西北工业大学模拟电子技术基础实验报告材料
- 格式:doc
- 大小:3.11 MB
- 文档页数:48
模拟电子技术实验报告模拟电子技术实验报告引言模拟电子技术是电子工程领域中的重要分支,它研究的是电子信号的传输、处理和控制。
在实际应用中,模拟电子技术被广泛应用于通信、娱乐、医疗等领域。
本篇实验报告将介绍我在模拟电子技术实验中的学习和实践经验。
实验一:放大电路设计与实验在这个实验中,我们主要学习了放大电路的设计和实验。
首先,我们通过理论计算和仿真软件的辅助,设计了一个放大电路。
然后,我们按照设计要求,选择合适的电子元件进行实验搭建。
在搭建完成后,我们使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们深入了解了放大电路的工作原理和特性。
实验二:滤波电路设计与实验滤波电路是模拟电子技术中常见的电路之一。
在这个实验中,我们学习了低通滤波器和高通滤波器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个低通滤波器和一个高通滤波器。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了滤波电路的设计和调试方法。
实验三:振荡电路设计与实验振荡电路是模拟电子技术中的重要内容之一。
在这个实验中,我们学习了振荡电路的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个振荡电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器对电路进行测试和分析。
通过实验,我们了解了振荡电路的工作原理和特性,并学会了调试振荡电路的方法。
实验四:运算放大器设计与实验运算放大器是模拟电子技术中常见的电子元件之一。
在这个实验中,我们学习了运算放大器的设计和实验。
通过理论计算和仿真软件的辅助,我们设计了一个运算放大器电路。
然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。
通过实验,我们掌握了运算放大器的工作原理和特性,并学会了调试运算放大器电路的方法。
实验五:电源设计与实验电源是模拟电子技术中不可或缺的一部分。
在这个实验中,我们学习了电源的设计和实验。
模拟电子技术基础实验报告**:***学号:**********日期:2015。
12.21实验1:单极共射放大器实验目的:对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。
实验原理:静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流ICQ 和管压降VCEQ.其中集电极电流有两种测量方法。
直接法:将万用表传到集电极回路中.间接法:用万用表先测出RC 两端的电压,再求出RC两端的压降,根据已知的RE的阻值,计算ICQ。
输出波底失真为饱和失真,输出波顶失真为截止失真.电压放大倍数即输出电压与输入电压之比。
输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量.输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量. 实验电路:实验仪器:(1)双路直流稳压电源一台.(2)函数信号发生器一台。
(3)示波器一台。
(4)毫伏表一台。
(5)万用表一台。
(6)三极管一个.(7)电阻各种组织若干。
(8)电解电容10uF两个,100uF一个。
(9)模拟电路试验箱一个。
实验结果:经软件模拟与实验测试,在误差允许范围内,结果基本一致。
实验2:共射放大器的幅频相频实验目的:测量放大电路的频率特性。
实验原理:放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。
但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。
放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。
在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。
在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。
通频带为:f BW=f H-f L实验电路:实验结果:理论估算值实际计算值参考f L f H f L f H=2k欧17.98H Z53.13MH Z17。
实验报告要求:一.写4个实验报告,每个报告装订成一份,每人4份,不要将4个实验报告装订成1份了。
实验一:常用电子仪器的使用。
(包括示波器的使用、万用表的使用、函数信号发生器的使用等内容)实验二:晶体管共射极单管放大器实验三:射极跟随器实验四:差动放大器二.手写报告,不得打印。
三.具体怎样写实验报告,可参考大学物理实验报告的要求。
四.3月26日前,收好后统一交给老师。
模拟电子实验指导书目录实验一示波器原理及使用 .................................... 错误!未定义书签。
实验二晶体管共射极单管放大器 ........................ 错误!未定义书签。
