第3章 实验模态分析的基本理论
- 格式:pdf
- 大小:2.21 MB
- 文档页数:56
模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。
在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。
本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。
模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。
在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。
在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。
在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。
然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。
通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。
在实际工程中,模态分析通常用于结构设计和振动控制方面。
通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。
同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。
除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。
通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。
这对于提前发现系统的故障和隐患,具有重要的意义。
总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。
通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。
希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。
模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
模态叠加法一.思想要点是在积分运动方程以前,利用系统自由振动的固有振型将方程组转换为n 个相互不耦合的方程,对这种方程可以解析或数值地进行积分。
对于每个方程可以采用各自不同的时间步长,即对于低阶振型可采用较大的时间步长。
当实际分析的时间历程较长,同时又只需要少数较低阶振型的结果时,采用振型叠加法将是十分有利的。
求解步骤:1.求解系统的固有频率和振型2.求解系统的动力响应二.求解固有频率与振型(求解不考虑阻尼影响的振动方程) ..()(){0}M a t Ka t += 解可假设为:0sin ()a t t φω=-φ是n 阶向量,ω是向量φ的振动频率,t 是时间变量,0t 是由初始条件确定的时间常数。
代入振动方程,得到一个广义特征值问题:20K M φωφ-=求解可得n 个特征解221122(,),(,),ωφωφ···2,(,)n n ωφ120ωω≤<<···n ω< 特征向量12,,φφ···,n φ代表系统的n 个固有振型,幅度可按以下要求规定T i i M φφ=1(i=1,2,···,n ),这样规定的固有振型又称正则振型。
将22(,)(,)i i j j ωφωφ代回特征方程,得:2i i i K M φωφ= 2j j j K M φωφ=前式两边前乘以j φT,后式两边前乘以i φT ,得:2j i i j i K M φφωφφTT = 2i j i i jK M φφωφφT T = 由()TTj i j i i j K K K φφφφφφT T==得:22i j i j i j M K ωφφωφφT T =,推出22()0i j j i M ωωφφT-=当i j ωω≠时,有0j i M φφT =这表明固有振型对于矩阵M 是正交的,可表示为:1 ()0 ()i j i j M i j φφT=⎧=⎨≠⎩得:2 ()0 ()i i j i j K i j ωφφT ⎧==⎨≠⎩如果定义123n [ ]φφφφΦ=K21222 0 0 n ωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎢⎥⎣⎦O则特征解的性质可表示成:M K T T ΦΦ=I ΦΦ=Ω原特征值问题可表示为:K M Φ=ΦΩ三.求解动力响应1.