神所产生的思想在后来人类文化发展史上占据了重要的地位。
希腊数学的发展历史可以分为两个时期
一、雅典时期(600 B.C.-300 B.C.)
这一时期始于泰勒斯为首的伊奥尼亚学派,其贡献在于开创了命题的证明,为建立几何的演绎体系迈出了第一步。稍后有毕达哥拉斯领导的学派,以「万物皆数」作为信条,将数学理论从具体的事物中抽象出来,予数学以特殊独立的地位。公元前480年以后,雅典成为希腊的政治、文化中心,各种学术思想在雅典争奇斗妍,演说和辩论时有所见,在这种气氛下,数学开始从个别学派闭塞的围墙里跳出来,来到更广阔的天地里。
埃利亚学派的芝诺提出四个著名的悖论(二分说、追龟说、飞箭静止说、运动场问题),迫使哲学家和数学家深入思考无穷的问题。智人学派提出几何作图的三大问题:化圆为方、倍立方体、三等分任意角。希腊人的兴趣在于从理论上去解决这些问题,是几何学从实际应用向演绎体系靠拢的又一步。
哲学家柏拉图在雅典创办著名的柏拉图学园,培养了一大批数学家,成为早期毕氏学派和后来长期活跃的亚历山大学派之间联系的纽带。柏拉图的学生亚里士多德是形式主义的奠基者,其逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。
二、亚历山大时期(300 B.C.-641 A.D.)
亚历山大前期出现了希腊数学的黄金时期,代表人物是名垂千古的三大几何学家:欧几里得、阿基米德及阿波洛尼乌斯。
欧几里得总结古典希腊数学,用公理方法整理几何学,写成13卷《几何原本》。这部划时代历史巨著的意义在于它树立了用
公理法建立起演绎数学体系的最早典范。阿基米德是古代最伟大的数学家、力学家和机械师。阿基米德在纯数学领域涉及的范围也很广,其中一项重大贡献是建立多种平面图形面积和旋转体体积的精密求积法,蕴含着微积分的思想。阿波洛尼乌斯的《圆锥曲线论》把前辈所得到的圆锥曲线知识,予以严格的系统化,并做出新的贡献,对17世纪数学的发展有着巨大的影响。
亚历山大后期是在罗马人统治下的时期,这时期出色的数学家有海伦、托勒密、丢番图和帕波斯。丢番图的代数学在希腊数学中独树一帜;帕波斯的工作是前期学者研究成果的总结和补充。之后,希腊数学处于停滞状态。
总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。
2.中国古代数学的成就与衰落
数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相
似。
算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式;(2)测太阳高或远的“陈子测日法”。
《九章算术》在中国古代数学发展过程中占有非常重要的地位。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。三国时期魏人刘徽则注释了《九章算术》。其发明的“割圆术”,为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。
南北朝是中国古代数学的蓬勃发展时期,祖冲之、祖暅父子的工作在这一时期最具代表性。根据史料记载,其著作《缀术》(已失传)取得如下成就:圆周率精确到小数点后第六位,得到 3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值。
隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。公元1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术。此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了。
学习数学史的感受
作为学生虽然学习了很多年数学的有关知识,但对数学的认识仅仅停留在浅显的、感性的层面上,还有很大的局限性,特别是什么是数学,即数学的本质是什么?数学家在推动数学发展过程中起了什么