当前位置:文档之家› 树脂基碳纤维复合材料成型工艺现状及发展方向

树脂基碳纤维复合材料成型工艺现状及发展方向

树脂基碳纤维复合材料成型工艺现状及发展方向
树脂基碳纤维复合材料成型工艺现状及发展方向

树脂基碳纤维复合材料项目可行性方案

树脂基碳纤维复合材料项目 可行性方案 规划设计/投资分析/产业运营

摘要说明— 碳纤维增强复合材料是以碳纤维为增强体,以树脂基、陶瓷基、金属 基等为基体制成的功能性材料,其中碳纤维增强树脂基复合材料的应用较 为广泛。 该树脂基碳纤维复合材料项目计划总投资8358.19万元,其中:固定 资产投资6937.82万元,占项目总投资的83.01%;流动资金1420.37万元,占项目总投资的16.99%。 达产年营业收入12184.00万元,总成本费用9189.44万元,税金及附 加164.13万元,利润总额2994.56万元,利税总额3571.73万元,税后净 利润2245.92万元,达产年纳税总额1325.81万元;达产年投资利润率 35.83%,投资利税率42.73%,投资回报率26.87%,全部投资回收期5.22年,提供就业职位165个。 报告内容:项目概论、项目建设背景、项目市场前景分析、项目建设 方案、选址评价、土建工程、工艺说明、环境影响概况、安全管理、建设 及运营风险分析、项目节能可行性分析、项目进度说明、项目投资可行性 分析、盈利能力分析、结论等。 规划设计/投资分析/产业运营

树脂基碳纤维复合材料项目可行性方案目录 第一章项目概论 第二章项目建设背景 第三章项目建设方案 第四章选址评价 第五章土建工程 第六章工艺说明 第七章环境影响概况 第八章安全管理 第九章建设及运营风险分析 第十章项目节能可行性分析 第十一章项目进度说明 第十二章项目投资可行性分析 第十三章盈利能力分析 第十四章招标方案 第十五章结论

第一章项目概论 一、项目承办单位基本情况 (一)公司名称 xxx公司 (二)公司简介 未来,在保持健康、稳定、快速、持续发展的同时,公司以“和谐发展”为目标,践行社会责任,秉承“责任、公平、开放、求实”的企业责任,服务全国。公司将“以运营服务业带动制造业,以制造业支持运营服 务业”经营模式,树立起双向融合的新格局,全面系统化扩展经营领域。 公司为以适应本土化需求为导向,高度整合全球供应链。 公司已拥有ISO/TS16949质量管理体系以及ISO14001环境管理体系, 以及ERP生产管理系统,并具有国际先进的自动化生产线及实验测试设备。公司坚持走“专、精、特、新”的发展道路,不断推动转型升级,使产品 在全球市场拥有一流的竞争力。 公司正处于快速发展阶段,特别是随着新项目的建设及未来产能扩张,将需要大量专业技术人才充实到建设、生产、研发、销售、管理等环节中。作为一家民营企业,公司在吸引高端人才方面不具备明显优势。未来公司 将通过自我培养和外部引进来壮大公司的高端人才队伍,提升公司的技术 创新能力。公司通过了ISO质量管理体系认证,并严格按照上述管理体系

复合材料成型工艺

树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC等品种。 1、原材料 (1)合成树脂复合材料模压制品所用的模压料要求合成树脂具有:①对增强材料有良好的浸润性能,以便在合成树脂和增强材料界面上形成良好的粘结;②有适当的粘度和良好的流动性,在压制条件下能够和增强材料一道均匀地充满整个模腔;③在压制条件下具有适宜的固化速度,并且固化过程中不产生副产物或副产物少,体积收缩率小;④能够满足模压制品特定的性能要求。按以上的选材要求,常用的合成树脂有:不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基树脂、呋喃树脂、有机硅树脂、聚丁二烯树脂、烯丙基酯、三聚氰胺树脂、聚酰亚胺树脂等。为使模压制品达到特定的性能指标,在选定树脂品种和牌号后,还应选择相应的辅助材料、填料和颜料。 (2)增强材料模压料中常用的增强材料主要有玻璃纤维开刀丝、无捻粗纱、有捻粗纱、连续玻璃纤维束、玻璃纤维布、玻璃纤维毡等,也有少量特种制品选用石棉毡、石棉织物(布)和石棉纸以及高硅氧纤维、碳纤维、有机纤维(如芳纶纤维、尼龙纤维等)和天然纤维(如亚麻布、棉布、煮炼布、不煮炼布等)等品种。有时也采用两种或两种以上纤维混杂料作增