位移基向量的变换引入变换()()1ni i i a t x t x φ==Φ=∑其中()[]12 n x t x x x =L代入运动方程,并两边前乘以T Φ,可得:()()()()()...x t C x t x t Q t R t T T +ΦΦ+Ω=Φ= 初始条件相应地转换成:..0000 x x Ma M a T T =Φ=Φ 阻尼为振型阻尼,则:()()2 i=j 0 i j i i ij C ωξφφT ⎧⎪=⎨≠⎪⎩ 或11222 0 2 0 2n n C ωξωξωξT ⎡⎤⎢⎥⎢⎥ΦΦ=⎢⎥⎢⎥⎣⎦O 其中i ξ(i=1,2,···,n )是第i 阶振型阻尼比,可得n 个相互不耦合的二阶常微分方程()()()()...22i i i i i i i x t x t x t r t ωξω++= (i=1,2,···,n )若C 是Rayleigh 阻尼,即C M K αβ=+根据试验或相近似结构的资料已知两个振型的阻尼比i ξ和j ξ,可得22222()()2()()i j j i i j j i j j i i j i ξωξωαωωωωξωξωβωω-=--=-2.求解单自由度系统振动方程在振动分析中常常采用杜哈美(Duhamel )积分,又称叠加积分,其基本思想是将任意激振力()i r t 分解为一系列微冲量的连续作用,分别求出系统对每个微冲量的响应,然后根据线性系统的叠加原理,将它们叠加起来,得到系统对任意激振的响应。
模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。
这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。
这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。
这种物理特征不以物体是否处于振动状态而转移。
当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。
1.3 振型简介振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。
理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。
因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。
它和有限元分析技术一起,已成为结构动力学中的两大支柱。
到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。
我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。
模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。
模态分析原理模态分析是一种用于研究材料结构和性能的重要方法。
通过模态分析,我们可以了解材料在外部力作用下的响应情况,进而指导材料的设计和制备。
本文将介绍模态分析的原理及其在材料科学中的应用。
首先,我们来了解一下模态分析的基本原理。
模态分析是通过对材料的振动特性进行研究来分析其结构和性能。
在模态分析中,我们通常会使用有限元方法来建立材料的数学模型,然后通过数值计算的方式来求解材料的振动模态。
在振动模态分析中,我们可以得到材料在不同频率下的振动模式和振动形态,从而了解材料的结构特性和动态响应。
模态分析在材料科学中有着广泛的应用。
首先,模态分析可以帮助我们了解材料的固有振动特性,包括自然频率、振动模式等。
这对于材料的设计和优化至关重要,可以帮助我们预测材料在不同工况下的响应情况,指导材料的合理设计。
其次,模态分析还可以用于研究材料的损伤和疲劳行为。
通过监测材料在振动过程中的变化,我们可以及时发现材料的损伤情况,预测材料的寿命,从而延长材料的使用寿命。
除此之外,模态分析还可以应用于材料的质量控制和故障诊断。
通过对材料进行振动特性的监测和分析,我们可以及时发现材料的质量问题和故障情况,从而采取相应的措施进行修复和改进。
这对于提高材料的质量和可靠性具有重要意义。
总的来说,模态分析是一种重要的研究方法,可以帮助我们深入了解材料的结构和性能。
通过模态分析,我们可以预测材料在不同工况下的响应情况,指导材料的设计和制备,提高材料的质量和可靠性。
因此,模态分析在材料科学领域具有重要的应用前景,也是当前材料研究的热点之一。
综上所述,模态分析原理是一种重要的研究方法,通过对材料的振动特性进行分析,可以帮助我们了解材料的结构和性能。
模态分析在材料科学中有着广泛的应用,可以指导材料的设计和制备,提高材料的质量和可靠性。
相信随着科学技术的不断发展,模态分析在材料研究领域将会发挥越来越重要的作用。
实验模态分析方法与应用概论引言:实验模态分析是一种用于研究结构动力学特性的方法,通过实验测量和数据分析,可以确定结构的固有频率、阻尼比以及模态形态等参数。
实验模态分析方法包括模态参数识别、模态不确定度评估和模型修正三个步骤。
本文将介绍实验模态分析方法的基本原理和常用应用。
