中考数学易错题精选-旋转练习题附详细答案

  • 格式:doc
  • 大小:599.00 KB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转真题与模拟题分类汇编(难题易错题)

1.(操作发现)

(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.

①求∠EAF的度数;

②DE与EF相等吗?请说明理由;

(类比探究)

(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出

∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;

(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.

试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,

∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.

在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),

∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;

②DE=EF.理由如下:

∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;

(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,

∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,

∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,

∴∠EAF=∠BAC+∠CAF=90°;

②AE2+DB2=DE2,理由如下:

∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE 中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF 中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.

2.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;(2)NE=1

2

AC,理由见解析.

【解析】

试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;

(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则

∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=1

2 AC.

试题解析:

(1)BF=AC,理由是:

如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,

∵∠ABC=45°,

∴△ABD是等腰直角三角形,∴AD=BD,

∵∠AFE=∠BFD,

∴∠DAC=∠EBC,

在△ADC和△BDF中,

DAC DBF

ADC BDF AD BD

∠=∠

∠=∠

⎪=

∴△ADC≌△BDF(AAS),∴BF=AC;

(2)NE=1

2

AC,理由是:

如图2,由折叠得:MD=DC,

∵DE∥AM,

∴AE=EC,

∵BE⊥AC,

∴AB=BC,

∴∠ABE=∠CBE,

由(1)得:△ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM,

∴∠DBF=∠MAD,

∵∠DBA=∠BAD=45°,

∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,

∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,

∴∠ANE=∠NAE=45°,

∴AE=EN,

∴EN=1

2 AC.

3.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.

(1)求证:△CDE是等边三角形;

(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;

(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.