实验三射极跟随器 ................................................ 错误!未定义书签。
实验四差动放大器 ................................................ 错误!未定义书签。
广西工学院鹿山学院模拟电子线路实验指导书实验一示波器原理及使用一、示波器的基本结构示波器的种类很多,但它们都包含下列基本组成部分,如附图1-1 所示。
附图1-1 示波器的基本结构框图1、主机主机包括示波管及其所需的各种直流供电电路,在面板上的控制旋钮有:辉度、聚焦、水平移位、垂直移位等。
2、垂直通道垂直通道主要用来控制电子束按被测信号的幅值大小在垂直方向上的偏移。
它包括Y轴衰减器,Y轴放大器和配用的高频探头。
通常示波管的偏转灵敏度比较低,因此在一般情况下,被测信号往往需要通过Y轴放大器放大后加到垂直偏转板上,才能在屏幕上显示出一定幅度的波形。
Y轴放大器的作用提高了示波管Y轴偏转灵敏度。
为了保证Y轴放大不失真,加到Y轴放大器的信号不宜太大,但是实际的被测信号幅度往往在很大范围内变化,此Y轴放大器前还必须加一Y轴衰减器,以适应观察不同幅度的被测信号。
西工大模电实验报告记录————————————————————————————————作者:————————————————————————————————日期:模拟电子技术基础实验报告目录实验一单极共射放大电路实验二集成运算放大器的线性应用实验三多级负反馈放大电路实验四RC正弦波振荡器实验五方波发生器实验六有源滤波器综合设计实验用运算放大器组成万用表的设计实验一单极共射放大电路一、实验目的1、掌握用MultiSim仿真软件分析单级放大器主要性能指标的方法。
2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。
3、测量放大器的放大倍数、输入电阻和输出电阻。
4、掌握用MultiSim仿真软件分析单级放大器的频率特性的方法。
5、测量放大器的幅频特性。
二、实验原理及结果如图所示:1.静态工作点的调整和测量(1) 输入端加入1KHz 、幅度为50mV 的正弦波,如图所示。
当按照上述要求搭接好电路后,用示波器观察输出。
静态工作点具体调整步骤如下: 现象 出现截止失真 出现饱和失真 两种失真都出现 无失真 动作 减小W R增大W R减小输入信号加大输入信号根据示波器上观察到的现象,做出不同的调整动作,反复进行,使示波器所显示的输出波形达到最大不失真。
(2) 撤掉信号发生器,使输入信号电压0i V ,用万用表测量三极管的三个极分别对地的电压,,,,,E B C CEQ CQ V V V V I ,根据EQ EQ EV I R =算出CQ EQ I I =.将测量值记录于下表,并与估算值进行比较。
理论估算值实际测量值B VC VE VCE VC IB VC VE VCE VC I2.913v7.976v2.213v5.763v2.012mA2.881V8.069V2.173V5.912V1.964mA2.电压放大倍数的测量(1)输入信号为1kHz 、幅度为50mV 的正弦信号,输出端开路时,示波器分别测出i V ,o V 的大小,然后算出电压放大倍数。
模拟电子技术基础实验报告模拟电子技术基础实验报告引言:模拟电子技术是电子工程中的重要分支,它涉及到模拟电路的设计、分析与实验。
本次实验旨在通过实际操作,加深对模拟电子技术的理解,并掌握一些基本的实验技能。
本报告将从实验原理、实验步骤、实验结果和实验总结等方面进行讨论。
实验原理:本次实验主要涉及到放大电路的设计与实现。
放大电路是模拟电子技术中的重要内容,它能够将输入信号放大到所需的幅度。
在本次实验中,我们将使用二极管、电阻和电容等元件来搭建一个简单的放大电路。
实验步骤:1. 准备工作:检查实验仪器和元件是否齐全,并确保实验台面整洁。
2. 搭建电路:按照实验指导书上的电路图,将二极管、电阻和电容等元件连接起来。
注意正确连接元件的正负极性,避免短路或反接。
3. 调试电路:将信号发生器连接到电路的输入端,通过调节信号发生器的频率和幅度,观察输出信号的变化。
根据实验要求,调整电路参数,使得输出信号达到所需的放大倍数。
4. 测量数据:使用示波器测量输入信号和输出信号的幅度、频率和相位等参数。
记录测量结果,并进行数据处理和分析。
5. 总结实验:根据实验结果,总结实验的目的、方法和结果。
分析实验中可能存在的误差和改进的方向。
实验结果:经过调试和测量,我们成功搭建了一个简单的放大电路,并获得了一系列的实验数据。
通过对实验数据的分析,我们发现在一定范围内,输入信号的幅度与输出信号的幅度成线性关系。
同时,我们还观察到输出信号的相位滞后于输入信号,这与放大电路的特性相符合。
实验总结:通过本次实验,我们深入了解了模拟电子技术的基础原理和实验方法。
我们不仅学会了搭建放大电路并调试,还掌握了使用示波器进行信号测量和分析的技巧。
在实验过程中,我们也遇到了一些困难和问题,但通过不断尝试和思考,最终解决了这些难题。
这次实验不仅增加了我们对模拟电子技术的理解,还提高了我们的实验能力和问题解决能力。
结语:模拟电子技术是电子工程中不可或缺的一部分,它在通信、控制、电力等领域有着广泛的应用。
一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。
二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。
