高中数学典型例题解析平面向量与空间向量
- 格式:doc
- 大小:867.00 KB
- 文档页数:14
平面向量与空间向量类比 某某 王建宏 某某 X 金龙 平面向量与空间向量有诸多相似之处,学习空间向量时若能与平面向量类比,往往会收到事半功倍的效果.本文以向量的线性表示为例(例1与例2)作简单介绍. 例1 已知:如图1,在平面中,1OA OB OA ==,与OB 的夹角为120OC ,与OA 的夹角为25,5OC =.用OAOB ,表示OC . 解法一:OA OCcos OA OC AOC =∠5cos 25=.设OC OA OB λμ=+,则212OA OC OA OA OB λμλμ=+=-. 15cos 252λμ-=①同理由OB OC ,可得15cos952λμ-+=.② 由①②,可得103103sin 95sin 2533λμ==,, 103103sin 95sin 2533OC OA OB =+. 解法二:如图2,以OA 所在直线为x 轴,点O 为坐标原点建立直角坐标系,则(5cos 255sin 25)OC ,. 设OC OA OB λμ=+,则13(10)22OC λμ⎛⎫=+- ⎪ ⎪⎝⎭,,.解得103103sin 95sin 2533OC OA OB =+. 解法三:如图3,作平行四边形OM ,设OM OAON OB λμ==,, 由正弦定理得103103sin 95sin 2533OC OA OB =+(过程略). 例2 已知:正四面体O ABC -中,OA OB OC a ===,点O 在底面上的射影为G ,试用向量OAOB OC ,,表示OG . 解法一:如图4,∵OA =OB =OC ,∴点O 在底面的射影点G 为△ABC 的中心.取AB 的中点D ,则DG =13DC . ∵13OG OD DG OD DC =+=+ 1()3OD OC OD =+-, 又∵1()2OD OA OB =+, ∴2133OG OD OC =+ 111333OA OB OC =++. 故111333OG OA OB OC =++. 解法二:如图5,以点O 为原点,建立空间直角坐标系,设111222333()()()A x y z B x y z C x y z ,,,,,,,,,由定比分点坐标公式,可得点G 的坐标123123123333x x x y y y z z z ++++++⎛⎫ ⎪⎝⎭,,. 111333OG OA OB OC ∴=++. 解法三:如图6,作平行六面体CENF OBMA -,使得正四面体O ABC -为其一个角上的小三棱锥,则ON OA OB OC =++.可证13OG ON =(过程略). 提起空间向量,许多同学会习惯于空间向量的直角坐标运算,忽略了空间向量本身的应用.2005年全国高中数学联赛第2题(例3),是利用空间向量(不建立空间直角坐标系)解立体几何问题的典型,应培养空间向量的应用意识.例3 如图7,空间四点AB C D ,,,满足 37119AB BC CD DA ====,,,,则AC BD 的取值( )(A )只有一个 (B )有两个(C )有四个 (D )有无穷多个此题设计精巧,构思奇妙,其来源于课本习题(具体化,并向空间推广),思维含量颇高.试题组提供的解答过程比较麻烦,此处从略.课本上有这样一道习题:已知四边形一组对边的平方和等于另一组对边的平方和,求证它的对角线互相垂直.这道习题有很多种证明方法,向量法简证如下:设AD AC AB ===,,a b c 则BD =-a c ,条件2222AB CD BC AD +=+即22()()+-=-+22c a b b c a ,展开整理可得a b =b c ,即()0-=b c a ,也就是0AC BD =,从而AC BDAC BD ,⊥⊥.上述证明与四边形ABCD 是平面图形还是立体图形无关,该结论也适合于空间问题.该试题可追溯到一道匈牙利数学竞赛试题:证明四边形一组对边的平方和等于另一组对边的平方和的充要条件是它的两条对角线互相垂直.该联赛试题的解答可简化为:由222231179+=+,则0AC BD AC BD =,⊥.故此题选(A).阿波罗尼斯圆比例为0.5阿波罗尼斯(Apollonius )圆,简称阿氏圆。
第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算例1如图1.1-9,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,使OE OF OG OH k OA OB OC OD====.求证:E ,F ,G ,H 四点共面.图1.1-9分析:欲证E ,F ,G ,H 四点共面,只需证明EH ,EF ,EG uuu r 共面.而由已知AD ,AB ,AC 共面,可以利用向量运算由AD ,AB ,AC共面的表达式推得EH ,EF ,EG uuu r 共面的表达式.证明:因为OE OF OG OH k OA OB OC OD====.所以OE kOA = ,OF kOB = ,OG kOC = ,OH kOD = .