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

树脂基碳纤维复合材料项目可行性报告

树脂基碳纤维复合材料项目 可行性报告 规划设计/投资分析/实施方案

树脂基碳纤维复合材料项目可行性报告 碳纤维增强复合材料是以碳纤维为增强体,以树脂基、陶瓷基、金属 基等为基体制成的功能性材料,其中碳纤维增强树脂基复合材料的应用较 为广泛。 该树脂基碳纤维复合材料项目计划总投资8203.97万元,其中:固定 资产投资6444.75万元,占项目总投资的78.56%;流动资金1759.22万元,占项目总投资的21.44%。 达产年营业收入15315.00万元,总成本费用12042.78万元,税金及 附加141.99万元,利润总额3272.22万元,利税总额3865.55万元,税后 净利润2454.16万元,达产年纳税总额1411.38万元;达产年投资利润率39.89%,投资利税率47.12%,投资回报率29.91%,全部投资回收期4.84年,提供就业职位248个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ......

树脂基碳纤维复合材料项目可行性报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

树脂基碳纤维复合材料项目初步方案

树脂基碳纤维复合材料项目 初步方案 规划设计/投资方案/产业运营

树脂基碳纤维复合材料项目初步方案说明 碳纤维增强复合材料是以碳纤维为增强体,以树脂基、陶瓷基、金属基等为基体制成的功能性材料,其中碳纤维增强树脂基复合材料的应用较为广泛。 该树脂基碳纤维复合材料项目计划总投资3248.14万元,其中:固定资产投资2392.78万元,占项目总投资的73.67%;流动资金855.36万元,占项目总投资的26.33%。 达产年营业收入7006.00万元,总成本费用5332.20万元,税金及附加60.41万元,利润总额1673.80万元,利税总额1965.08万元,税后净利润1255.35万元,达产年纳税总额709.73万元;达产年投资利润率51.53%,投资利税率60.50%,投资回报率38.65%,全部投资回收期4.09年,提供就业职位125个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

报告主要内容:概况、项目背景及必要性、项目市场前景分析、产品及建设方案、项目选址方案、土建工程说明、项目工艺说明、环境影响概况、企业卫生、项目风险概况、节能分析、实施安排、投资方案、经济评价分析、项目结论等。

第一章概况 一、项目概况 (一)项目名称 树脂基碳纤维复合材料项目 碳纤维增强复合材料是以碳纤维为增强体,以树脂基、陶瓷基、金属基等为基体制成的功能性材料,其中碳纤维增强树脂基复合材料的应用较为广泛。 (二)项目选址 xx产业示范中心 (三)项目用地规模 项目总用地面积8177.42平方米(折合约12.26亩)。 (四)项目用地控制指标 该工程规划建筑系数53.49%,建筑容积率1.19,建设区域绿化覆盖率6.59%,固定资产投资强度195.17万元/亩。 (五)土建工程指标 项目净用地面积8177.42平方米,建筑物基底占地面积4374.10平方米,总建筑面积9731.13平方米,其中:规划建设主体工程7652.37平方米,项目规划绿化面积641.56平方米。