三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。
2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。
3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。
4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。
四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。
2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。
2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。
一、实验目的1. 理解模拟电子技术的基本原理和实验方法。
2. 掌握晶体管放大电路的基本搭建和调试方法。
3. 学习信号的产生、传输和处理的实验技能。
4. 提高对电路性能指标的理解和测试能力。
二、实验原理模拟电子技术是研究模拟信号处理和传输的理论和技术。
本次实验主要涉及以下内容:1. 晶体管放大电路:利用晶体管的放大作用,将微弱的输入信号放大到所需的幅度。
2. 信号发生器:产生不同频率和幅度的正弦波信号,用于测试电路的性能。
3. 示波器:观察和分析信号的波形,测量信号的幅度、频率和相位等参数。
4. 万用表:测量电路中的电压、电流和电阻等参数。
三、实验内容及步骤1. 晶体管共射放大电路(1)搭建共射放大电路,包括输入端、放大电路和输出端。
(2)调整电路参数,使放大电路工作在最佳状态。
(3)使用信号发生器产生输入信号,观察输出信号的波形和幅度。
(4)测量放大电路的增益、带宽和失真等性能指标。
2. RC正弦波振荡器(1)搭建RC正弦波振荡器电路,包括RC振荡网络和放大电路。
(2)调整电路参数,使振荡器产生稳定的正弦波信号。
(3)使用示波器观察振荡信号的波形和频率。
(4)测量振荡器的振荡频率、幅度和相位等性能指标。
3. 差分放大电路(1)搭建差分放大电路,包括两个共射放大电路和公共发射极电阻。
(2)调整电路参数,使差分放大电路抑制共模信号,提高电路的共模抑制比(CMRR)。
(3)使用信号发生器产生差模和共模信号,观察输出信号的波形和幅度。
(4)测量差分放大电路的增益、带宽和CMRR等性能指标。
四、实验数据记录与分析1. 晶体管共射放大电路| 电路参数 | 测量值 || --- | --- || 输入信号幅度 | 0.1V || 输出信号幅度 | 5V || 增益 | 50 || 带宽 | 10kHz || 失真 | <1% |2. RC正弦波振荡器| 电路参数 | 测量值 || --- | --- || 振荡频率 | 1kHz || 振荡幅度 | 2V || 相位| 0° |3. 差分放大电路| 电路参数 | 测量值 || --- | --- || 差模增益 | 20 || 共模抑制比(CMRR) | 60dB |五、实验结论1. 通过本次实验,加深了对模拟电子技术基本原理的理解。
数字电子技术基础第三次实验报告、描述Quartusll 软件基本使用步骤① 编写Verilog 代码,用文本编辑器正确编写源文件,并经modelsim 仿真确认该电路设计正确。
② 打开Quartusll 软件,新建工程New project (注意工程名和设计文件的module 名保持一致),选择和开发板一致的 FPGA 器件型号。
■■pww n④编译,Start Compilation ,编译源文件(如有错误修改后,重新编译)。
I —f 1 UuM-JI 工 HfiaMi■sm •MITmHL 1 】it A**5KiiatiT^u^ri :i&1 u■审3T1H・”峠if-Ik r irM "小"=③添加文件,点击file->open,之后选择要添加的文件,并勾选 Add file to currentproject.■ 5r-w in¥ 口X.I M■tWIR fetawej. MtamM* E«Maa4inrv*nn♦ 1 Tl n .■EGvi I IPHIWIVE RHF 4- xsfflECA-ihaW MniWmUAf⑤查看电路结构,使用 Tool->RTL viewer 工具查看电路图结构,是否和预期设计一致。
rp M. Oi* >1 JiMiMdaOML <j| Al-O*ih| La ■D/»i -ii !Hbi.urmpM-羽r 嘴U 电Of■ >lir¥i-*U ■屮剑 f*lM W"M*h 1 $TW<tEQuartus Primer*rfw 杠 w* ■ « ■■! I Q » i 恆G|4OV :I4J ■忙ffl草* F■*■1.设计一款时钟上升沿触发的 D 寄存器TilbfilUL.X.■I:(■■i!|*ij JHft* I i ■i E. duqa.,卜r|il.A, -K^'M la^34r vf (r«i H >«ra w wl as-Kif i*d mich Wp CMIM* e faharwl HKhinu. 3.' thd d&a ip*H¥l: MW mRM_LEL HDCTE^DIS' *ih tnvr 05T tc- r vtw. llivl 4 nt* 111 Hi >4 -Mji lltf ¥111 4 igf IhB 4■Z.7UZ - unri J ■»I fi i■- w rnr I U I FIV J mtnt- , ■ w ^aanr* fi Ir ■KdP-ir'iiH/prnrlM*!1I, *.