地球物理测井_名词解释
- 格式:doc
- 大小:95.00 KB
- 文档页数:4
地球物理测井概论
地球物理测井是指以地球物理学的理论和技术来研究和测量地下岩石的结构特征、物质属性及其变化规律,采集、分析、处理地球物理资料,进而获取地下构造、岩性、成因及其它不可见物质成分等信息,或为地质勘探、矿产调查和地质灾害防治提供依据的一种详尽的“深入地下”的技术与方法的总称。
随着社会的发展和科学技术的普及,地球物理测井,俗称“测井”,也和建设、投资项目紧密相关,它是针对建设区附近地层异常、地埋管线、地下空间等情况,通过测量地下岩石层的构成、位置、厚度、水性等定量数据,充分挖掘工程用地空间本质,对建设项目是否可行提供有力的支持。
在地球物理测井中,采用连续振动地震技术,通过不断发射同频率的声波,实
现地下构造的介质参数的测量,掌握岩石层的厚度、变化趋势、漏失或断裂等信息;采用时反差管理技术,通过测量声波的二次反射,来获取地层的位置、厚度信息;采用震源接收方法,全面掌握地下矿层的位置、厚度及组成等特征,用测井定位进行埋藏物质、探测异常体及水文地质分布范围等;采集测井曲线后,运用有关理论来分析地层变化,把这些曲线复原成地层实际横截面,从而来估计工程用地背景情况,为建设项目提供有力的参考。
总之,地球物理测井具有重要的建设应用价值,为工程设计及施工布置提供关
键的参考,通过深入地下,更好地洞察地质情况,是建筑项目实施有序、科学可行的基础。
测井名词解释●油矿地球物理测井的定义:是应用地球物理方法,研究油气田钻井地质剖面,解决某些地下地质问题和钻井技术问题的一门应用技术科学;也是直接获取地层信息的方法之一。
●泥岩基线:均匀、较厚的泥岩地层对应的变化不大、稳定的自然电位曲线连线,是平行于深度轴的直线。
(但也有倾斜或偏移)。
●自然电场:在钻开岩层时井壁附近产生的电化学活动而造成的电场,它取决于井孔剖面的岩层性质●离子扩散:两种不同浓度的盐溶液接触时,在渗透压的作用下高浓度溶液中的离子,穿过渗透性隔膜迁移到低浓度溶液中的现象●溶液的矿化度:溶液含盐的浓度。
溶质重量与溶液重量之比。
●泥浆滤液:在一定压差下,进入到井壁地层孔隙内的泥浆●几何因子:主电流经过的空间部分介质对测量结果的贡献,是指介质的空间位置、体积大小,形状等几何因子有关的各种影响的总和,把主电流经过的整个空间的几何因子看成1。
●增阻泥浆侵入:当地层中原有流体的电阻率比较低,电阻率较高的泥浆滤液侵入后,侵入带电阻率大于原始地层电阻率,常见淡水泥浆钻井的水层。
减阻泥浆侵入:当地层中原有流体的电阻率比较高,泥浆滤液侵入后,侵入带电阻率小于原始地层电阻率,常见淡水泥浆钻井的油气层或盐水泥浆钻井的水层及油气层。
●含氢指数:任何物质单位体积(1cm3)的氢核数与同样体积淡水氢核数的比值。
根据规定,淡水(纯水)含氢指数为1,而任何其它物质的含氢指数将与其单位体积内的氢核数成正比。
它反映了地层的减速能力●传播效应:电磁波在均匀无限均质中传播时,出现幅度衰减和相位移动时的现象,尤其是在高电导地层中,当传播效应的影响越大时,测得的的,井内有钻井液污染,地层厚度有限,上下有围岩,在井中所测量的电阻率不是地层真电阻率,而是井内钻井液.渗透层的侵入.上下围岩的电阻率等各项因素都影响的电阻率.其中:K-电极系系数,是与电阻率测井仪有关的系数。
视电阻率曲线的影响因素:电极距,井,围岩和层厚,高阻邻层的屏蔽,地层倾角以及侵入的影响. ●标准测井:在一个地区或一个油田,为了研究岩性的变化、构造的形态和大段油层的划分等工作,常用相同的深度比例(一般为1:500)及相同的横向比例,在全井段进行几种方法测井,如一条电阻率、一条自然电位,有的包括井径或自然伽马等,作为划分标准层及进行地层对比之用。
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
B 标准测井:在全地区的各口井中用相同的深度及横向比例,对全井段进行几种测井方法的测井,这种组合测井叫标准测井.泊松比: 物体自由方向的线应变与受力方向的线应变之比的负值C串槽:固井后,由隔膜相隔的两个或多个渗透性地层流体通过一界面或二界面相通的现象.窜槽:油井投入生产后,由于固井质量或固井后由于射孔及其它工程施工,使水泥环破裂,造成层间串通,即形成窜槽.侧向测井:在电极系上增设焦距电极迫使供电电极发出的电流径向流入地层,从而减小井的分流和围岩的影响提高纵向分辨力的方法.储集层岩性:指组成地层的矿物属性和泥质含量的大小D电阻率:描述介质导电能力强弱的物理量.电导率:电阻率的倒数,西门子/米.地层密度:单位体积地层质量.地层压力: 地层孔隙流体压力.地层水:地层孔隙内的水.电子对效应:当入射伽马光子的能量大于1.022MeV时,它与物质作用会使伽马光子转化为电子对,其本身被吸收.电极系:有供电电极(A,B)和测量电极(M,N)按一定规律组成的测量系统.电位电极系:成对电极之间的距离大于不成对电极间距离.电极系的探测深度:以供电电极为中心,以某一半径做一球面,如果球面内包括的介质对测量结果的贡献为50%时,此半径定义为该电极系的探测深度.E二界面: 水泥环与地层间的界面.F放射性核素:能够自发产生核衰变的核素.放射性活度:一定量的放射性核素,在单位时间内发生衰变的核数.单位为居里.放射性比度:放射性活度与其质量之比.G光电效应:γ射线与物质原子中的电子相碰撞,并将其能量传给电子,使电子脱离原子而运动,γ光子本身则被吸收,释放出的电子叫光电子,这种效应称为光电效应.