碳纤维复合材料的应用与机械加工

碳纤维复合材料的应用与加工 1 应用领域 目前,碳纤维广泛用于民用,军用,工业,航天以及超级跑车领域。 图碳纤维复合材料不同领域所占比例 国外将碳纤维复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能。 由于碳纤维增强复合材料不但是轻质高强的结构材料,还具有隐身的重要功能,能有效地吸收雷达波,美国已用来制造最新型的隐形轰炸机。美国的P-22 超音速飞机的主要结构就是采用了中等模量的碳纤维增强的特种工程塑料。幻影III战斗机的减速降落伞盖和弹射的弹射装置也由这种材料制成。碳纤维已成功地用于飞机的肋条、蒙皮及一些连接件、紧固件等雷达波的吸收件。战斧式巡航导弹壳体、B-2隐型轰炸机的机身基材,F117A隐型飞机的局部也都采用了碳纤维改性的高分子吸波材料。 图美国B-2隐身轰炸机(机身基材) 图幻影III战斗机(减速降落伞盖和弹射装置) 图美F117A隐身轰炸机(肋条及蒙皮等) 英国ICI公司用碳纤维复合材料生产战斗机上的阀门,使飞机阀门在很宽的温度范围内与燃料长期接触也能保持其性能和形状的稳定;其它国家的飞机F/A-18、RAH-66、A330 / A340、B77、Y-22上面也都采用了这种材质来制造机翼、蒙皮、主承力结构、中央冀盒、地板、尾冀、设备箱体及结构件。 在民用领域,飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强材料(CFRP)。这些部件包括:减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。 2 加工特点 碳纤维复合材料一般以叠合制成多层板使用,通常有两种复合形式,一种是碳纤维在基体中呈同向排列,即每层的纤维方向相同,通常称这种复合材料为单向纤维复合材料;一种

树脂基复合材料成型工艺介绍

树脂基复合材料成型工艺介绍 树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。 模压成型工艺的主要优点: ①生产效率高,便于实现专业化和自动化生产; ②产品尺寸精度高,重复性好; ③表面光洁,无需二次修饰; ④能一次成型结构复杂的制品; ⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法 是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法 将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。 ③织物模压法 将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。 ④层压模压法 将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。 ⑤缠绕模压法 将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。 ⑥片状塑料(SMC)模压法 将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。 ⑦预成型坯料模压法 先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC

碳纤维复合材料LY模板演示教学

复合材料基础 姓名:梁雨 专业:化学 学号:2014122

碳纤维复合材料 碳纤维是由碳元素组成的一种高性能增强纤维。不仅强度高,密度小,并且具有低热膨胀、高导热、耐磨、耐高位等优异性能,是一种很有发展前景的高性 能纤。这些优异的性能使得人们对它的重视到了一个很高的高度。那么接下来我就来介绍一下有关碳纤维复合材料在各方面的的一些知识。 一、碳纤维复合材料发展史 碳纤维复合材料的发展史应包含碳纤维的发展史何其复合材料应用史。碳纤维是碳材料的一种新形式。我们已经知道碳材料结构由四种类型,一是无定形碳、而是石墨、三是金刚石、四是白碳。碳纤维含碳99%以上,主要是石墨和无定形碳,纤维形状是一种新的应用形式。1880年人类制造了第一批电灯泡,那是电 灯泡的灯丝就是当时人类研制的第一批碳纤维,直到1901年发明钨丝后才不用它做灯丝了。到1950年美国空军材料研究所由于军工的需求,加紧对碳纤维研究,1959年由联合碳化合物公司实现了高强碳纤维的生产工艺。与此同时,1962年日本旭炭公司在远藤教授研究的基础上实现以聚丙腈纤维为原料,经过预氧化(不熔化)、1300℃以上高温炭化而得到有实用价值的通用碳纤维的工业生产线。1970年以后东丽公司、东邦公司相继参加聚丙烯腈基碳纤维的生产开发,形成2吨╱年的规模。1978年产量达1000t。20世纪80年代后期批量生产的M30、M60、T1000等石墨化程度更高的碳纤维。随后碳纤维在全世界需求量随年逐增 中国碳纤维的发展 我国从1968年开始研究碳纤维,很快研究出碳纤维1#,相当于T200的水平,1976年建成中试线,那是与日本东丽公司的差距为5年。后来碳纤维2#的研究久攻不下。差距已拉大20多年,无竞争可言。同时由于发达国家对我国几 十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长时 间依赖进口,严重影响了我国高技术的发展,尤其制约了航天及国防军工事业的 发展,与我国经济社会发展的进程极不相称。所以,研究生产高性能、高质量的 碳纤维,以满足军工和民用产品的需求,扭转大量口的局面,是当前我国碳纤维工业发展的迫切任务。