题目代码以及波形分析a)编写模块源码module flipflop(D,Clock,Q);in put D,Clock;output reg Q;always@(posedge Clock) Q=D;en dmoduleb) 测试模块'timescale 1n s/1psmodule tb_flipflop;reg Clock_test;reg D_test;wire Q_test; in itial Clock_test=0;always #20 Clock_test=~Clock_test; in itial D_test=0;always #77 D_test=~D_test;flipflop UUT_flipflop(.CIock(Clock_test),.D(D_test),.Q(Q_test)); en dmodulec) 仿真后的波形截图 input D0,D1,Sel,Clock;output reg Q;d) 综合后的RTL 图形2. 设计一款4bBit 具有并行加载功能的移位寄存器编写模块源码a) 编写模块源码module muxdff(D0,D1,Sel,Clock,Q);每当时钟上升沿到来时,触发器把 D 的信号传给Q1 -MlB ! L IVh :> 柏"甲^革曲神甲 翹甘I 『■申 £^4HtfTAiw i||jI ** E - - M ■ < J ■: < '«Ihl^fcp :- *□-refDwire D;assign D=Sel?D1:D0;always@(posedge Clock)Q<=D;endmodulemodule shift4(R,L,w,Clock,Q);input [3:0]R;input L,w,Clock;output wire [3:0]Q;muxdff Stage3(w,R[3],L,Clock,Q[3]);muxdff Stage2(Q[3],R[2],L,Clock,Q[2]);muxdff Stage1(Q[2],R[1],L,Clock,Q[1]);muxdff Stage0(Q[1],R[0],L,Clock,Q[0]); endmodule b) 测试模块'timescale 1n s/1psmodule tb_shift4;reg Clock_test;reg L_test;reg w_test;reg [3:0]R_test;wire [3:0]Q_test;initialClock_test=0;always #10 Clock_test=~Clock_test;initialbeginL_test=1;#14L_test=0;//always #14 L_test=~L_test; endinitialw_test=0;always #13 w_test=~w_test;initialR_test=4'b1010;shift4 UUT_shift4(.CIock(Clock_test),.L(L_test),.w(w_test),.R(R_test),.Q(Q_test)); en dmoduleL 为0时并行加载,数组 R 为加载时的输入。
模拟电子技术实验报告实验目的,通过模拟电子技术实验,加深对电子技术原理的理解,掌握基本的电路设计和调试方法。
实验仪器和材料,集成电路实验箱、示波器、电源、电阻、电容、电感等元器件。
实验一,直流电路实验。
1. 实验内容,搭建一个简单的直流电路,测量电压、电流、电阻等参数。
2. 实验步骤,首先将电源连接到实验箱上,然后依次连接电阻、电压表和电流表,调节电源电压,记录电路中各个元件的参数。
3. 实验结果,根据测量结果,绘制电压-电流特性曲线,计算电路中的电阻值。
实验二,交流电路实验。
1. 实验内容,搭建一个简单的交流电路,观察交流电压的变化规律。
2. 实验步骤,将交流电源接入实验箱,连接电阻、电容等元件,利用示波器观察电压波形的变化。
3. 实验结果,根据示波器显示的波形,分析电路中的相位差、频率等参数。
实验三,放大电路实验。
1. 实验内容,搭建一个简单的放大电路,观察输入信号和输出信号的变化。
2. 实验步骤,连接放大电路的输入和输出端,输入不同幅度和频率的信号,观察输出信号的变化。
3. 实验结果,根据实验结果,分析放大电路的增益、频率响应等特性。
实验四,滤波电路实验。
1. 实验内容,搭建一个简单的滤波电路,观察不同频率信号的滤波效果。
2. 实验步骤,连接滤波电路的输入和输出端,输入不同频率的信号,观察输出信号的变化。
3. 实验结果,根据实验结果,分析滤波电路的通频带、阻带等特性。
实验五,振荡电路实验。
1. 实验内容,搭建一个简单的振荡电路,观察输出信号的振荡特性。
2. 实验步骤,连接振荡电路的输入和输出端,调节电路参数,观察输出信号的频率和幅度。
3. 实验结果,根据实验结果,分析振荡电路的频率稳定性、波形失真等特性。
实验总结,通过以上实验,加深了对模拟电子技术原理的理解,掌握了基本的电路设计和调试方法,为今后的电子技术应用奠定了基础。
一、实验目的通过本次实训,使学生掌握模拟电子技术的基本原理、基本电路以及基本实验方法,提高学生对模拟电子技术电路的分析、设计和调试能力,为今后从事电子技术工作打下坚实基础。
