当前位置:文档之家› 三个着名定理的等价证明

三个着名定理的等价证明

三个着名定理的等价证明
三个着名定理的等价证明

27.命题、证明及平行线的判定定理(提高)知识讲解

命题、证明及平行线的判定定理(提高)知识讲解 【学习目标】 1.了解定义、命题的含义,会区分命题的条件(题设)和结论; 2.体会检验数学结论的常用方法:实验验证、举出反例、推理; 4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式; 5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】 要点一、定义与命题 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 要点诠释: (1)定义实际上就是一种规定. (2)定义的条件和结论互换后的命题仍是真命题. 2.命题:判断一件事情的句子叫做命题. 真命题:正确的命题叫做真命题. 假命题:不正确的命题叫做假命题. 要点诠释: (1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论. (2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立. 要点二、证明的必要性 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明. 要点三、公理与定理 1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理. 2.定理:通过推理得到证实的真命题叫做定理. 要点诠释: 证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程. 要点四、平行公理及平行线的判定定理 1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释: (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 2.平行线的判定定理

重要定理的证明

考研数学重要定理、性质及公式证明总结 ()()()()()()()()000000001,211112y f x x y f x x y f x x dy f x x f x dx y f x x y f x x f x x x ==''==?====()函数在点处可微的充分必要条件是函数在点处可导且当函数在点处可微时,有; ()如果函数在点处可导,则函数函数在点处必连续,反之不一定.证明:()参看同济教材七版上册页; ()参看同济教材七版上册82页.设函数在处可导且取极值1.证明一元函数可微、可导及连续的关系: 2.证明费马定理: ()()[]()()()()()()()[]()()()()()()()() () ()0=0.125,,,,,,=0. 126,,,,0,,.130,f x f x a b a b f a f b a b f f b f a f f x g x a b a b g x a b g b g a g f x ξξξξξ''=∈'-'≠?∈= '-,则证明:参看同济教材七版上册页.设在上连续在内可导,且则至少存在一点使得证明:参看同济教材七版上册页.设、在上连续内可导且则,使得证明:参看同济教材七版上册页.设3.证明罗尔定理: 4.证明柯西中值定理: 5.证明洛必达法则: ()()()()() () ()()()()()[]()()()()[]0 0000,:1lim lim 0,2lim ;lim lim .133,,,00,,144x x x x x x x x x x g x x g x f x f x f x f x g x g x g x g x f x a b a b f x f x a b →→→→→'≠''==∞='''><在点的某去心邻域内可导,且又满足() ()极限存在或为则证明:参看同济教材七版上册页. 设在上连续在内可导,且则在上单调增加(单调减少).证明:参看同济教材七版上册6.证明函数单调性的充分判别法: ()[]()()()()[]()()0000,,,00,,148(),0,00155f x a b a b f x f x a b f x x x f x f x x x ''><'''==><=页. 设在上连续在内二阶可导,且则在上的图形是凹的(凸的). 证明:参看同济教材七版上册页.设在处二阶可导若(),则是极小(大)值点.证明:参看同济教材七版上册页. 7.证明曲线凹凸性的充分判别法: 8.证明极值点的充分条件: @ 考 研 数学 高老 师

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.doczj.com/doc/265406495.html,/journal/pm https://https://www.doczj.com/doc/265406495.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

2019一个有关勾股定理的猜想精品教育.doc

一个有关勾股定理的猜想 :本文通过对勾股定理证明的学习,由此引出一个猜想:以直角三角形的两直角边为边长的两个正多边形的面积和等于以斜边为边长的正多边形的面积。并对此进行了论证,由此得出了四个定理及一个猜想。 :勾股定理,正多边形,直角三角形,面积在无限攀登的学习过程中,我接触到了勾股定理,并对其证明产生了浓厚的兴趣,由此产生了一个大胆的想法:既然以直角三角形的两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积,那么以直角三角形的两直角边为边长的两个正多边形的面积和会等于以斜边为边长的正多边形的面积吗?带着这个想法,在老师的指导下,我尝试着做了以下的论证: 图1 勾股定理:在一个直角三角形中,若两直角边分别为a、b,斜边为c,则a2+b2=c2。 正三角形的面积:如图2, 一个正三角形的边长为a,则由勾股定理可得其高可表示为:则面为:。 图2 正六边形的面积:如图3, —个正六边形的边长为a,作它的三条对角线,则正六边形被分成了六个边长为的正三角形,故面积为:图3 正八边形的面积:如图4, 一个正八边形的边长为a,作它的两条对角线,则正八边形被分成了两个全等的等腰梯形和一个矩形,故