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维_树脂基复合材料导电性能研究

第27卷 第5期 2005年5月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.27 No.5 M ay 2005 碳纤维/树脂基复合材料导电性能研究 于 杰,王继辉,王 钧 (武汉理工大学材料科学与工程学院,武汉430070) 摘 要: 研究了短切碳纤维/乙烯基酯树脂导电性与短切碳纤维含量、长径比、纤维取向的关系及其PT C 效应。短切碳纤维长径比越大、取向角越小,材料的渗虑阈值越低,导电性越好。渗虑阈值之后,纤维含量越低,PT C 效应越明显,转变温度越低;实验还发现体积膨胀是导致PT C 效应的主要因素之一,通过分析PT C 效应与体积膨胀之间的关系,得出渗滤区域材料的导电性受导电通路与隧道效应的综合影响,当纤维含量较高时,导电性能基本只受导电通路的控制。关键词: 短切碳纤维/乙烯基酯树脂; 导电性; 长径比; PT C 中图分类号: T B 332文献标志码: A 文章编号:1671-4431(2005)05-0024-03 Study on Electric Properties of Carbon Fiber/Polymer Composites Y U J ie,WAN G J i -hui,WAN G Jun (Schoo l of M aterials Science and Engineering,Wuhan U niversity of T echnolo gy,Wuhan 430070,China) Abstract: T he electr ical co nduct ivity and P T C effect of chopped -carbon fiber filled viny-l ester resin composites were studied.Filler aspect r at io and filler orientation were found to evidently affect t he composites conductiv ity.It w as also proved that the volume ex pansion was a main factor.It has r esulted in the composites .PT C behavior ,w hich is mor e sensitive and evident when the filler fraction is w ithin t he percolation r eg ion.It also advanced the conductive mechanism based on the analysis of the rela -tion between volume expansion and PT C behav ior. Key words: chopped -carbon fiber/viny-l ester r esin; electrical conductivity ; aspect ratio; P T C 收稿日期:2005-01-30. 基金项目:军工863项目(2003AA 305920).作者简介:于 杰(1980-),男,硕士生.E -mail:yujiejack@https://www.doczj.com/doc/26805446.html, 复合型导电高分子材料可以在较大范围内根据需要调节材料的电学、力学性能及其它性能,而且成本较低、易于成型并进行大规模生产,是当前研究开发的重点。其中,碳纤维作为一种纤维状导电填料,填充树脂、橡胶、橡塑共混物等复合型导电高分子材料的研究也经常见诸报道[1,2]。虽然针对碳系填料填充的热塑性树脂复合材料的研究十分广泛,但关于以热固性树脂为基体的导电复合材料的研究却少有报道。以短切碳纤维/乙烯基酯树脂为研究对象,研究了碳纤维含量、长径比及纤维的取向对复合材料导电性能的影响,并对其PT C 效应进行了研究,力图探索短切碳纤维填充热固性树脂基复合材料的导电机理。 1 实 验 1.1 试样制备 碳纤维:PAN 基纤维,型号HTA -12K,由OH O TAYON 公司生产;树脂:3201# 乙烯基酯树脂,上海新华树脂厂生产;固化剂:过氧化苯甲酰,促进剂:环烷酸钴,均由武汉理工大学树脂厂生产。将各长径比(1mm 、3mm 、5mm)的碳纤维按不同的含量(0.5%~10%)与树脂、固化剂及促进剂混合搅拌均匀,浇注到钢模中,140e 下固化20m in,自然冷却,脱模后加工成50m m @20mm @4mm 的片材。