一、实验模态分析方法的基本原理1.1模态分析的基本思想1.2模态参数识别在模态参数识别过程中,需要选择合适的激励信号和测量点位置,通过对结构的振动响应信号进行分析,得到结构的固有频率、阻尼比和模态振型等参数。
常用的模态参数识别方法包括傅里叶变换法、自相关法、互谱法和最小二乘法等。
1.3模态形态绘制在模态形态绘制过程中,通常需要在结构上布置加速度传感器或激光测振仪等测量设备,测量结构的振动响应信号。
然后,通过信号处理和数据分析技术,将实际测量的振动响应数据转化为结构的模态振型,并绘制成图像。
二、实验模态分析方法的应用2.1结构健康监测实验模态分析方法可以用于结构健康监测,通过定期对结构进行振动测试和模态分析,可以及时发现结构的损伤和变形等问题,为结构的维护和修复提供参考。
例如,在桥梁结构的健康监测中,可以通过模态分析方法来确定桥梁的固有频率和模态形态,从而判断桥梁的结构安全状况。
2.2结构参数识别实验模态分析方法还可以用于结构参数的识别。
通过对结构在不同工况下的振动响应信号进行测量和分析,可以确定结构的质量、刚度和阻尼等参数。
例如,在机械系统中,可以通过模态分析方法来识别机械系统的转子和轴系的质量和刚度参数,从而评估系统的性能和可靠性。
2.3结构优化设计实验模态分析方法还可以用于结构的优化设计。
通过对不同结构参数和材料的改变进行模态分析和比较,可以评估结构的动力特性,并选择最佳的设计方案。
例如,在汽车工程中,可以通过模态分析方法来优化汽车底盘的结构,提高汽车的悬挂系统和减震器的性能。
总结:实验模态分析方法是一种研究结构动力学特性的重要手段,通过实验测量和数据分析,可以确定结构的固有频率、阻尼比和模态振型等参数。
精心整理模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态22¨330m 0z k 2k k z 000m 0k k z 0z +--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为(去除项化简得以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15)有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)阶固有频率,每一个特征根对应一个特征矢量,表示对应模态下该由式3i i 21=z k 如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。
假设m=k=1, 一阶模态,1ω=0:21z =1z ,31z =1z ,即;二阶模态,223kω=m :21z=0z,31z=-1z,即;三阶模态,23kω=m :21z=-2z,31z=1z,即。
运动方程的解耦图错误!未指定顺序。
运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。
模态分析指的是以振动理论为基础、以模态参数为目标的分析方法..首先建立结构的物理参数模型;即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题;求得特征对特征值和特征矢量;进而得到模态参数模型;即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数..特征根问题以图3所示的三自由度无阻尼系统为例;设123m =m =m =m ;123k =k =k =k ;图 1 三自由度系统其齐次运动方程为: 8其中分别为系统的质量矩阵和刚度矩阵;123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;则运动方程展开式为:¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦9定义主振型由于是无阻尼系统;因此系统守恒;系统存在振动主振型..主振型意味着各物理坐标振动的相位角不是同相相差0o 就是反相位相差180o ;即同时达到平衡位置和最大位置..主振型定义如下:()i ij ωt+i i sin ωt+=Im(e)φφi mi mi z =z z 10其中为第i 阶频率下;各自有度的位移矢量;为第i 个特征矢量;表示第i 阶固有频率下的振型;i ω为第i 阶频率下的第i 个特征值;i φ为初始相位..对于三自由度系统;在第i 阶频率下;等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11mki z 表示第k 个自由度在第i 阶模态下的模态矩阵..特征值对式10二次求导;得2i i i =-ωsin(ω+)φ¨i mi z z 12代入齐次运动方程得13去除项化简得14以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦15 有非零解;则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦16即()234222ω-m ω+4km ω-3k m =0 17方程解如下:1ω=0;23k ω=m ±;3kω=m±..