面积为: 图4 定理一:以直角三角形的两直角边为边长的两个正三角形的面积和等于以斜边为边长的正三角形的面积。 证明:一个直角三角形的两直角边分别为a、b,斜边为c, 以这三边为边长所作的正三角形的面积分别为:。 则: 即:以直角三角形的两直角边为边长的两个正三角形的面积和等于以斜边为边长的正三角形的面积。 定理二:以直角三角形的两直角边为边长的两个正四边形的面积和等于以斜边为边长的正四边形的面积。证明:一个直角三角形的两直角边分别为、 ,斜边为,以这三边为边长所作的正四边形的面积分别为:a2, b2, c2。 则:a2+b2=c2 即:以直角三角形的两直角边为边长的两个正四边形的面积和等于以斜边为边长的正四边形的面积。 定理三:以直角三角形的两直角边为边长的两个正六边形的面积和等于以斜边为边长的正六边形的面积。 证明:一个直角三角形的两直角边分别为、 ,斜边为,以这三边为边长所作的正六边形的面积分别为:。 则: 即:以直角三角形的两直角边为边长的两个正六边形的面积和等于以斜边为边长的正六边形的面积。

六大定理互相证明总结讲课讲稿

六大定理互相证明总 结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件:(1)后一个区间在 前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又Θ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]

证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n > N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理 2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理 在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明; ⑵若{}n x 中无递增子序列,那么?1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列. 于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证. 下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1] 由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞ →lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞ →lim 也存 在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

定理与证明(一)

定理与证明(一) 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 教学建议 (一)教材分析 1、知识结构 2、重点、难点分析 重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性. 难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.(二)教学建议 1、四个注意 (1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.

(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等. (4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由. 2、逐步渗透数学证明的思想: (1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.(2)提高学生的“图形”能力,包括利用大纲允许

(完整word版)蝴蝶定理的八种证明及三种推广

蝴蝶定理的证明 定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。 在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞! 证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=? FVO FMO 90∠=∠=? 得M E U O 、、、共圆;M F V O 、、、共圆。 则AUM=EOM MOF MVC ∠∠∠=∠, 又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ??,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。 证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○ 1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即 PC'CQ =。又 111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222 ∠∠()() 故M F B D'、、、四点共圆,即MBF MD'F ∠=∠ 而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ???,故ME=MF 。 证法 3 如图4,设直线DA 与BC 交于点N 。对NEF ?及截线AMB ,NEF ?及截线CMD 分别应用梅涅劳斯定理,有 FM EA NB 1ME AN BF ??=,FM ED NC 1ME DN CF ??= 由上述两式相乘,并注意到 NA ND NC NB ?=? 得 2 2 FM AN ND BF CF BF CF ME AE ED BN CN AE ED ?=???=? ()()()()2 2 22 PM MF MQ MF PM MF PM ME MQ+ME PM ME -= =-+-- 化简上式后得ME=MF 。[2] 2 不使用辅助线的证明方法 单纯的利用三角函数也可以完成蝴蝶定理的证明。 图 2 图 3 图 4

初一常用几何证明的定理总结

初一常用几何证明的定理总结

平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律: (1)x 轴将坐标平面分为两部分,x 轴上方的纵坐标为正数;x 轴下方的点纵坐标为负数。即第一、二象限及y 轴正方向(也称y 轴正半轴)上的点的纵坐标为正数;第三、四象限及y 轴负方向(也称y 轴负半轴)上的点的纵坐标为负数。 反之,如果点P (a ,b )在x 轴上方,则b >0;如果P (a ,b )在x 轴下方,则b <0。 (2)y 轴将坐标平面分成两部分,y 轴左侧的点的横坐标为负数;y 轴右侧的点的横坐标为正数。即第二、三象限和x 轴的负半轴上的点的横坐标为负数;第一、四象限和x 轴正半轴上的点的横坐标为正数。 (3)规定坐标原点的坐标为(0 ,0) (4 (5) 对称点的坐标特征: (1)关于x 轴对称的两点:横坐标相同,纵坐标互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于x 轴对称,则12 12 x x y 0y ??+=?=反之也成立。如P (2 ,-3)与Q (2 ,3)关于x 轴对称。 (2)关于y 轴对称的两点:纵坐标相同,横坐标互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于y 轴对称,则12 120 y x x ??+=?=y 反之也成立。如P (2 ,-3)与Q (-2 ,-3)关于y 轴对称。 (3)关于原点对称的两点:纵坐标、横坐标都互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于原点对称,则1212 x + x 0 y 0y =??+=?反之也成立。如P (2 ,-3)与Q (-2 ,3)关于原点对称。

