第8讲 因子分析与对应分析
- 格式:ppt
- 大小:774.50 KB
- 文档页数:58
应用多元统计分析第8章 对应分析- 1-对应分析(Correspondence Analysis)是在因子分析的基础上发展起来的一种视觉化的数据分析方法,目的是通过定位点图直观地揭示样品和变量之间的内在联系。
R型因子分析是对变量(指标)进行因子分析,研究的是变量之间的相互关系;Q型因子分析是对样品作因子分析,研究的是样品之间的相互关系。
但无论是R型或Q型分析都不能很好地揭示变量和样品之间的双重关系。
而在许多领域错综复杂的多维数据分析中,经常需要同时考虑三种关系,即变量之间的关系、样品之间的关系以及变量与样品之间的交互关系。
法国学者苯参次(J.P.Benzecri)于1970年提出了对应分析方法,这个方法对原始数据采用适当的标度化处理,把R型和Q型分析结合起来,通过R型因子分析直接得到Q型因子分析的结果,同时把变量和样品反映到同一因子平面上,从而揭示所研究的样品和变量之间的内在联系。
在因子分析中,R型因子分析和Q型因子分析都是从分析观测数据矩阵出发的,它们是反映一个整体的不同侧面,因而它们之间一定存在内在联系。
对应分析就是通过某种特定的标准化变换后得到的对应变换矩阵Z将两者有机地结合起来。
具体地,就是首先给出变量的R型因子分析的协方差阵 和样品的Q型因子分析的协方差阵 。
由于矩阵 和 有相同的非零特征值,记为 ,如果 的对应于特征值 的标准化特征向量为 ,则容易证明, 的对应于同一特征值的标准化特征向量为当样本容量n很大时,直接计算矩阵 的特征向量会占用相当大的容量,也会大大降低计算速度。
利用上面关系式,很容易从 的特征向量得到 的特征向量。
并且由 的特征值和特征向量即可得到R 型因子分析的因子载荷阵A和Q型因子分析的因子载荷阵B,即有由于 和 具有相同的非零特征值,而这些特征值又是各个公因子的方差,因此设有p个变量的n个样品观测矩阵 ,这里要求所有元素 ,否则对所有数据同时加上一个适当的正数,以使它们满足以上要求。
第8讲因子分析与对应分析因子分析和对应分析是多元统计分析的两个重要方法,可以用于探索和解释多个变量之间的关系。
本文将详细介绍因子分析与对应分析的原理、应用以及在研究中的注意事项。
一、因子分析1.概念与原理因子分析是一种用于降维和检验构念的统计方法,通过分析变量之间的共同变异性,将一组相关变量归纳为几个相互独立的因子。
通过因子分析,可以减少变量的数量,提取出变量集合的共同因素,并进一步应用这些因子进行研究。
2.过程与步骤因子分析的步骤主要包括:确定因子数量、提取因子、旋转因子和解释因子。
首先,需要根据研究的目的和理论基础确定因子的数量;然后,通过主成分分析、最大似然法等方法提取因子;接着,对提取的因子进行旋转,以便更好地解释因子的含义;最后,根据提取和旋转的因子来解释因子的含义和解释力,进行结果的解释。
3.应用与示例因子分析可以应用于研究心理学、社会学、经济学等多个领域。
例如,在心理学中,可以通过因子分析提取出代表不同人格特征的因子,从而研究不同因素对人格的影响。
在市场研究中,可以通过因子分析分析顾客对不同产品特征的偏好,从而为产品定位和市场推广提供参考。
二、对应分析1.概念与原理对应分析是一种描绘和解释两个或多个表格之间关系的统计方法,通过计算表格中元素之间的关联性,找出表格之间的对应关系。
对应分析基于数学原理,可以识别表格中的模式和趋势,并提供对表格元素之间关系的可视化展示。
2.过程与步骤对应分析的过程主要包括:计算对应坐标、分析对应方向和解释对应结果。
首先,通过降维技术(如主成分分析)计算表格中每个元素的对应坐标,即将高维表格转化为低维坐标。
其次,通过对应方向的分析,找出表格之间的对应关系。
最后,根据对应结果,解释表格之间的关联性和趋势。
3.应用与示例对应分析可以应用于研究多个变量之间的关系,如消费者对产品特征的偏好、不同地区的经济发展等。
例如,在市场研究中,可以通过对应分析识别消费者对不同产品特征的偏好,并据此进行市场推广策略。
因子分析专题§8.1 引言因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。
例8.1.1 Linden 对二次大战以来奥林匹克十项全能比赛的得分做了分析研究,他收集了160组数据,这十个全能项目依次为:100米跑、跳远、铅球、跳高、400米跑、110米跨栏、铁饼、撑竿跳高、标枪、1500米跑。
但是总的来说基本上可归结为他们的短跑速度、爆发性臂力、爆发性腿力和耐力这四个方面,每一个方面都称为一个因子。
用1021,,,x x x 分别表示十个项目的得分,它们可以表示为含有上述四个因子的线性模型:i i i i i i i f a f a f a f a x εμ+++++=44332211,10,,2,1 =i其中4321,,,f f f f 表示4个因子,称为公因子,ij a 称为第i 个变量在第j 个因子上的载荷。