感应测井:通过交变电流反应电导率.感应测井曲线:感应测井得到的一条随深度的变化的介质电导率曲线.H含油饱和度:地层含油体积/地层孔隙体积./含油气体积占孔隙体积的百分数.核素:原子核中具有一定数量的质子和中子并在同一能态上的同类原子,同一核素的质子和中子数相等.滑行波:当声波以临界角入射时,折射角为90度,折射波在介质二内以速度V2沿界面传播.以地层的速度沿井壁滑行的折射波.核衰变:放射性核素的原子核自发的释放一种带电粒子蜕变成另外某种原子核同时释放射线的过程.J绝对渗透率:岩石中只有一种流体时的渗透率,通常用岩石对空气的渗透率值来表示.K孔隙度:地层孔隙体积/地层体积./岩石内孔隙总体积占岩石总体积的百分数.矿化度::溶液含盐的浓度.康普顿效应:中等能量的伽马射线穿过物质时,伽马射线与原子的外层电子发生作用,部分能量传给电子,使电子从某一方向射出,此电子为康普顿电子,损失了部分能量的射线向另一方向散射出去叫散射伽马射线,这种效应称为康普顿效应.快中子弹性散射:中子撞击一个原子核,撞击后中子和靶核组成的系统快的总动能不变,中子能量降低,靶核仍处于基态,此作用为弹性散射.扩散长度:从热中子产生到被俘获热中子移动的直线距离.L离子扩散:两种不同浓度的盐溶液接触时,在渗透压的作用下,高浓度溶液中的离子穿过渗透性隔膜迁移到低浓度溶液中的现象.零源距: 超热中子探测器的计数率,不随地层减速能力的变化而变化N泥质含量:地层泥质体积/地层体积.泥浆侵入:泥浆滤液取代地层原始流体的现象称为~.含有泥浆的区域称为侵入带.泥浆高侵抛面:侵入带电阻率大于原始地层电阻率,常见淡水泥浆钻井的水层.泥浆低侵抛面:侵入带电阻率小于原始地层电阻率,常见淡水泥浆钻井的油气或盐水泥浆钻井的水层及油气层.泥浆:钻井时在井内流动的一种介质.泥浆滤液:在一定压差下进入到井壁地层孔隙内的泥浆.泥质:地层中细粉砂和湿粘土的混合物叫泥质.R热中子寿命:热中子自产生到被俘获所经过的平均时间.热中子俘获:热中子形成后,有高密度区向低密度区扩散,在扩散过程中,被靶核俘获,形成复核,处于激发态的复核以伽马射线的形式放出多余的能量,靶核回到基态.释放的伽马射线叫俘获伽马射线.S声波时差:声波传播单位距离所需时间.水泥胶结指数 :目的井段声幅衰减率/完全胶结井段声幅衰减率.渗透率:一定粘度的流体通过地层的畅通性的度量.水泥面:套管外固体水泥与泥浆之间的界面.视石灰岩孔隙度:纯石灰岩骨架计算出的孔隙度.声波测井:以介质声学特性为基础,一种研究钻井地质剖面,评价固井质量等问题测井方法.T套管波:沿井轴方向在套管内传播的声波,其时差大约为57微妙/英尺.梯度电极系:成对电极之间的距离小于不成对电极间距离.X相对渗透率:有效渗透率和绝对渗透率的比值.探测深度:以供电电极为中心,以某一半径作一球面,如果球面内包括的介质对测量结果的贡献为50%时,此半径定义为该电极系的探测深度.Y一界面: 套管与水泥环间的界面.异常高压地层:地层压力大于正常地层压力.有效渗透率:为非单相流体渗滤过岩石时,对其中一种流体所测定饿渗透率.岩石骨架:组成岩石的造岩矿物称为岩石骨架.源距:快中子源与超热中子探测器之间的距离.有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积之比.Z周波跳跃: 由于地层声衰减大,在时差曲线上出现“忽大忽小”的现象.自然电位测井:沿井轴测量自然电位变化的测井方法.自由套管:套管外为流体介质.自然伽马能谱测井:根据铀、钍、钾放射性核素在衰变时放出的射线能谱不同,测定其含量.正源距:大于零源距的源距中子源:以某种方式,给原子核以能量,引起核反应,把中子从原子核中释放出来的装置.填空1.岩石中的主要放射性核素(钍th 铀u 钾k)2.地层对快中子的减速能力主要取决于:氢h(地层对快中子的弹性散射截面)3.地层对热中子的俘获能力主要取决于氯cl(地层对热中子的俘获截面)4.储层基本参数:岩层厚度h,孔隙度含油气饱和度sh,渗透率k5.地层倾角测井蝌蚪图的四种基本模式:绿色模式,红色模式,蓝色模式,黄色模式6.地层GR,SP幅度与地层泥质含量关系SP:泥质含量越多,异常幅度越小 GR:泥质含量越多,数值越高,异常幅度越大7.放射性核素在核衰变过程中产生的伽马射线去照射地面会产生光电效应,康普顿效应和电子对效应,岩性密度测井利用了伽马射线与地层介质发生的光电效应和康普顿效应8.地层孔隙压力大于其正常压力时,称地层为异常压力地层,其声波速度小于正常值9.地层中存在天然气时,可导致声波时差变大或发生周波跳跃,密度孔隙度值变大,中子孔隙度值变小10.地质上按成因和岩性通常把储集层划分为碎屑岩储集层,碳酸盐岩储集层两大主要类型,描述储集层的基本参数主要有孔隙度,渗透率和饱和度等11.声波测井时地层中产生滑行波的基本条件是:入射角大于临界角和地层速度大于泥浆速度12.窜槽层位在放射性同位素曲线上的幅度和参考曲线相比明显增大13.对泥岩基线而言,渗透性地层的SP可以向正或负方向偏转,它主要取决于地层水和泥浆滤液的相对矿化度,在Cw>Cmf时SP曲线出现负异常,层内局部水淹在SP曲线上有泥岩基线偏移特征14.深侧向,浅侧向和微侧向所测量的结果分别为原状地层,侵入带,冲洗带的电阻率15.感应测井测量地层的电导率,与地层的电阻率有互为倒数关系16.在石油井中自然电场主要是要扩散电动势和扩散吸附电动势组成,地层水和泥浆滤液含盐浓度的差异,是产生扩散电动势及扩散吸附电动势的基本原因;.