因为四边形ABCD 是平行四边形,所以AC AB AD =+ .因此EG OG OE kOC kOA k AC =-=-=()()k AB AD k OB OA OD OA =+=-+- OF OE OH OE EF EH=-+-=+ 由向量共面的充要条件可知,EH ,EF ,EG uuu r 共面,又EH ,EF ,EG uuu r 过同一点E ,从而E ,F ,G ,H 四点共面.练习1.举出一些表示三个不同在一个平面内的向量的实例.【答案】实例见解析;【解析】【分析】在空间几何体中,从一点出发的不同面的向量即可.【详解】在三棱锥P ABC -中,PA →,PB →,PC →不同在一个平面内;长方体ABCD A B C D ''''-中,从一个顶点A 引出的三个向量AB →,AD →,AA →'不同在一个平面内.2.如图,E ,F 分别是长方体ABCD A B C D ''''-的棱AB ,CD 的中点、化简下列表达式,并在图中标出化简结果的向量:(1)AA CB '- ;(2)AA AB BC '++ ;(3)AB AD B D ''-+ ;(4)AB CF + .【答案】(1)AD ' ;(2)AC ' ;(3)0 ;(4)A E【解析】【分析】根据空间向量加减运算的运算法则计算即可.【详解】(1)AA CB AA BC AA A D AD ''''''-=+=+= ;(2)AA AB B C AA A B B C AC '''''''++=++''= ;(3)0AB AD B D AB AD BD DB BD -+=-+=+''= ;(4)AB CF AB BE AE +=+= .3.在图中,用AB ,AD ,AA ' 表示A C ' ,BD ' 及DB ' .【答案】A C AB AD AA =+'-' ;BD AA AD AB ''-=+ ;DB AA AB AD ''=+- .【解析】【分析】根据空间向量的加减运算法则可转化.【详解】()A C A A AC AA AB AD AB AD AA =+=-''++=-''+ ,()()BD BD DD BA BC DD AB AD AA AA AD AB =+=++=-++=+-''''' ,()()DB DB BB DA DC BB AD AB AA AA AB AD =+=++=-++''''=-'+ .4.如图,已知四面体ABCD ,E ,F 分别是BC ,CD 的中点,化简下列表达式,并在图中标出化简结果的向量;(1)AB BC CD ++ ;(2)()12AB BD BC ++ ;(3)()12AF AB AC -+ .【答案】(1)AD ;(2)AF ;(3)EF【解析】【分析】根据空间向量的线性运算法则计算即可.【详解】(1)AB BC CD AC CD AD ++=+= ;(2)()12AB BD BC AB BF AF ++=+= ;(3)()12AF AB AC AF AE EF -+=-= .5.如图,已知正方体ABCD A B C D ''''-,E ,F 分别是上底面A C ''和侧面CD '的中心,求下列各式中x ,y 的值:(1)AC x AB BC CC →→→→⎛⎫''=++ ⎪⎝⎭(2)AE AA x AB y AD→→→→'=++(3)AF AD x AB y AA →→→→'=++【答案】(1)1x =;(2)12x y ==;(3)12x y ==.【解析】【分析】(1)化简+AC AB AD AA →→→→''=+即得解;(2)化简1()2AE AA AC →→→''=+即得解;(3)化简1122AF AD AC →→→'=+即得解.【详解】(1)+AC AB AD AA AB BC CC →→→→→→→'''=+=++,所以1x =;(2)1111111()()2222222AE AA AC AA AC AA AA AB AD AA AB AD →→→→→→→→→→→→'''''''=+=+=+++=++,所以12x y ==;(3)111111()222222AF AD AC AD AB AA AD AD AB AA →→→→→→→→→→'''=+=+++=++,所以12x y ==.1.1.2空间向量的数量积运算例2如图1.1-12,在平行六面体ABCD A B C D ''''-中,5AB =,3AD =,7AA '=,60BAD ∠=︒,45BAA DAA ''∠-∠=︒.求:图1.1-12(1)AB AD ⋅ ;(2)AC '的长(精确到0.1).解:(1)||||cos ,AB AD AB AD AB AD ⋅=〈〉,53cos 607.5=⨯⨯︒=;(2)()22AC AB AD AA ''=++ ()222||||2AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅ ()222537253cos 6057cos 4537cos 45=+++⨯⨯︒+⨯⨯︒+⨯⨯︒98=+,所以13.3AC '≈.