二、实验内容1. 常用电子仪器的使用(1)示波器:了解示波器的工作原理、结构及操作方法,掌握示波器在电路测量中的应用。
(2)信号发生器:了解信号发生器的工作原理、结构及操作方法,掌握信号发生器在电路测量中的应用。
(3)万用表:了解万用表的工作原理、结构及操作方法,掌握万用表在电路测量中的应用。
2. 基本放大电路(1)共射放大电路:分析共射放大电路的工作原理,掌握放大电路的设计、调试方法。
(2)共基放大电路:分析共基放大电路的工作原理,掌握放大电路的设计、调试方法。
(3)共集放大电路:分析共集放大电路的工作原理,掌握放大电路的设计、调试方法。
3. 负反馈放大电路(1)串联负反馈放大电路:分析串联负反馈放大电路的工作原理,掌握放大电路的设计、调试方法。
(2)并联负反馈放大电路:分析并联负反馈放大电路的工作原理,掌握放大电路的设计、调试方法。
4. 振荡电路(1)RC振荡电路:分析RC振荡电路的工作原理,掌握振荡电路的设计、调试方法。
(2)LC振荡电路:分析LC振荡电路的工作原理,掌握振荡电路的设计、调试方法。
5. 稳压电路(1)线性稳压电路:分析线性稳压电路的工作原理,掌握稳压电路的设计、调试方法。
(2)开关稳压电路:分析开关稳压电路的工作原理,掌握稳压电路的设计、调试方法。
三、实验步骤及注意事项1. 实验前准备(1)仔细阅读实验指导书,了解实验目的、原理、步骤及注意事项。
(2)检查实验设备是否齐全,如示波器、信号发生器、万用表等。
(3)熟悉实验电路图,掌握电路元件的功能及连接方式。
2. 实验步骤(1)按照实验指导书的要求,搭建实验电路。
(2)连接实验仪器,如示波器、信号发生器、万用表等。
(3)根据实验要求,进行电路调试。
(4)观察实验现象,记录实验数据。
模拟电子技术基础实验报告目录实验一单极共射放大电路实验二集成运算放大器的线性应用实验三多级负反馈放大电路实验四RC正弦波振荡器实验五方波发生器实验六有源滤波器综合设计实验用运算放大器组成万用表的设计实验一单极共射放大电路一、实验目的1、掌握用MultiSim仿真软件分析单级放大器主要性能指标的方法。
2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。
3、测量放大器的放大倍数、输入电阻和输出电阻。
4、掌握用MultiSim仿真软件分析单级放大器的频率特性的方法。
5、测量放大器的幅频特性。
二、实验原理及结果如图所示:1.静态工作点的调整和测量(1)输入端加入1KHz、幅度为50mV的正弦波,如图所示。
当按照上述要求搭接好电路后,用示波器观察输出。
静态工作点具体调整步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行,使示波器所显示的输出波形达到最大不失真。
(2)撤掉信号发生器,使输入信号电压0V ,用万用表测量三极管i的三个极分别对地的电压,,,,,E B C CEQ CQ V V V V I ,根据EQ EQ EV I R =算出CQ EQ I I =.将测量值记录于下表,并与估算值进行比较。
2.电压放大倍数的测量(1)输入信号为1kHz 、幅度为50mV 的正弦信号,输出端开路时,示波器分别测出i V ,o V 的大小,然后算出电压放大倍数。
数据如下:i V =-70.708mV o V =1.227VA1=iOV V =-17.353 (2)输出端接入2k 的负载电阻Rl,保持输出电压i V 不变,测出此时的输出电压o V ,并算出此时的电压放大倍数,分析负载对放大电路的影响。
数据如下:i V =-70.708mV o V =614.893mVAv=iOV V =-8.696 (3) 用示波器双踪观察o V 和i V 的波形,比较相位关系。
相位互差180度3、输入电阻和输出电阻的测量(1)用示波器分别测出电阻两端的电压S V 和i V ,便可算出放大电路的输入电阻i R 的大小,如图所示:图——负载开路时的电路图——接入负载时的电路(2)根据测得的负载开路时的输出电压'O V ,和接入2K Ω负载时的输出电压O V ,便可算出放大电路的输出电阻O R 。
一、实验目的1. 掌握模拟电子技术的基本概念和基本原理。
2. 熟悉模拟电子技术实验设备的操作方法。
3. 培养动手能力和实验技能,提高分析问题和解决问题的能力。
4. 深入理解模拟电子技术在实际工程中的应用。
二、实验器材1. 模拟电子技术实验箱2. 信号发生器3. 示波器4. 万用表5. 电阻、电容、二极管、晶体管等电子元器件6. 实验指导书三、实验内容1. 基本放大电路(1)实验目的:掌握基本放大电路的组成、工作原理和性能指标。
(2)实验步骤:① 按照实验指导书的要求,搭建基本放大电路。
② 使用信号发生器产生正弦波信号,输入到放大电路中。
③ 使用示波器观察输出信号,测量电压放大倍数、输入电阻、输出电阻等性能指标。
④ 分析实验数据,总结基本放大电路的特点。
2. 集成运算放大器(1)实验目的:掌握集成运算放大器的组成、工作原理和特点。
(2)实验步骤:① 按照实验指导书的要求,搭建集成运算放大器电路。
② 使用信号发生器产生正弦波信号,输入到集成运算放大器中。
③ 使用示波器观察输出信号,测量电压放大倍数、输入电阻、输出电阻等性能指标。
④ 分析实验数据,总结集成运算放大器的特点。
3. 正弦波振荡器(1)实验目的:掌握正弦波振荡器的组成、工作原理和特点。
(2)实验步骤:① 按照实验指导书的要求,搭建正弦波振荡器电路。