三个解对应该系统的前三阶固有频率;每一个特征根对应一个特征矢量;表示对应模态下该系统的振型..特征矢量由式得矩阵展开形式:2i m1i 2i m2i 2i m3i k-ωm -k 0z -k 2k-ωm -k z =00-k k-ωm z ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 18 展开第一行和第二行;忽略下脚标m 和i;得()()2i1221i3k-ωm z -kz =0-kz 2k-ωm kz+-= 19得22i 124223ii21z k-ωm =z k z m ω-3km ω+k =z k 20如果设定了1z 值;则就可以求出三个特征根值下;2z 和3z 相对于1z 的位移..假设m=k=1;一阶模态;1ω=0:21z =1z ;31z =1z ;即;二阶模态;223k ω=m :21z =0z ;31z =-1z ;即;三阶模态;23kω=m :21z =-2z ;31z =1z ;即..模态矩阵所谓模态矩阵就是指各列由各阶模态特征矢量构成的矩阵;如图4所示..图 2 模态矩阵对于前面提到的三自由度系统;模态矩阵如下:运动方程的解耦对于一个复杂的系统;在物理坐标系统中建立的运动方程之间存在耦合关系;因此求解起来比较麻烦;因此需要进行坐标系转化;将耦合的运动方程变为非耦合的运动方程;再将求得的结果转化为物理坐标系下的结果;运动方程解耦过程如下图5:图 3 运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化..任意上面的三自由度系统为例;由式得2122 对式21左乘得23 又因为因为系统对称所以;;则:24 对式24右乘25 则式23—式25得26 当时;则27 当;即;则可以为任何值;令28 则对质量矩阵和刚度矩阵的归一化结果如下:2930特征矢量的归一化由于特征矢量只是位移之比;而不是绝对振幅;因此可以对其进行归一化处理..令;其中3132对于对角质量矩阵33则三自由度系统:343m 2m 6m 326=003m 6m m 363m2m6m 326n z 35 则归一化的质量矩阵为100010001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Tn n n m =z mz 36 同理归一化后的刚度矩阵为000k =010m003⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦n k 37可以看出归一化后的刚度矩阵对角线上的各项就是各阶模态固有频率的平方..运动方程解耦将物理坐标系下的运动方程¨11¨22¨33z m 00k -k 0z 0 0m 0z +-k 2k -k z =000m 0-k k z 0z ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦按照前面介绍的归一化方法转化为主坐标系下的运动方程;其结果如下:¨p1p1¨p2p2¨p3p30z 00z 0k 00z +-k z =0m 00z 03k z 0-km 001101⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦38 可以看出在主坐标系中的运动方程之间没有耦合关系;分别单独描述各阶模态的运动特性..初始条件和激励的坐标转换物理坐标系中的非齐次运动方程为..mz+kz =F 39做如下变形..T -1T -1Tnn nn n n n z mz z z+z kz z z =z F 40 其中T n n z mz ;Tn n z kz 就是前面介绍的质量和刚度矩阵的对角化.. 令Tp n n m =z mz ;主坐标质量矩阵;Tp n n k =z kz ;主坐标刚度矩阵; ....-1p nz z =z ;主坐标系加速度矢量;-1n p z z =z ;主坐标系位移矢量; T n p z F =F ;主坐标系激励矢量..同样的关系也适用于初始位移和速度:-1op n o ..-1op n o z =z z z =z z 42两种坐标系的对比物理坐标系主坐标系物理坐标系中的运动方程的变量是速度和位移;在主坐标系中的变量是各阶振动模态下的位移和速度..由主坐标系转变为物理坐标系前面介绍了物理坐标系与主坐标系之间的关系为-1n p z z =z 43对式41左乘n z ;变为=-1n n n p z z z =z z z 44同理p =..n z z z 45非参数模型传递函数传递函数由系统的本质特性所决定;与系统的输入输出无关..知道了系统的传递函数就可以根据输入求输出或根据输出求输入..以图2的单自由度粘性阻尼系统为例;图 4 单自由度系统则该系统的运动方程为:...m z +c z +kz=F 1其中m 为质量;c 为阻尼系数;k 为刚度系数;z;分别为位移、速度和加速度..