比值大于1,在渗透层段出现负异常;比值小于1在渗透层出现正异常.17.泥质在地层中的存在状态:分散泥质,层状泥质,结构泥质18.根据岩石导电方式的不同,把岩石分为:电子导电类型的岩石(导电能力差)和离子导电类型的岩石(导电能力强)19.微梯度电极系的测量结果主要反映泥饼的导电性,微电位电极系的测量结果主要反映冲洗带的导电性20.根据三侧向电极系的结构特点,可以把三侧向分为深三侧向和浅三侧向两类三侧向电极系21.深,浅三侧向电极系的电极距均等于两个屏蔽电极与主电极间的缝隙中点的距离;记录点为主电极中点22.声波测井分为声速测井和声幅测井23.根据中子能量的大小,将中子分为慢中子,中能中子,快中子,其中,慢中子又分为热中子和超热中子,中子与物质作用分为快中子弹性散射,快中子对原子核的活化,快中子的弹性散射,热中子的俘获24.描述靶核俘获中子能力的参数:扩散长度,宏观俘获截面,热中子寿命25.不同核素与快中子作用产生的非弹性散射伽马射线能量不同.不同核素对快中子的减速能力也不同,氢核素减速能力最大.不同核素对热中子的俘获能力不同,镉,硼,氯的热中子俘获能力最强26.根据岩性,储集层分为碎屑岩,碳酸盐岩和特殊岩性储集岩,根据储集空间结构分为孔隙型,裂缝型和洞穴型储集层,27.碎屑岩的孔隙结构主要是孔隙型,各种物性和泥浆侵入基本是各向同性的28.淡水泥浆的砂泥岩剖面常选用微电极;盐水泥浆的砂泥岩剖面,碳酸盐岩剖面,膏盐剖面用:微侧向或微球聚焦;当泥饼比较厚,泥浆侵入时,可选用邻近侧向,低侵剖面,应用感应测井确定电阻率比较好.高侵剖面,应用侧向测井确定地层电阻比较好,碳酸盐岩剖面,一般选用侧向测井.砂泥岩剖面视泥浆侵入特点确定选用感应测井还是侧向测井29.微梯度电极系的探测深度小于微电位电极系的探测深度.30.钙质层在微电极曲线上显示为刺刀状,泥岩地层在微电极曲线上显示为无幅度差.31.岩性相同,岩层厚度及地层水电阻率相等的情况下,油层电阻率比水层电阻率大.32.岩石电阻率的大小与岩性有关.33.在一定条件下,地层水浓度越大,则地层水电阻率越小.34.梯度电极系曲线的特点是有极值不对称.35.储层渗透性变差,则微电极曲线的正幅度差变小.36.理想梯度电极系是成对电极之间的距离趋近于零,理想电位电极系是成对电极之间的距离趋近于无穷大.37.疏松砂岩电阻率比致密砂岩电阻率低.38.沉积岩的导电能力取决于地层水的导电能力.39.石油的电阻率高,所以测出的油层电阻率高.40.完全含水岩石的电阻率与所含地层水电阻率的比值称为岩石的地层因素.41.电阻增大系数主要与含油饱和度有关.42.沉积岩导电是靠空隙中地层水的离子导电.43.自然电位曲线以泥岩为基线,油层水淹后.水淹层在自然电位曲线上基线产生偏移.44.井中巨厚的纯砂岩井段的自然电位近似认为是静自然电位.45.在自然电位曲线上,岩性.厚度相同的地层,水层的自然电位异常幅度值大于油层的自然电位异常幅度值.46.泥质含量增加,自然电位异常幅度值减小;层厚增加,自然电位异常幅度值增大;当地层厚时,可用自然电位曲线上的半幅点分层.47.扩散电动势是浓度高的一方为正电荷,浓度的的一方为负电荷.50.侧向测井电极系加屏蔽电极主要是为了减少泥浆的分流影响.51.在感应测井仪的接收线圈中,由二次交变电磁场产生的感应电动势与地层电导率成正比.52.对于单一高电导率地层,当上下围岩电导率相同时,在地层中心处电导率曲线出现极小值.53.1号沉岩层的电阻率头型是100欧姆米,2号渗透层的电阻率是20欧姆米,两层都不含泥质,且厚度相同.地层水矿化度与泥浆滤液矿化度比值也相同,那么1号层的SP异常幅度小于2号层.54.井眼参数:井径,井斜角,井斜方位.55.基线偏移反映水淹层.56.统一深度处,冲洗带,过渡带,原状地层的岩性,孔隙性相同.但孔隙流体性质不同,声波时差反映原生孔隙度,密度中子反映总孔隙度.57.深三侧向视电阻率曲线主要反映原状地层电阻率,而浅三侧向视电阻率曲线反映侵入带的电阻率.当Rmf >Rw时,在油层层段,(泥浆低侵)深三侧向读数大于浅三侧向,含油饱和度越高,差异越大.在水层层段(泥浆高侵)深三侧向小于浅三侧向,含水饱和度越高,差异越大. Rmf <Rw时,无论是油层,还是水层,均为泥浆低侵.但油层视电阻率高于水层,且幅度差比水层的幅度差大.58.线圈系纵向微分几何因子定义为:纵向探测特性,即地层厚度.59.深浅双侧向测井:纵向分层能力相同,横向探测深度不同(在渗透层由于泥浆侵入RLLD,RLLS不同,在非渗透层由于没有泥浆侵入所以RLLD,RLLS相同),RLLD,RLLS关系反映泥浆侵入特点.60.声波通过裂缝时,其幅度都会减小,表现在波形图上就是声波幅度减小.声波幅度衰减程度取决于波的性质,裂缝倾角,裂缝张开度等因素.水平缝对横波幅度影响大;高角度裂缝对纵波幅度影响大61地层波与套管波的区别表现为:套管波到达时间比较稳定;地层波的到达时间随地层速度的变化而变化62.纯砂岩地层的视石灰岩孔隙度大于其孔隙度;含气纯灰岩的视石灰岩孔隙度大于其孔隙度;含水纯白云岩的视石灰岩孔隙度小于其孔隙度63.地层对快中子的弹性散射截面越大,对快中子的减速能力越强,快中子的减速距离越短.64.超热中子密度与介质的减速能力有关,减速距离越短则在源附近的超热中子密度越大;反之,在远处潮热中子密度大65.当地层含有天然气时地层密度减小,密度孔隙度增加而井壁中子孔隙度减小66.地层GR,SP幅度与地层泥质含量关系:SP泥多幅小,GR泥多,极值大,幅度大67.