② 使用示波器观察输出信号,测量频率、幅度等性能指标。
③ 分析实验数据,总结正弦波振荡器的特点。
4. 方波发生器(1)实验目的:掌握方波发生器的组成、工作原理和特点。
(2)实验步骤:① 按照实验指导书的要求,搭建方波发生器电路。
② 使用示波器观察输出信号,测量频率、幅度等性能指标。
③ 分析实验数据,总结方波发生器的特点。
四、实验结果与分析1. 基本放大电路实验结果显示,基本放大电路具有良好的电压放大倍数和输入电阻,但输出电阻相对较高。
在实际应用中,可以通过添加负载电阻来降低输出电阻。
2. 集成运算放大器实验结果显示,集成运算放大器具有高输入电阻、低输出电阻和宽频带等特点,适用于各种模拟信号处理电路。
模拟电子技术基础实验报告目录实验一单极共射放大电路实验二集成运算放大器的线性应用实验三多级负反馈放大电路实验四RC正弦波振荡器实验五方波发生器实验六有源滤波器综合设计实验用运算放大器组成万用表的设计实验一单极共射放大电路一、实验目的1、掌握用MultiSim仿真软件分析单级放大器主要性能指标的方法。
2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。
3、测量放大器的放大倍数、输入电阻和输出电阻。
4、掌握用MultiSim仿真软件分析单级放大器的频率特性的方法。
5、测量放大器的幅频特性。
二、实验原理及结果如图所示:1.静态工作点的调整和测量(1)输入端加入1KHz、幅度为50mV的正弦波,如图所示。
当按照上述要求搭接好电路后,用示波器观察输出。
静态工作点具体调整步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行,使示波器所显示的输出波形达到最大不失真。
(2)撤掉信号发生器,使输入信号电压0V ,用万用表测量三极管i的三个极分别对地的电压,,,,,E B C CEQ CQ V V V V I ,根据EQ EQ EV I R =算出CQ EQ I I =.将测量值记录于下表,并与估算值进行比较。
2.电压放大倍数的测量(1)输入信号为1kHz 、幅度为50mV 的正弦信号,输出端开路时,示波器分别测出i V ,o V 的大小,然后算出电压放大倍数。
数据如下:i V =-70.708mV o V =1.227VA1=iOV V =-17.353 (2)输出端接入2k 的负载电阻Rl,保持输出电压i V 不变,测出此时的输出电压o V ,并算出此时的电压放大倍数,分析负载对放大电路的影响。
数据如下:i V =-70.708mV o V =614.893mVAv=iOV V =-8.696 (3) 用示波器双踪观察o V 和i V 的波形,比较相位关系。
相位互差180度3、输入电阻和输出电阻的测量(1)用示波器分别测出电阻两端的电压S V 和i V ,便可算出放大电路的输入电阻i R 的大小,如图所示:图——负载开路时的电路图——接入负载时的电路(2)根据测得的负载开路时的输出电压'O V ,和接入2K Ω负载时的输出电压O V ,便可算出放大电路的输出电阻O R 。
第1篇一、实验目的1. 熟悉模拟电子技术的基本原理和实验方法;2. 掌握常用电子元器件的测试方法;3. 培养学生动手能力、分析问题和解决问题的能力;4. 理解模拟电路的基本分析方法。
二、实验原理(此处简要介绍实验原理,包括相关公式、电路图等。
)三、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 模拟电子实验箱5. 连接线四、实验步骤1. 按照实验原理图连接实验电路;2. 使用数字万用表测量相关元器件的参数,如电阻、电容等;3. 使用信号发生器产生不同频率、幅值的信号;4. 使用示波器观察电路输出波形,分析电路性能;5. 根据实验要求,调整电路参数,观察波形变化;6. 记录实验数据,分析实验结果;7. 撰写实验报告。
五、实验数据与分析(此处列出实验数据,包括测量结果、波形图等。
)1. 电路参数测量结果:(列出电阻、电容等元器件的测量值)2. 电路输出波形分析:(分析电路输出波形,如幅度、频率、相位等)3. 实验结果与理论分析对比:(对比实验结果与理论分析,分析误差原因)六、实验结论1. 总结实验过程中遇到的问题及解决方法;2. 总结实验结果,验证理论分析的正确性;3. 对实验电路进行改进,提高电路性能;4. 对实验过程进行反思,提高实验技能。
七、实验报告1. 实验目的;2. 实验原理;3. 实验仪器与设备;4. 实验步骤;5. 实验数据与分析;6. 实验结论;7. 参考文献。
八、注意事项1. 实验过程中注意安全,遵守实验室规章制度;2. 操作实验仪器时,轻拿轻放,避免损坏;3. 严谨实验态度,认真记录实验数据;4. 实验结束后,清理实验场地,归还实验器材。
注:本模板仅供参考,具体实验内容和要求请根据实际课程安排进行调整。
第2篇实验名称:____________________实验日期:____________________实验地点:____________________一、实验目的1. 理解并掌握____________________的基本原理和操作方法。
模拟电子技术基础实验实验报告一、共射放大电路1.实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。