对二阶微分方程进行拉普拉斯变换;其中二阶导数项的拉普拉斯变换为:2假设初始位移和速度都为零;则3则经过拉普拉斯变换后的运动方程为:4求解拉氏方程得传递函数:22z(s)11/m==c k F(s)ms +cs+k s +s+m m5 其中定义2n kω=m为非阻尼系统的固有频率;rad/sec ;cr c 2km =阻尼值;ζ为阻尼比;一般为阻尼与临界阻尼的比值;cr c =c ζ;则n c 2ω=mζ.. 则传递函数又可以写成:22n nz(s)1/m=F(s)s +2ωs+ωζ 6 频响函数FRF用“j ω”代替s;得系统的频响函数;其中j 是虚数项:()()22n n 22n n z(j ω)1/m=F(j ω)j ω+2ζωj ω+ω1/m=-ω+2ζωωj+ω 7其中n kω=m ;=2kmζ则频响函数可以写成2z(j ω)1=F(j ω)-m ω+j ωc+k8 质量、阻尼、刚度对FRF 的影响刚度增大导致共振频率的增大;并且降低FRF 在低频段的幅值..增加阻尼会使共振频率略微减小;但它的主要作用是减小频响函数在共振点的幅值;同时使相位的改变较为平缓..如果阻尼为零;在共振点振动振幅将趋于无穷大;相位会突变180o ..增大质量会降低共振频率;同时也降低FRF 在高频段的幅值..。
实验模态分析基础实验模态分析是一种因果推断方法,它可以确定不同变量之间的因果关系。
它通常用于实验研究中,其中研究人员对一组受试者进行操作,在不同处理条件下观察和测量结果变量。
通过比较不同处理条件下的结果变量,研究人员可以确定不同变量之间的关系。
实验模态分析包括几个主要步骤。
首先,研究人员需要设计实验研究,以确定不同的处理条件和结果变量。
然后,研究人员将受试者随机分配到不同的处理条件中,并在每个处理条件下测量结果变量。
接下来,研究人员使用分析方法来确定主效应和相互作用效应。
最后,研究人员对结果进行解释和解读。
主效应和相互作用效应实验模态分析的目标是确定主效应和相互作用效应。
主要效应是指一个变量对结果变量的直接影响。
相互作用效应是指两个或多个变量之间的交互作用对结果变量的影响。
通过分析主效应和相互作用效应,研究人员可以确定变量之间的关系。
实验模态分析使用统计学方法来确定主效应和相互作用效应。
通常使用方差分析(ANOVA)来进行分析。
方差分析将总变差分解为组内变差和组间变差。
组内变差反映了随机误差的影响,而组间变差反映了处理条件的影响。
通过比较组内变差和组间变差,可以确定主效应和相互作用效应。
实验模态分析可以广泛应用于各个领域的研究中。
例如,在医学研究中,实验模态分析可以用来研究药物和治疗的效果。
在农业研究中,实验模态分析可以用来研究不同肥料对作物产量的影响。
在教育研究中,实验模态分析可以用来研究不同教学方法的效果。
总结实验模态分析是一种统计学方法,用于研究和解释不同变量之间的关系。
通过实验模态分析,我们可以确定主效应和相互作用效应,从而更好地理解变量之间的相互关系。
实验模态分析可以应用于各个领域的研究中,并为实践提供建议和决策。
模态分析基本原理
模态分析是一种用于研究系统的行为和性能的方法。
它可以帮助我们理解系统在不同条件下的行为和响应。
模态分析的基本原理是通过建立数学模型来描述系统的动力学特性。
这个模型通常由一组微分方程组成,描述了系统各个部分之间的相互作用和能量传递。
通过分析这些微分方程的解,可以得到系统的稳态和暂态响应。
为了进行模态分析,首先需要确定系统的状态空间。
状态空间是描述系统状态的一组变量,这些变量可以是位置、速度、加速度等。
状态空间的选择取决于具体问题的需求。
在模态分析过程中,还需要确定系统的边界条件和初始条件。
边界条件描述了系统与外界之间的交互,而初始条件描述了系统在初始时刻的状态。
模态分析通过研究系统的特征方程和特征根来揭示系统的行为模式。
特征方程是通过将系统的微分方程转化为代数方程得到的,而特征根是特征方程的解。
特征根的实部和虚部可以提供关于系统的稳定性和振荡特性的信息。
通过分析特征根,可以确定系统的模态响应。
模态响应描述了系统在不同特征根下的行为,包括稳定性、发散性和振荡性等。
模态分析可以应用于很多领域,包括机械工程、电气工程、控制系统等。
它可以帮助工程师设计和优化系统,提高系统的性
能和可靠性。
总之,模态分析是一种基于数学模型的方法,通过研究系统的行为特性和相互关系来理解和优化系统的性能。
模态分析的实验原理模态分析是一种用于研究和评价系统的分析方法,其主要利用物理、化学、工程等学科的原理和方法,对系统的模态属性进行分析和评估。
模态分析通过分析系统的振动特征和响应,揭示系统的固有特性和敏感性,帮助我们了解系统的工作原理和性能,从而对系统进行改进和优化。
模态分析依赖于系统的模态属性,而模态属性又是由系统的结构和动态特性所决定的。
一般来说,模态属性可以通过测量系统的响应和振动来获取。
测量系统响应的方法主要有激励-响应方法和响应-响应方法。
激励-响应方法是通过给系统施加一定的激励信号,测量系统的响应来获得模态属性。