水泥胶结测井:相对幅度越大,固井质量越差68声波时差确定的孔隙度是地层原生孔隙度,密度确定的孔隙度是地层总孔隙度.69.在一定条件下,地层水浓度越大,则地层水电阻率越小70.声波沿井壁岩石传播的条件之一是:声波入射角等于临界角71.沙泥岩剖面上,砂岩显示低的时差值,泥岩显示高的时差值72.声波时差曲线出现“周波跳跃”常对应于气层或裂缝滑移等地段73.气体的存在使实测的密度孔隙度较真孔隙度偏大,中子孔隙度较真孔隙度偏小74.原子序数相同而质量数不同的元素,它们的化学性质相同,但核性质不同,这样的元素称为同位素75.在相同间隔时间里,逐次测量的放射性强度,总存在一个放射性涨落,这是由于核衰变的随机性,但这种统计涨落总在一个平均值附近起伏76.沉积岩导电是靠空隙中地层水的离子导电77.井中巨厚的纯砂岩井段的自然电位近似认为是静自然电位78.根据伽马射线与地层的康普顿效应测定地层密度的方法称为密度测井法,利用光电效应和康普顿效应同时测定地层岩性和密度的测井方法称为岩性密度测井法79.测井用的中子源有两类,一类为连续发射的脉冲中子源,另一类为脉冲式发射的加速中子源80.在自然伽马测井曲线上,泥质含量增加,曲线读数增大81.在充满泥浆的裸眼井中进行声波全波列测井时,接受探头可依次接受到滑行纵波、滑行横波、伪瑞利波、斯通利波等几种波形.82.油基泥浆井中,可使用感应测井方法,而不是使用测向方法;盐水泥浆井中,两种方法中,以测向方法为好.83.在渗透性地层处,当地层水矿化度小于泥浆滤液矿化度(或地层水电阻率大于泥浆绿叶电阻率)时,砂岩在自然电位曲线上出现正异常,当地层水矿化度大于泥浆滤液矿化度(或地层水电阻率小于泥浆滤液电阻率)时砂岩在自然电位曲线上出现负异常.84.在砂泥质剖面中,SP无异常、Ra低、井径缩小的是含油砂岩地层;SP幅度很大、Ra低、井径缩小的是含水砂岩地层;SP无异常、Ra低、井径扩大的是泥岩地层。
地球物理测井基本介绍地球物理测井简称测井,是在钻孔中使用测量电、声、热、放射性等物理性质的仪器,以辨别地下岩石和流体性质的方法,是勘探和开发油气田的重要手段。
正文:运用物理学的原理和方法,使用专门的仪器设备,沿钻井(钻孔)剖面测量岩石的物性参数,了解井下地质情况,从而发现油(气)层、煤层、金属、非金属、放射性等矿藏,和地热、地下水等资源。
这是油(气)田勘探与开发中一种极为重要的方法,也是煤田、水文勘测以及勘探其他矿藏不可缺少的手段。
岩石和矿物有不同的物理特性,如导电特性、声波特性、放射性等。
这些特性统称为岩石和矿物的物理性质。
在地球物理勘探中相应地建立了许多种测井方法,如电法测井、声波测井、放射性测井和气测井等。
地球物理测井的应用范围如下:确定井剖面的岩石性质,评价油(气)、水层,发现煤、金属、放射性等矿藏,并确定其埋藏深度及有效厚度;测量计算储量所需要的各种地质参数,如岩性成分、孔隙度、饱和度、渗透率煤田储量计算参数等;确定地层倾角、岩层走向和方位,以及钻孔倾角和方位角,研究沉积环境等;检查井下技术情况,如检查固井质量和套管破裂情况等;发现和研究地下水源(淡地层水)。
简史地球物理测井方法于1927年由法国人施兰贝尔热兄弟(C.Schlumberger & M.Schlumberger)创始。
1939年翁文波在中国开始地球物理测井工作,测井仪器由刘永年设计制造,使用的测井方法有自然电位测井法和视电阻率测井法。
这些测井方法主要用来鉴别岩性、划分油(气)、水层、煤层,寻找金属矿藏以及地层对比等。
50年代初期,出现了声波测井、感应测井、侧向测井、自然伽马测井(放射性测井)等,并开始采用单一岩性的测井解释模型和简单的数理统计方法,对岩层作物理参数计算以进行半定量或定量解释。
但这些测井和解释方法对于碳酸盐岩、泥质砂岩以及其他复杂岩性的油(气)层评价仍然十分困难。
60年代后期,相继出现了岩性──孔隙度测井系列(中子测井、密度测井、声波测井等)、电测井系列(深、浅侧向测井,深、中感应测井,微侧向测井),及地层倾角测井,对单一岩性与复杂岩性地层进行岩性、物性、含油(气)性等作定量解释,同时开展了以地层倾角测井为核心的地质分析。
图3.4.1自然电位测井原理线路图3.4.2扩散电动势和扩散-吸附电动势形成机理C l —泥岩中水的矿化度;C 2-砂岩中水的矿化度;C C —泥浆矿化度;E d —扩散电动势;E da —扩散吸附电动势地球物理测井地球物理测井是在钻井进行的各种地球物理方法的总称。
其特点是工作时将激发源或探测器放入井中,或同时将二者放入井中,以缩短它们与探测对象的距离,增大所获得的异常强度。
此外,还可避免或减小地形起伏、覆盖层物性不均匀等因素对观测结果的干扰。
工程、水文及环境地质工作中常用的地球物理测井方法有电测井、核测井、声波测井等。
4.1电测井电测井是以研究岩石导电性、介电性和电化学活动性为基础的一类测井方法。
工程、水文及环境地质中常用的方法有自然电位测井和视电阻率测井。
4.1.1自然电位测井在井孔及其周围,岩层自身的电化学活动性会产生自然电场。
利用自然电场的变化来研究钻孔地质情况的电测井方法,就是自然电位测井。
自然电位测井的原理线路如图3.4.1所示,将测量电极放入井中,另一个测量电极固定在M N 井口附近,然后提升,并在地面上用仪器记录M 极电位相对于极电位(恒定值)的差值,逐M N 点测定就可以得到一条自然电位随深度变化的曲线。
1.井中自然电位的成因及曲线特征在自然电场法中,我们已经知道,自然电场的成因主要有岩石与溶液的氧化还原作用,岩石颗粒对离子的选择吸附作用,及不同浓度溶液间的扩散作用等。