纤维增强环氧树脂复合材料成型工艺

纤维增强环氧树脂复合材料成型工艺 一、前言 相比传统材料,复合材料具有一系列不可替代的特性,自二次大占以来发展很快。尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨),但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。美、日、西欧水平较高。北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省)、日本为主的亚洲占30%。中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨)。 复合材料主要由增强材料与基体材料两大部分组成: 增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料)中的碳纤维素就是增强材料。 基体:构成复合材料连续相的单一材料如玻璃钢(GRP)中的树脂(本文谈到的环氧树脂)就是基体。y 按基体材料不同,复合材料可分为三大类: 树脂复合材料 金属基复合材料 无机非金属基复合材料,如陶瓷基复合材料。 本文讨论环氧树脂基复合材料。 1、为什么采用环氧树脂做基体? 固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%; 粘结力强; 有B阶段,有利于生产工艺; 可低压固化,挥发份甚低; 固化后力学性能、耐化学性佳,电绝缘性能良好。 值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯权势脂为佳,然耐酸性差;固化后一般较脆,韧性较差。 2、环氧玻璃钢性能(按ASTM) 以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。 表1 GF/EPR与钢的性能比较 玻璃含量GF/EPR(玻纤含量80wt%) AISI1008 冷轧钢 相对密度 2.08 7.86 V 拉伸强度551.6Mpa 331.0MPa 拉伸模量27.58GPa 206.7GPa 伸长率 1.6% 37.0% 弯曲强度689.5MPa 弯曲模量34.48GPa 压缩强度310.3MPa 331.0MPa 悬臂冲击强度2385J/m 燃烧性(UL-94)V-O 比热容535J/kg?k 233J/kg?k 膨胀系数 4.0×10-6k-1 6.7×10-6k-1 热变形温度204oC(1.82MPa) 热导率 1.85W/m?k 33.7W/m?k 介电强度11.8×106V/m 吸水率0.5%(24h)

碳 纤 维 复 合 材 料

江苏大学 碳 纤 维 复 合 材 料 学院:京江学院 姓名:赵京阳 班级:J高分子1101 学号:4111126015

碳纤维复合材料简介 摘要:人类发展的历史和材料发展的历史息息相关研究人类历史可以清楚地看到,人类历史上各方面的进步与新材料的创造、出现和应用是分不开的。本文今天来简要介绍一下碳纤维复合材料,包括它的原料、工艺、过度产品及各方面的应用。碳纤维是由碳元素组成的一种高性能增强纤维。不仅强度高,密度小,并且具有低热膨胀、高导热、耐磨、耐高位等优异性能,是一种很有发展前景的高性能纤。这些优异的性能使得人们对它的重视到了一个很高的高度。那么接下来我就来介绍一下有关碳纤维复合材料在各方面的的一些知识。 一、碳纤维复合材料发展史 碳纤维复合材料的发展史应包含碳纤维的发展史何其复合材料应用史。碳纤维是碳材料的一种新形式。我们已经知道碳材料结构由四种类型,一是无定形碳、而是石墨、三是金刚石、四是白碳。碳纤维含碳99%以上,主要是石墨和无定形碳,纤维形状是一种新的应用形式。1880年人类制造了第一批电灯泡,那是电灯泡的灯丝就是当时人类研制的第一批碳纤维,直到1901年发明钨丝后才不用它做灯丝了。到1950年美国空军材料研究所由于军工的需求,加紧对碳纤维研究,1959年由联合碳化合物公司实现了高强碳纤维的生产工艺。与此同时,1962年日本旭炭公司在远藤教授研究的基础上实现以聚丙腈纤维为原料,经过预氧化(不熔化)、1300℃以上高温炭化而得到有实用价值的通用碳纤维的工业生产线。1970年以后东丽公司、东邦公司相继参加聚丙烯腈基碳纤维的生产开发,形成2吨╱年的规模。1978年产量达1000t。20世纪80年代后期批量生产的M30、M60、T1000等石墨化程度更高的碳纤维。随后碳纤维在全世界需求量随年逐增 中国碳纤维的发展 我国从1968年开始研究碳纤维,很快研究出碳纤维1#,相当于T200的水平,1976年建成中试线,那是与日本东丽公司的差距为5年。后来碳纤维2#的研究久攻不下。差距已拉大20多年,无竞争可言。同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长时间依赖进口,严重影响了我国高技术的发展,尤其制约了航天及国防军工事业的发展,与我国经济社会发展的进程极不相称。所以,研究生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量口的局面,是当前我国碳纤维工业发展的迫切任务。 国外碳纤维的发展 1959年日本发明了用聚丙烯腈原丝生产碳纤维的方法。1962年,日本东丽公司开始生产,之后又积极研制用于生产碳纤维的专用优质原丝,并于1967年成功生产T300PAN-CF。同时,英国皇家航空研究所,对PAN纤维生产技术进行技术改进,随后英国考陶尔公司利用这项技术开始生产高强度、高模量PAN 基碳纤维。1969年,日本东丽公司研究成功特殊的单体共聚PAN基碳纤维,结合美国、法国、德国也都引进或开发了PAN原丝基碳纤维的生产。原苏联开始主要研究以人丝为原料制造碳纤维,后转向PAN基碳纤维。另外印度、南斯拉夫、以色列、韩国也在以PAN原丝制取碳纤维方面开展了大量的研制工作。日本东丽公司的碳纤维研发与生产一直处于世界领先水平。