(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的作用。
(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。
(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。
(5)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
(6)测量放大电路的频率特性。
2.实验内容(1)电路仿真1.1 静态工作点选择根据XSC1的显示,按如下方法进行操作:当滑动变阻器R7设置为11%时,有最大不失真电压。
1.2 静态工作点测量将交流电源置零,用万用表测量静态工作点。
1.3 电压放大倍数测量加入1kHz,100mV正弦波信号。
测量R L= ∞时输入输出电压有效值大小。
测量L R= 2kΩ时输入输出电压有效值大小。
1.4输入输出电阻测量输入电阻测量。
根据可计算得到输入电阻。
输出电阻测量。
根据可得到输出电阻。
1.5动态参数结果汇总(2)实验室实测2.1 静态工作点实测2.2 动态参数实测3.总结与讨论(1)共射组态放大器会使输入输出电压反相。
(2)L R会影响输出电阻、放大倍数。
二、集成运算放大器1.实验目的(1)加深对集成运算放大器的基本应用电路和性能参数的理解。
(2)了解集成运算放大器的特点,掌握集成运算放大器的正确使用方法和基本应用电路。
(3) 掌握由运算放大器组成的比例、加法、减法、积分和微分等基本运算电路的功能。
(4)进一步熟悉仿真软件的使用。
2.实验内容 (1)电路仿真集成运放是一种具有高电压放大倍数的直接耦合器件。
当外部接入有不同的线性或非线性元器件组成的输入负反馈电路时,可以灵活的实现各种函数关系 ,在线性应用方面,可组成加法、减法、比例。
积分、微分、对数等模拟运算电路。
在大多数情况下,将运放视为理想的,即在一般讨论中,以下三条基本结论是普遍使用的:开环电压增益∞=u A运放的两个输入端电压近似相等,即-V V =+,称为“虚短”。
运放的同相和反相两个输入端的电流可视为零,即0I I -==+,称为“虚断”。
应用理想运放的三条基本原则,可简化运放电路计算,得出本次实验结论。
1.1反相比例电路显然,输入电压与输出电压反相,且满足3uf 1= -R A R 1.2同相比例电路显然,输入电压与输出电压同相,且满足 3uf 1= 1+R A R1.3同相加法电路显然,输入电压与输出电压同相,且满足如下关系式:35424uf 121542245////= (1+)()////R R R R R A V V R R R R R R R +++1.4反相加法电路考核内容:搭建电路一满足关系12(23)o i i U U U =-+显然,输入电压与输出电压反相,且满足如下关系式:33uf 121212= -()(23)i i i i R R A V V V V R R +=-+1.5减法电路1.6反相积分电路显然,输入电压与输出电压反相,且满足如下关系式:o i 1101V (t)=-V (t)tdt R C(2) 实验室实测3.总结与讨论(1)误差分析:本次试验结果接近理论值,误差很小,主要由于仿真计算和电阻的误差所致,可以较好地完成实验。
(2)接线时注意集成块的针脚位置与方向,注意电流大小,防止烧坏运放。
三、RC 正弦波振荡器1.实验目的(1)学习RC正弦波振荡器的组成及其振荡条件和原理。
(2)学会使用、调试振荡器。
2.实验内容(1)电路仿真考核内容:搭建一RC振荡电路。
RC桥式振荡电路是一种较好的正弦波产生电路,适用于产生频率小于1MHz,频率范围宽,波形较好的低频振荡信号。
因为没有输入信号,为了产生正弦波,必须在电路里加入正反馈。
下图是用运算放大器组成的电路,图中3R,4R构成负反馈支路,1R,2R,1C,2C的串并联选频网络构成正反馈支路并兼作选频网络,二极管构成稳幅电路。
调节电位器p R可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。
二极管1D,2D要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入4R以消除二极管的非线性影响。
电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。
反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。
图中两个二极管主要是利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度。
可见,产生了相当稳定的正弦波信号。
(2) 实验室实测调整示波器到有正弦输出 1.60f kHz 3.总结与讨论可以通过调节滑动变阻器来控制振荡器的起振与输出正弦波的幅度。
四、方波发生器1、实验目的1.了解电压比较器的工作原理并熟悉迟滞比较器的原理和功能。
2.学习用集成运算放大器组成矩形波发生器方法。
2.实验内容输出高电平时间:)21ln(T 131f R R C R += 输出低电平时间:)21ln(T 142fR R C R += 振荡频率:2111T T T f +==占空比:4331D R R R T T +==R改变3R的大小,即可调节输出脉冲的宽度。
可见调节电位器p(1)电路仿真考核内容:搭建一方波发生器电路。
显然,产生了占空比可调的方波信号。