下面我们只讨论与水文测井最密切的扩散电动势和扩散-吸附电动势的形成机理。
为了说明这一过程,我们以夹在厚层泥岩中渗透性好的砂岩为例。
假定砂岩中地层水和泥浆滤液均为氯化钠溶液,但二者的矿化度不同。
砂岩地层中水的矿化度C 2大于泥浆滤液的矿化度C C 。
这时溶解于溶液中的离子(和Na +)将由矿化度大的溶液向矿化-Cl 度小的溶液中扩散。
这种扩散有两种途径:一种是离子的扩散直接产生于地层水与泥浆滤液的接触面处,即离子从砂岩地层直接向井内泥浆扩散;另一种是通过围岩(泥岩)向泥浆中扩散。
1.自然电位测井:进行自然电位测井时,将电极N 放在地面,电极M 用电缆送至井下,沿井轴提升电极M 测量自然电位随井深的变化,所记录的自然电位随井深变化的曲线叫自然电位测井曲线1.扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed 。
2.扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda 。
3.自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。
4.自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。
5、梯度电极系:成对电极之间的距离小于单电极到相邻成对电极之间的距离,即AM MN <6、泥浆低侵:地层孔隙中原来含有的流体电阻率,比渗入地层的泥浆滤液电阻率高时,泥浆滤液侵入后,浸入带岩石电阻率降低。
它一般出现在地层水矿化度不很高的油层7、泥浆高侵:地层孔隙中原来含有的流体电阻率较低,电阻率较高的泥浆滤液侵入后,使侵入带岩石电阻率升高。
它多出现在水层8、电位电极系:成对电极间的距离大于单一电极最近的一个成对电极之间的距离的电极系。
9、理想电位电极系:成对电极间距离趋向无穷大的电极系叫~10、地层因素:含水岩石的电阻率与所含地层水电阻率的比值总是一个常数,它只与岩样的孔隙度,胶结情况和孔隙形状有关,而与饱和含在岩样孔隙中的地层水电阻率无关。
这个比值定义为~。
11、理想梯度电极:成对电极之间距离趋近于零的电极系叫~。
12、成对电极:在电极系中A 与B (或M 与N )叫~。
地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
1.地球物理测井定义:是地球物理学的一个分支, 简称测井。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
2.资料解释步骤:(1)划分储集层,确定岩性; (2)计算储集层参数: 泥值含量、孔隙度、饱和度有效厚度、渗透率等(3)确定油水层(4)其他应用3.地球物理测井的作用:1、划分地层; 2、准确得到地层深度; 3、计算孔隙度、饱和度、渗透率等地层参数; 4、确定油水层; 5、地层对比; 6、工程应用; 7、油层动态监测.4.储集层:石油和天然气储藏在地下具有连通的孔隙、裂缝或孔洞的岩石中。
这些具有连通的孔隙、既能储存油、气、水,又能让油气水在岩石孔隙中流动的岩层称为储集层。
5.描述储油层最基本的参数主要有孔隙度f、渗透率K、含油饱和度So、泥质含量Vsh。
6.储集层必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性7.储集层的厚度:顶底界面的厚度即为储集层的厚度。
8.有效厚度:总厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剩下的厚度。
9.高侵: 侵入带电阻率Ri大于原状地层电阻率Rt低侵: 侵入带电阻率Ri小于原状地层电阻率Rt一般Rmf>Rw时,发生泥浆高侵;Rmf<Rw时,泥浆低侵。
故:水层(Rmf>Rw)经常发生高侵现象,油层(Rmf<Rw)经常发生低侵现象。
10.泥浆滤液:在一定压差下,进入到井壁地层孔隙内的液体。
11.地层水:地层孔隙内的水。
12,矿化度:溶液的盐浓度,常用百万分之一(ppm)表示。
13.离子扩散:当不同浓度的溶液在一起时存在是浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移的过程。
14.自然电位:在井中未通电的情况下(自然电场),放在井中的电极M与位于地面的电极N 之间存在的电位差。
测井(well logging)也叫地球物理测井或石油测井,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、测井)之一。
石油钻井时,在钻到设计井深深度后都必须进行测井,又称完井电测,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
在油田勘探与开发过程中,测井是确定和评价油、气层的重要手段之一,也是解决一系列地质问题的重要手段。
它能直接为石油地质和工程技术人员提供各项资料和数据。
测井技术起源于20世纪20年代,在油井第一次测量地层电阻率获得成功。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
测井方法众多。
电、声、放射性是三种基本方法。
特殊方法(如电缆地层测试、地层倾角测井、成像测井、核磁共振测井),其他形式如随钻测井。