树脂基复合材料

树脂基复合材料的研究进展 摘要: 树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。 关键字:树脂基复合材料,材料性能,应用领域 一、前言 复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱

和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。 树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。 (2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。 以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并

碳纤维复合材料的制备及其发展

化工材料及应用 碳纤维复合材料的制备及其发展 1

目录 1摘要: (3) 2引言 (3) 2.1产品简介 (3) 2.2生产方法 (3) 2.2.1手糊成型工艺 (3) 2.2.2 喷射成型工艺 (3) 2.2.3注射成型 (4) 2.2.4 纤维缠绕成型 (4) 2.2.5拉挤成型 (4) 3结论 (4) 4参考文献 (4) 2

碳纤维复合材料的制备及其发展 1摘要:碳纤维是一种含碳量在95%以上的高强度、高模量、力学性能优异的新材料,它的重量不到钢的1/4,但强度却可以远高于钢铁,并且具有耐腐蚀、高模量的特性、无蠕变、非氧化环境下耐超高温、耐疲劳性好等优异性能。将碳纤维作为增强材料和树脂基体复合而成的树脂基复合材料是目前最具应用前景的一种复合材料,在各行各业有着广泛的应用。 关键词:碳纤维;制备;复合材料 2引言 碳纤维(简称CF)是一种含碳量在95%以上的新型纤维材料,不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。碳纤维与树脂、金属、陶瓷等基体复合,制成的结构材料简称碳纤维复合材料。它以碳或石墨化的树脂作为基体,以碳纤维或碳纤维织物为增强体。作为高性能纤维的一种,该材料已在军事及民用工业的各个领域取得广泛应用,被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目[1]。 2.1产品简介 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法组成的具有新性能的材料,复合材料中的各种材料在性能上取长补短,使复合材料的综合性能比单一材料更为优异。碳纤维作为增强材料和树脂基体复合而成的树脂基复合材料是目前最具应用前景的一种结构复合材料,近年来获得了较快发展,在航空航天、机械、电子、化工等领域得到了广泛的应用[2]。 2.2生产方法 碳纤维增强复合材料有多种制备方法,近年来,人们一直在改进不同种类的碳纤维复合材料的性能和加工方法,力求为这种性能优良的材料寻找到最佳的加工方法。目前主要成型方法有以下几种。 2.2.1手糊成型工艺 手糊成型工艺是复合材料最早的一种成型方法、也是一种最简单的方法。它的最大特点是以手工操作为主,不受产品尺寸和形状限制,适宜尺寸大、批量小、形状复杂产品的生产;设备简单、投资费用少;可以满足多种产品的设计要求。这种方法不足之处在于生产效率低下;劳动强度大;环境不友好;产品稳定性不高。 2.2.2 喷射成型工艺[3] 3

树脂复合材料成型工艺

成型工艺 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发镇,其老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基符合材料的成型方法已有20多种,并成功地用于工业生产,如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。 复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 接触低压成型工艺 接触低压成型工艺的特点是以手工铺放增强材料,浸清树脂,或用简单的工具辅助铺放增强材料和树脂。接触低压成型工艺的另一特点,是成型过程中不需要施加成型压力(接触成型),或者只施加较低成