(2) 实验室实测五、多级负反馈放大电路1、实验目的1.掌握Multisim 13仿真研究多级负反馈放大电路。
2.学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。
3.研究负反馈对放大器性能的影响,掌握负反馈放大器的性能工作指标的测试方法。
4.测试开闭环的电压放大倍数,输入电阻,输出电阻,反馈网络的电压反馈系数和通频带。
5.比较电压放大倍数在开闭环的差别。
6.观察负反馈对非线性失真的改善作用。
2、实验内容在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。
若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。
若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。
交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。
若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。
输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。
(1)电路仿真1.1 测试电路的开环基本特性调节J1,使开关A端与B端相连。
将信号发生器输出调为1kHz、20mV(峰峰值)正弦波,然后接入放大器的输入端到网络的波特图仪。
保持输入信号不变,用示波器观察输入和输出的波形。
接入负载RL,用示波器分别测出Vi、VN、Vf、Vo。
将负载RL开路,保持输入电压Vi的大小不变,用示波器测出输出电压Vo’。
1.2 测试电路的闭环基本特性调节J1,使开关A端与P端相连。
将信号发生器输入调为1kHz、20mV(峰峰值)正弦波,接入放大器的输入端,得到网络的波特图。
接入负载RL,逐渐增大输入信号Vi,使输入电压Vo达到开环时的测量值,然后用示波器分别测出Vi、VN和Vf的值。
将负载RL开路,保持输入电压Vi的大小不变,用示波器分别测出Vo’的值。
闭环式放大器的频率特性测试同开环时的测试。
开环通频带BW=41.25kHz2,闭环通频带理论值BWF=122.86kHz,闭环通频带实际测量BW=151.18kHz3.总结与讨论(1)引入负反馈明显展宽了通频带,但降低了放大倍数。
(2)引入电压串联负反馈增大了输入电阻,减小了输出电阻。
六、有源滤波器1、实验目的(1)熟悉RC有源滤波器的设计方法。
(2)掌握滤波器上下限频率的测试方法,了解滤波器在实际中的应用。
2、实验内容由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定范围内的频率通过,抑制或者急剧衰减频率范围以外的信号。
因受到运算放大器带宽的限制,这类滤波器仅适用于低频范围。
根据频率范围可分为低通、高通、带通和带阻四种滤波器。
(1)电路仿真1.1低通滤波器i V =1.00v 时的仿真数据1.2高通滤波器显然,只有高频信号才有较大增益。
1.3带通滤波器显然,只有特定频率信号才有增益。
1.4带阻滤波器显然,只有一小段特定频率段的信号增益极小,无法通过。
(2) 实验室实测1.1低通滤波器V=1.00v时的实测数据i3.总结与讨论七、用运算放大器组成万用表的设计1.实验目的(1)综合利用所学知识,根据设计要求设计由运算放大器、二极管整流电路及电流表组成的万用表电路图,搭出实际电路并组装调试,提高实验综合能力和实际动手能力。
(2)熟悉万用表各常见功能的测试电路原理和方法。
(3)进一步体会运算放大器的应用,了解其优势。
2.设计指标与要求直流电压表满量程+30V直流电流表满量程50mA交流电压表满量程30V,50Hz~1KHz交流电流表满量程50mA欧姆表满量程分别为1kΩ,10kΩ,100kΩ3.基本原理1.1 运算放大器的工作原理运算放大器具有两个输入端和一个输出端,如图1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。
图1 运算放大器的电路符号运算放大器所接的电源可以是单电源的,也可以是双电源的。
运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得很多独特的用途,总的来说,这些特性可以综合为两条:运算放大器的放大倍数为无穷大。
运算放大器的输入电阻为无穷大,输出电阻为零。
首先,运算放大器的放大倍数为无穷大,所以只要它的输入端的输入电压不为零,输出端就会有与正的或负的电源一样高的输出电压本来应该是无穷高的输出电压,但受到电源电压的限制。
准确地说,如果同相输入端输入的电压比反相输入端输入的电压高,哪怕只高极小的一点,运算放大器的输出端就会输出一个与正电源电压相同的电压;反之,如果反相输入端输入的电压比同相输人端输入的电压高,运算放大器的输出端就会输出一个与负电源电压相同的电压(如果运算放大器用的是单电源,则输出电压为零)。
其次,由于放大倍数为无穷大,所以不能将运算放大器直接用来做放大器用,必须要将输出的信号反馈到反相输入端(称为负反馈)来降低它的放大倍数。
如图2中左图所示,1R的作用就是将输出的信号返回到运算放大器的反相输入端,由于反相输入端与输出的电压是相反的,所以会减小电路的放大倍数,是一个负反馈电路,电阻f R也叫做负反馈电阻。