各种测井方法基本上是间接地、有条件地反映岩层地质特性的某一侧面。
要全面认识地下地质面貌,发现和评价油气层,需要综合使用多种测井方法,并重视钻井、录井第一性资料。
世界测井技术的运用发展根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。
此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。
测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。
特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一。
应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。
在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。
测井作为勘探与开发油气田的重要方法技术,至今已近80年的历史。
1,地球物理测井定义☆:是地球物理学的一个分支, 简称测井(Well logging)。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
采油前后,测井工作分为两部分☆:1、裸眼井测井(open hole ) 也称勘探井测井,在钻井之后,采油之前。
目的:寻找石油在地层中埋藏深度。
俗称找油层。
2、套管井测井(cased hole)也称生产测井(production log),在采油时进行。
目的:石油开采过程中,地层中的剩余油开采。
2, 采集-测井方法分类(裸眼井)按照物理响应特征分为☆:1、电测井方法:自然电位测井普通电阻率测井、侧向测井感应测井、电磁波测井2、放射性测井:自然伽马测井密度测井、中子测井、中子寿命测井3、声波测井:声波速度测井声波幅度测井、声波全波测井4、其它测井:生产测井地层倾角测井、气测井、特殊测井3,地球物理测井的作用主要有以下几点☆:1、划分地层;2、准确得到地层深度;3、计算孔隙度、饱和度、渗透率等地层参数;4、确定油水层;5、地层对比;6、工程应用;7、油层动态监测.储集层:凡具有一定的连通孔隙,能使液体储存,并在其中渗滤的岩层,称为储集层。
描述储油层最基本的参数主要有孔隙度φ、渗透率K、含油饱和度So、泥质含量Vsh必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性(孔隙连通成渗滤通道).按岩性:碎屑岩储集层(砂岩)、碳酸岩储集层(白云岩、石灰岩)、特殊岩性储集层。
按孔隙空间结构:孔隙型储集层、裂缝型储集层和洞穴型储集层碎屑岩储集层特点:孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
碳酸岩储集层特点,1,储集空间复杂:a,有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等,b,次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)2,物性变化大:横向纵向都变化大碳酸盐储集层分类:孔隙型裂缝型洞穴型复合型好的储层应该是孔隙型或复合型岩石孔隙度: 单位体积内岩石孔隙空间占岩石总体积的百分数(%),反映岩石孔隙发育程度含水饱和度(Sw):含水孔隙体积占总孔隙体积的百分数含油(气)饱和度:含油(气)孔隙体积占总孔隙体积的百分数当孔隙中只含油和水时:Sw+So=1当孔隙中含油气水三相时: Sw+So+Sg=1束缚水饱和度Swb:不能被油气取代的地层水叫束缚水。
储集层:在石油地质中,把能够储存和渗滤流体的岩层称为储集层。
孔隙度:岩石中孔隙体积占岩石总体积的百分数。
总孔隙度:岩石中总孔隙体积与岩石体积之比。
有效孔隙度:岩石中连通孔隙体积与岩石体积的比值。
缝洞孔隙度:岩石中缝洞孔隙体积与岩石体积的比值。
原生孔隙:沉积过程中形成的孔隙。
次生孔隙:岩石形成后由次生作用形成的孔隙。
绝对渗透率:当岩心孔隙被一种流体100%饱和时,测量只有该种流体通过岩心时的岩石渗透率。
有效渗透率:当有两种或两种以上的流体通过岩石的孔隙时,对其中某一种流体测得的渗透率称为该种流体的有效渗透率,也称相渗透率。
相对渗透率:同一岩石某种流体的有效渗透率和该岩石绝对渗透率的比值。
含油饱和度:岩石含油孔隙体积占有效孔隙体积的百分数。
剩余油饱和度:随着原油的不断开采,含油饱和度不断降低,油藏开发过程中的含油饱和度称为目前含油饱和度。
目前含油饱和度与残余油饱和度之差,则称为剩余油饱和度。
残余油饱和度:油气藏投入开发前的含油气饱和度,称为原始含油气饱和度。
在特定开采过程终了时,油藏中残余下来的油所占孔隙体积的百分比,称为残余油饱和度。
束缚水饱和度:岩石孔隙总是含有地层水的,其中被吸附在岩石颗粒表面的薄膜水和狭窄孔隙喉道中的毛细管滞留水,在自然条件下是不能自由流动的,称之为束缚水,岩石含束缚水孔隙体积占有效孔隙体积的百分数,称为束缚水饱和度。
储集层的厚度:储集层顶底界面之间的厚度即为储集层的厚度。
有效厚度:指在目前经济技术条件下能够产出工业性油气流的油气层实际厚度,即符合油气层标准的储集层厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剩下的厚度。
低侵剖面:Rxo<Rt称为钻井液滤液低侵,低侵地层电阻率的径向变化称为低侵剖面。