华罗庚证明的哥德巴赫猜想与三素数定理、陈氏定理的比较

华罗庚证明的哥德巴赫猜想与三素数定理、陈氏定理的比 童信平 1742年6月7日,时任普鲁士派往俄罗斯的公使、数学业余爱好者哥德巴赫写 信给欧拉。同年的6月30日,欧拉回了信。这二封信确立了下面的二个哥德巴赫 猜想: 哥德巴赫猜想(A): “大于 4 的偶数可以写成二个奇素数相加。”又称为偶数哥 德巴赫猜想。简称“ 1+1” 哥德巴赫猜想(B): “大于7 的奇数可以写成三个奇素数相加。”又称为奇数哥 德巴赫猜想。 20 世纪20 年代,哈代和李特伍德二人进一步提出了这二个猜想的表法个数( 答案数量)的猜想:公式(1) 是偶数哥德巴赫猜想的表法个数(答案数量)的计算公式, 称为哈代-李特伍德猜想(A) 。公式(2) 是奇数哥德巴赫猜想的表法个数计算公式, 称为哈代-李特伍德猜想(B) 。参照素数定理的证明过程,需要通过公式(1a) 、(2a) 来证明公式(1) 、(2) ,条件是找到公式中前面的那些参变量和后面的0(1)并证 明,N??寸, 0(1)?0。 p-1N1 [1][2](1) r(n) ,2c(n) 【其中,c(n)(=c(N))= ? (1- ) ? 。】 222(p-1)p-2lnN 3?p?N p|N 3?p?N N[1][2](1a) r(n)(= r(N)) ,2c(N)(1+ 0(1)) 【要求找到前面的参变量和0(1) 并证明,N??寸,0(1)?0。】2221nN NNNl nInNNInIn N[3](1b) ①(N)= S(N)+ 0()=2 c(N) + 0() 1985 年,华罗庚指出,r(N)(= 15/25/222(lnN)(lnN)lnNlnN

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

(完整版)高数中需要掌握证明过程的定理(一)

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。 由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2 x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim(1)x x x e →+=与 0sin lim 1x x x →=的推论, 它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01lim 1x x e x →-=:在等式0ln(1) lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

四色定理的简单证明

四色定理的简单证明 虽然现在已经有不少人用不同方法证明出了四色定理,但我认为四色定理的证明还是有点复杂,所以给出以下证明。(注:图形与图形的位置关系可分为相离、包含、内向接、内向切、外向接、外向切,在此文中由于题意关系不妨重新分为以下关系:1 把包含、内向接、内向切,统一划分为包含关系。2 把外向接单独划分为相接关系。3把相离、外相切统一划分为相离关系。) 此证明过程中把图的组合形式按照其位置关系而抽离出了以下四种基本有效模式: 1 若要存在只需用一种颜色便能彼此区分开来的地图,则该图中所有图形必定满足彼此相离。如下图: 图(1) 分析:这是最简单的一种图形关系模式暂且称为模式a。 2 若要存在只需用两种颜色便能彼此区分开来的地图,则该图中的所有图形必定满足最多只存在两个图形的两两相交的图形。各种有效图形关系如下图:

图(2) 分析:两个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(1)存在包含关系,被包含的图形是对外部无影响的,所以图(1)仍属于模式a。所以两个图形的两两相交只有图(2)的相交关系模式的图形有效的,我们暂且称之为模式b。 3 若要存在只需用三种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在三个图形的两两相交图形。各种有效图形关系如下图: 图(3) 分析:三个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(2)属于存在包含关系,同理整体回归于模式a。所以三个图形的两两相交只有图(1)的相接关系模式的图形是有效图形模式,我们暂且称之为模式c。 4 若要存在只需用四种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在四个图形的两两相交图形。各种有效图形关系如下图: 图(4)

新裴蜀定理的加强证明1

摘要:裴蜀定理是初等数论中一个非常重要的定理,即当n 个整数12,,...,n a a a 满足12(,,...,)1n a a a =时,存在无穷多组整数12(,,...,)n x x x 可以使得1122...1n n x a x a x a +++=。这里的12(,,...,)n x x x 并没有特别的限制,是否可以给12(,,...,)n x x x 一些限制条件而使裴蜀定理依然成立呢?我们的研究结果表明当n 个整数12,,...,n a a a 满足12(,,...,)1n a a a =时,存在无穷多组整数12(,,...,)n x x x 可以使得1122...1n n x a x a x a +++=和1i i x x +(i=1,3,…,n -2)同时 成立。进一步我们发现,当n+k 个整数11,...,,,...,n n a a b b 满足11(,...,,,...,)1n k a a b b =时,存在无穷多组整数|11(,...,,,...,)n k x x y y 可以使得1111......1n n k k x a x a y b y b +++++=和1i i x x +(i=1,…,n-1)和1j j y y +(j=1,…,k-1)同时满足。此外,我们的研究结果表明当n 个整数12,,...,n a a a 满足12(,,...,)1n a a a =时,存在无穷多组整数12(,,...,)n x x x 可以使得1122...1n n x a x a x a +++=和(,)2i j x x ≥同时满足,这里1i j n ≤<≤。总之,在该论文中,我们通过简洁而巧妙的证明,发现了一系列加强的裴蜀定理,使得裴蜀定理更加丰富而有趣。

相关主题
文本预览
相关文档 最新文档