常用的激励信号有冲击激励、正弦激励等。
通过给系统施加激励信号,并测量系统的响应信号,可以得到系统的频率响应函数。
通过频率响应函数,可以计算系统的频率、振型等模态属性。
响应-响应方法是通过系统的自激励响应来获取模态属性。
这种方法不需要外部施加激励信号,而是通过系统本身的内部干扰或自身的非线性特性产生响应信号。
常用的响应-响应方法有自由振动法、相对运动法等。
通过测量系统的自由振动或相对运动响应信号,可以得到系统的振型、频率等模态属性。
除了测量系统的响应信号外,模态分析还需要进行信号处理和数据分析。
信号处理包括滤波、采样、调整增益等操作,以获得干净、准确的数据。
数据分析主要包括频域分析、时域分析、模态识别等。
频域分析用于分析系统的频率特性,即模态属性的频率范围、频率响应等;时域分析用于分析系统的时变特性,即模态属性的时间变化规律、持续时间等;模态识别用于将测得的数据与已知模态属性进行匹配,以判断系统的模态属性。
在模态分析中,还需要进行模型建立和验证。
模型建立可以通过理论推导、有限元分析、实验等方法来获得系统的数学模型。
数学模型可以用于模拟系统的模态属性,并为模态分析提供参考。
模型验证是指将模型的预测结果与实验测量结果进行对比,检验模型的准确性和可靠性。
如果模型的预测结果与实验测量结果一致,说明模型是可靠的;如果存在差异,需要对模型进行修正和优化。
点,有图可知节点并不唯一,而且修改前后节点的位置未变。
对应尽可能避开结构振动的节点,以免给测量带来误差。
4.4试验模态分析试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。
4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析在物理坐标下,描述N自由度离散振动系统的运动微分方程为阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~,【C】——阻尼矩阵,C∈R“”,晖】——刚度矩阵(对称且正定或半正定),K∈R“”,{x),{卦,{封——N维位移、速度和加速度响应向量,{厂(r))——_N维激振力向量。
设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵【Z(s)]-([M]s2+[c]s+[K】)反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵[日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。
1称为广义导纳矩阵,也就是传递函数矩阵。
由式(2.2)可知{x(J))_【日0)】(F(J)}在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式{并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7)式中[H(co)】为频率响应函数矩阵。
[H(∞)】矩阵中第f行_,列的元素%(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。
在式(4.4)中令S=_,∞,可得阻抗矩阵[z(∞)】=([K]一曲2【吖])+jco[C](4.9)它和导纳矩阵有类似式(4.5)的关系[日(珊)]=[z(国)】~={(【置卜。
2[^卅)+jco[C】}1(4.10)对于一般机械、结构,假设矩阵[c]也对称,这样矩阵【z(∞)】对称,频率响应函数矩阵[日@)]也对称,故有q(脚)=HⅣ(03)(4.11)上式反映了机械、结构频率响应有互易性,可作为频率响应测试精度的一项重要检验手段。
实验模态分析第三章:实验模态分析的基本理论
振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾
&&&
++=
M x C x K x f t []{}[]{}[]{}{()} 2实模态理论
一个n 自由度线性定常振动系统,其运动方程可以如下表示:
现对两端作付氏变换得:
[]{}[]{}[]{}{()}M x C x
K x f t ++=&&&2
([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,
并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞
=∫()()j t F f t e dt
ωω+∞
−−∞=∫
(){()}{()}
Z X F ωωω=111212122212()()()()()()()()()
()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1
()[()]{()}
{()}{()}X Z F H F ωωωωω−==2[][][]
K M j C ωω=−+
阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;
也不可能仅使某个坐标运动,在其余坐标上测量力。
也即在模态试验中,实际上很难利用阻抗矩。
在系统的一个坐标处加上激励力,而在其它坐标处不加激励力,这一点是容易做到的。
所以,导纳元素是可以通过测试获得的。
在作结构动态分析时,正是利用了这一性质。
要完全确定一个导纳矩阵,必须确定它的每一个元素。
幸运的是如果应用模态分析理论于振动测试,则只需要知道导纳矩阵中的一行或一列元素,便能确定整个导纳矩阵,也就能确定系统的全部动力学特性。
{}q []
Φ{}[]{}
x q =Φ为了推导出模态参数和机械导纳间的关系,现引入模态坐标和振型矩阵12[][{}{}{}{}]
i n ϕϕϕϕΦ=L L 111212122212()()()()()()()()()n n n n nn ϕωϕωϕωϕωϕωϕωϕωϕωϕω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦
L L L L L L L
[][]{}[][]{}[][]{}{}M q
C q K q f Φ+Φ+Φ=&&&[][][]{}[][][]{}[][][]{}[]{}T
T T T M q C q K q f ΦΦ+ΦΦ+ΦΦ=Φ&&&{}{}{}[]{}T i i i m q c q k q f ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟++=Φ⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠
O O O &&&O O O 左乘以振型矩阵的转置矩阵后得
以上方程可进一步化为
1{}{}n
T
i i i i i i
ji i j m q c q k q f f ϕϕ=++==∑&&&ji ϕ这是一组n 个相互独立的单自由度振动微分方程,其中第i 个方程是
上式中是第i 阶振型的第j 个分量
如果系统仅在p 点受简谐力的作用,
则上式又变为j t p p f F e
ω=j t
i i i i i pi p m q c q k q F e ωϕ++=&&&
3 复模态分析
复模态分析法的适用范围:对称系统和非对称系统。
1)对称系统:质量、阻尼、刚度矩阵为对称矩阵,且阻尼矩阵不满足对角化条件。
定理:当阻尼矩阵正定时,所有特征值都具有负实部,对应于系统衰减的固有运动;当阻尼属于亚临界情形时,所有特征值都是复的,且共轭成对地出现,且每一对共轭复特征值对应于系统中一个具有特定频率与减幅率的衰减固有振动。
()mx
cx kx f t ++=&&&0mx
mx −=&&()y
y F t +=M K &⎥⎦
⎤⎢⎣⎡=x x y &0()()F t f t ⎡⎤=⎢⎥⎣⎦0m m c ⎡⎤=⎢⎥⎣⎦M 00m k −⎡⎤=⎢⎥⎣⎦
K
()y
y F t +=M K &t r r r e u x λ=r r r r t t r r r u Y e U e u λλλ⎡⎤==⎢⎥⎣⎦正交性:模态刚度:模态质量:模态矩阵:
12[]n u U U u λ⎡⎤
==⎢⎥⎣⎦
U L diag[]
r λλ=r r r r u U u λ⎡⎤=
⎢
⎥⎣
⎦T
r r r r r
k U U m λ==−K [2]T
T
r r r r r r
m U U u m c u λ==+M 0T r s U U =M 0
T
r s U U =K 0y
y +=M K &122[]n n n u u u ×=L ⎥⎦⎤⎢⎣⎡=x x y &
模态矩阵的性质:
引入模态变换:
代入运动方程得模态响应:
y z
=U 1
diag[]()T
r z z m u f t λ−−=&diag[]T
i K =U KU diag[]T i M =U MU
[]0r r U λ=M +K ()y y F t +=M K &[]0T
s r V λ=M +K 0m m c ⎡⎤=⎢⎥⎣⎦M 00
m
k −⎡
⎤=⎢⎥⎣⎦
K 2)非对称系统:质量、阻尼、刚度矩阵为非对称矩阵,阻尼矩阵不满足对角化条件。
1222[]n n n
U U ×=U L 1222[]n n n V V ×=V L 右特征矢量和右模态矩阵:
左特征矢量和左模态矩阵:
加权正交性:0
=r T
s MU V 0T s r V KU ='
T r r r
V MU m =''T r r r r r V
KU k m λ==−公共特征值:][r diag λλ=
122[]n n n
v v v ×=L 122[]n n n u u u ×=L u U u λ⎡⎤=⎢⎥⎣⎦原方程左、右模态矩阵:模态变换:
模态响应:
新方程左、右模态矩阵:Uz
y ='1
diag[()]()T
r z z m v f t λ−−=&v V v λ⎡⎤=⎢⎥⎣⎦
r r T r r u c m v m ]2['
+=λ。