高侵剖面:Rxo>Rt称为钻井液滤液高侵,高侵地层电阻率的径向变化称为高侵剖面。
视电阻率:井眼中实际测量的受各种因素影响的反映地层电阻率相对大小的电阻率。
梯度电极系:电极系的三个电极之间有三个距离,AM,AN,MN或AM,BM,AB。
1、测井系列:根据井的地质和地球条件及测井设备情况结合对测井资料定性定量解释需要,为完成预定的地质任务而选择的一套适用的综合测井方法。
2、含水孔隙度:代表地层含水孔隙体积占岩石体积的百分数,称为含水孔隙度。
由于含水孔隙度使用深探测电阻率计算,有时也称为电阻率孔隙度。
4、有效渗透率:当有两种或两种以上的流体通过岩石时,对其中的一种流体测得的渗透率。
5、标准测井:在一个地区,,选择几种有效的测井方法进行地层对比,对全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。
6、冲洗带:泥浆滤液侵入后,井壁附近地层中的流体(水或油气)被驱走,即靠近井壁的环状地层中的孔隙被泥浆滤液“冲洗”,这部分地层中孔隙流体主要是泥浆滤液,还有残余水和残余油气,这一部分地层叫冲洗带。
7、视电阻率:实际测井中,地层介质是非均匀的,且有井的存在,井内有泥浆,地层有侵入带,并且地层厚度有限,因此普通电极系测得的电阻率除了主要反映原状地层电阻率外,还受上述各种因素的影响,测得的电阻率是反映地层电阻率相对大小的电阻率叫视电阻率。
9、滑行波:当声波以临界角入射到泥浆和地层界面时,产生沿界面在地层一侧传播的折射波。
10、吸水指数:小层单位注水压差下的吸水量。
11.声波时差:滑行波在地层中传播一米的时间。
12.高侵剖面:由于泥浆滤液侵入地层,当侵入带电阻率大于原状地层电阻率时,形成了高侵剖面。
13.光电效应:伽马射线穿过物质时,与构成物质的原子中的电子相碰撞,伽马量子将其能量交给电子,使电子脱离原子而运动,伽马量子本身则整个被吸收。
所释放出来的电子称为光电子,这种效应则叫光电效应。
14.弹性散射:弹性散射是指中子和原子核发生碰撞前后中子和被碰撞的原子核系统总动能是守恒的,中子所损失的能量形成被碰撞的原子核的动能,而中子动能减少,速度降低并发生散射。
所以弹性散射的过程是中子减小能量降低速度的过程。
15.视地层水电阻率:地层电阻率和地层因素的比值。
相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。
通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。
视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
康普顿效应:当伽马光子的能量较核外束缚电子的结合能大的多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动成角的方向散射,这种效应称为康普顿效应。
声波时差:声波传播单位距离所用的时间。
绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。
增阻侵入(泥浆高侵):地层电阻率较低,侵入带电阻率Ri大于原状地层电阻率Rt的现象。
地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。
视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。
含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。
有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。
缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。
储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。
裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。
残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。
地球物理测井_名词解
释
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。
通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。
视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
康普顿效应:当伽马光子的能量较核外束缚电子的结合能大的多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动成角的方向散射,这种效应称为康普顿效应。
声波时差:声波传播单位距离所用的时间。
绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。
增阻侵入(泥浆高侵):地层电阻率较低,侵入带电阻率Ri大于原状地层电阻率Rt的现象。
地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。