i μ是总平均,i ε是第i 项得分不能被四个公因子解释的部分,称之为特殊因子。
这个模型形式上与线性回归模型几乎一样,但是它们有着本质的区别:回归模型中自变量是可以被观测得到的,而上述因子模型中的4321,,,f f f f 是不可观测的隐变量,这使得该模型理解起来较为困难;再者,两个模型的参数意义也很不相同。
例8.1.2 为了评价高中学生将来进大学时的学习能力,抽了200名高中生进行问卷调查,共50个问题。
所有这些问题可简单地归结为阅读理解、数学水平和艺术修养这三个方面。
这也是一个因子分析模型,每一方面就是一个因子。
例8.1.3 公司老板对48名申请工作的人进行面试,并给出申请人在15个方面所得的分数,这15个方面是:(1)申请信的形式;(2)外貌;(3)专业能力;(4)讨人喜欢的能力;(5)自信心;(6)洞察力;(7)诚实;(8)推销能力;(9)经验;(10)驾驶汽车本领;(11)抱负;(12)理解能力;(13)潜力;(14)对工作要求强烈程度(15)适应性。
因子分析法一、基础理论知识1.概念因子分析(Factor Analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。
从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
主成分分析(Principal Component Analysis):是因子分析的一个特例,是使用最多的因子提取方法。
它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。
选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
主成分分析主要是一种探索性的技术,在分析者进行多元数据分析之前,用它来分析数据,让分析者对数据有一个大致的了解,这是非常有必要的。
主成分分析一般很少单独使用:(a)了解数据(screening the data);(b)和cluster analysis(聚类分析)一起使用;(c)和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成分对变量的维度进行简化(reduce dimensionality);(d)在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
(1)因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各变量的线性组合。
(2)主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
(3)主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
对应分析(Correspondence Analysis)在进行数据分析时,经常要研究两个定性变量(品质变量)之间的相关关系。
我们曾经介绍过使用列联表和卡方检验来检验两个品质变量之间相关性的方法,但是该方法存在一定的局限性。
卡方检验只能对两个变量之间是否存在相关性进行检验,而无法衡量两个品质型变量各水平之间的内在联系。
例如,汽车按产品类型可以分豪华型、商务型、节能型、耐用型,按销售区域可分为华北区、华南区、华中区、华东区、西南区、西北区、东北区。
利用卡方检验,只能检验销售地区与对型的偏好之间是否相关,但无法知道不同地区的消费者到底比较偏好哪种车型。
对应分析方法(Correspondence Analysis)又称相应分析、关联分析,是一种多元相依变量统计分析技术,是对两个定性变量(因素)的多种水平之间的对应性进行研究,通过分析由定性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种分析技术还可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
特别是当分类变量的层级数比较大时,对应分析可以将列联表中众多的行和列的关系在低维的空间中表示出来。
而且,变量划分的类别越多,这种方法的优势就越明显。
对应分析以两变量的交叉列联表为研究对象,利用“降维”的方法,通过图形的方式,直观揭示变量不同类别之间的联系,特别适合于多分类定性变量的研究。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
该统计研究技术在市场细分、产品定位、品牌形象以及满意度研究等领域得到了广泛的运用。