树脂基碳纤维复合材料项目规划方案

树脂基碳纤维复合材料项目 规划方案 规划设计/投资方案/产业运营

承诺书 申请人郑重承诺如下: “树脂基碳纤维复合材料项目”已按国家法律和政策的要 求办理相关手续,报告内容及附件资料准确、真实、有效,不 存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法 规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx科技发展公司(盖章) xxx年xx月xx日

项目概要 碳纤维增强复合材料是以碳纤维为增强体,以树脂基、陶瓷基、金属基等为基体制成的功能性材料,其中碳纤维增强树脂基复合材料的应用较为广泛。 该树脂基碳纤维复合材料项目计划总投资20254.23万元,其中:固定资产投资16678.33万元,占项目总投资的82.34%;流动资金3575.90万元,占项目总投资的17.66%。 达产年营业收入32746.00万元,总成本费用25924.45万元,税金及附加335.42万元,利润总额6821.55万元,利税总额8097.87万元,税后净利润5116.16万元,达产年纳税总额2981.71万元;达产年投资利润率33.68%,投资利税率39.98%,投资回报率25.26%,全部投资回收期5.46年,提供就业职位699个。 报告针对项目的特点,分析投资项目能源消费情况,计算能源消费量并提出节能措施;分析项目的环境污染、安全卫生情况,提出建设与运营过程中拟采取的环境保护和安全防护措施。 报告主要内容:项目承担单位基本情况、项目技术工艺特点及优势、项目建设主要内容和规模、项目建设地点、工程方案、产品工艺路线与技术特点、设备选型、总平面布置与运输、环境保护、职业安

树脂基复合材料成型工艺发展研究

树脂基复合材料成型工艺发展研究 技术发展、科技进步、人才素质的提高,推动材料工艺改进和完善,在整个工业领域也发挥着重要作用。文章探讨分析树脂基复合材料成型工艺,并对其发展进行分析。随着技术发展和改进,复合材料呈现智能化和自动化趋势,将在工业领域得到更加广泛的应用。 标签:树脂基复合材料;成型工艺;挤压成型;智能化 引言 复合材料在工业领域得到广泛应用,也是衡量一个国家科技和经济实力的重要标志。先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。树脂基复合材料是先进的材料类型之一,在航空航天领域得到广泛应用,并且随着技术发展与进步,材料性能不断改进和完善。文章探讨分析树脂基复合材料成型工艺,并对其发展进行展望,希望能为实际工作提供指导借鉴。 1 树脂基复合材料成型工艺 成型工艺是一项系统复杂的工艺,不仅要满足制品的形状和尺寸要求,还要确保材料的综合性能,减少制品空隙率,并降低甚至避免对操作人员健康带来的负面影响,促进材料综合效益提升。经过几十年发展与技术进步,树脂基复合材料成型工艺取得不断发展,种类进一步增多,并存在相同点和不同点,主要体现在以下方面。 1.1 接触低压成型 利用手工作业方式,将玻璃纤维织物和树脂铺在模具上,粘结一起后固化成型,工艺流程非常简单,可在不同部位添加补强材料,满足复杂产品外形设计需要。但该工艺耗费时间长,效率低,不适合批量生产。生产环境也比较差,加工时容易出现较多的粉尘,影响人的身体健康,这是今后需要改进和完善的地方。接触低压先将材料在阴膜、阳模或对模上制成设计形状,加热或常温固化,脱模后辅助加工获得制品。该工艺设备简单,成本低,投资少,但劳动强度大,生产效率低,需要对工艺进行改进。目前高产量、连续生产的玻璃纤维复合材料生产线已经形成,促进工艺的自动化、高效化和专业化,对复合材料发展产生重要影响。 1.2 拉挤成型 将已浸润的连续纤维束在牵引结构拉力下,用成型模成型,在模中固化,连续生产出复合型材。成型过程需要成型模挤压和外牵引拉拨,整个生产过程是连续的。该工艺控制方便,产品质量稳定,成本低,生产效率高,制品的拉伸强度

相关主题
文本预览
相关文档 最新文档