视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa 表示,即Rwa=Rt/F。
含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。
有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。
缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。
储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。
裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。
残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。
扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed。
扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda。
自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。
自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。
泥浆侵入:在钻井过程中,通常保持泥浆柱压力稍大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫泥浆侵入。
泥浆高侵:侵入带电阻率Ri大于原状地层电阻率Rt的现象。
泥浆低侵:侵入带电阻率Ri小于原状地层电阻率Rt的现象。
梯度电极系:成对电极距离小于不成对电极到成对电极距离的电极系。
电位电极系:成对电极距离大于不成对电极到成对电极距离的电极系。
标准测井:一种简单的综合测井,是各油田或油区为了粗略划分岩性和油、气、水层,并进行井间地层对比,对每口井从井口到井底都必须测量的一套综合测井方法。
因它也常用于地层对比,故又称对比测井。
侧向测井:在电极上增加聚焦电极迫使供电电极发出的电流侧向流入地层,从而减小井的分流作用和围岩的影响,提高纵向分辨能力,这种测井叫侧向测井,又称聚焦测井。
声系:声波测井仪器中,声波发射探头和接受探头按一定要求形成的组合称为声波测井仪器的声系。
深度误差:仪器记录点与实际传播路径中点不在同一深度上。
超压地层、欠压地层:地层压力大于相同深度的静水柱压力的层位的地层称为超压地层;反之,则为欠压地层。
放射性:放射性核素都能自发放出各种射线的性质。
同位素:质子数相同、中子数不同的几种核素。
半衰期:原有的放射性核素衰变掉一半所需的时间。
基态:原子核所处的能量最低状态。
激发态:原子核处于比基态高的能量状态,即原子核被激发了。
α射线:由氦原子核组成的粒子流,氦核又称α粒子,因而α射线又称α粒子流。
β射线:高速运动的电子流。
V=2C/3(C为光速),对物质的电离作用较强,而贯穿物质的本领较小。
γ射线:由γ光子组成的粒子流,γ光子是不带电的中性粒子。
术、计算机技术和数据处理技术,借助专门设计的探测设备,沿钻井剖面观测岩层物理性质,了解井下的地质情况,从而发现油气、煤、金属与非金属、放射性、地热、地下水等资源的一类方法技术。
根据测井方法的探测特性和组成岩石的各种物质在物理性质上的差异,把岩石体积分成几部分,然后分别研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献的总和
连接成一条直线,就称此直线为泥岩基线
Z相同而质量数A不同的原子核所组成的元素称做同位素。
1.动平衡
答:在离子由高浓度向低浓度扩散过程中,正负离子的富集形成自然电场。
随自然电场的增大,正负离子的扩散速度降低,当自然电场的电动势增
加到使正负离子的扩散速度相同时,电荷的富集停止,但离子的扩散作
用还在进行,此时称为动平衡。
3. 静自然电位
答:自然电位的总电动势,相当于自然电流回路断路时的电压,用SSP表示。
4. 电极系
答:A、B、M、N四个电极中的三个形成一个相对位置不变的体系,称为电极系。
6.理想电位电极系
答:成对电极间距离趋近于无穷远的电位电极系。
7.有效厚度
答:在油层中把非渗透层和致密薄夹层从油气层总厚度中扣除的得到的厚度。
8.线圈系
答:感应测井中用来探测地层电导率的探测器。
9.弹性
答:物体受外力作用发生形变,外力取消后恢复到原来状态的性质。
10.声阻抗。
答:介质密度和传播速度的乘积,Z=V
11.声耦合率
答:两种介质的声阻抗之比,Z1/Z2。
12.声波时差
答:声波穿越地层1米所需要的时间。
13.放射性涨落
答:在放射性源强度和测量条件下不变的条件下,在相同的时间间隔内,对放射性射线的强度进行反复测量,每次记录的数值不相同,总是在某一
数值附近上下波动。
这种现象叫做放射性涨落。
15.热中子寿命
答:中子在岩石中从变成热中子的时刻起,到被俘获吸收为止,所经过的平均时间。
水淹层-----在油田开发过程中,含有注入水的储集层。
地层压力---地层孔隙流体压力。
有效渗透率---地层含多相流体时,对其中一种流体测量的渗透率。
可动油饱和度---可动油体积占孔隙体积的百分比。
泥浆低侵 ----井壁附近侵入带电阻率低于原始地层电阻率。
热中子寿命—热中子自产生到被俘获所经历的平均时间。
泥质含量---泥质体积占地层体积的百分比。