例3如图1.1-13,m ,n 是平面α内的两条相交直线.如果l m ⊥,l n ⊥,求证:l α⊥.图1.1-13分析:要证明l α⊥,就是要证明l 垂直于α内的任意一条直线g (直线与平面垂直的定义).如果我们能在g 和m ,n 之间建立某种联系,并由l m ⊥,l n ⊥,得到l g ⊥,那么就能解决此问题.证明:在平面α内作任意一条直线g ,分别在直线l ,m ,n ,g 上取非零向量l ,m ,n ,g .因为直线m 与n 相交,所以向量m ,n 不平行.由向量共面的充要条件可知,存在唯一的有序实数对(,)x y ,使g xm yn =+u r u r r .将上式两边分别与向量l作数量积运算,得l g xl m yl n ⋅=⋅+⋅ .因为0l m ⋅=r u r ,0l n ⋅=r r (为什么?),所以0l g ⋅=r u r.所以l g ⊥.这就证明了直线l 垂直于平面α内的任意一条直线,所以l α⊥.练习6.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1BC 所成角的大小为()A.60︒B.90︒C.105︒D.75︒【答案】B【解析】【分析】取向量1,,BA BC BB 为空间向量的一组基底向量,表示出1AB 与1 BC ,再借助空间向量运算即可计算作答.【详解】在正三棱柱111ABC A B C -中,向量1,,BA BC BB 不共面,11AB BB BA =- ,11BC BC BB =+ ,令1||BB a = ,则||||BA BC == ,而1BB BA ⊥ ,1BC BB ⊥ ,于是得11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅ 2cos 600a =-=,因此,11AB BC ⊥ ,所以1AB 与1BC 所成角的大小为90︒.故选:B7.如图,正方体ABCD A B C D ''''-的棱长为1,设AB a = ,AD b = ,AA c '= ,求:(1)()a b c ⋅+ ;(2)()a a b c ⋅++ ;(3)()()a b b c ⋅++ .【答案】(1)0;(2)1;(3)1【解析】【分析】在正方体中,根据线线关系,结合空间向量运算法则对每个小题进行运算即可.【详解】(1)在正方体中,AB AA ⊥',AB AD⊥故()0a b c a b a c →→→→→→→⋅+=⋅+⋅=(2)由(1)知,()()1a abc a a a b c →→→→→→→→→⋅++=⋅+⋅+=(3)由(1)及AD AA '⊥知,2()()()1a b b c a b c b b c →→→→→→→→→→++=⋅+++⋅=8.如图,在平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,90BAD ∠=︒,BAA '∠=60DAA '∠=︒.求:(1)AA AB '⋅ ;(2)AB '的长;(3)AC '的长.【答案】(1)10;(261;(385【解析】【分析】(1)根据数量积的定义即可计算;(2)由AB AA A B ''''=+ 平方即可求解;(3)由A AB AD A C A =+'+'即可求解.【详解】(1)1cos 6054102AA AB AA AB ''⋅=⋅⋅=⨯⨯= ;(2)AB AA A B ''''=+ ,()()222222252101661AB AA A B AA AB AA AA AB AB '''''''∴=+=+=+⋅+=+⨯+= ,61AB '= AB '61;(3) AC AC CC AB AD AA '''=+=++ ,()()222222AC AB AD AA AB AD AA AB AD AB AA AD AA '''''∴=++=+++⋅+⋅+⋅ 11169252054358522⎛⎫=++++⨯⨯+⨯⨯= ⎪⎝⎭,85AC '∴= AC '85.9.如图,线段AB ,BD 在平面α内,BD AB ⊥,AC α⊥,且AB a =,BD b =,AC c =.求C ,D 两点间的距离.222a b c ++【解析】【分析】连接AD ,可得222AD a b =+,根据AC AD ⊥可求.【详解】连接AD ,BD AB ⊥ ,22222AD AB BD a b ∴=+=+,AC α⊥,AD α⊂,AC AD ∴⊥,222222CD AD AC a b c ∴=+=++,222CD a b c ∴=++即C ,D 222a b c ++.习题1.1复习巩固10.如图,在长方体ABCD A B C D ''''-中,E 、F 分别为棱AA '、AB 的中点.(1)写出与向量BC 相等的向量;(2)写出与向量BC 相反的向量;(3)写出与向量EF 平行的向量.【答案】(1),,AD A D B C '''' ;(2),,,DA CB C B D A '''' ;(3),,,,D C CD A B BA FE'''' 【解析】【分析】(1)由相等向量的定义可判断;(2)由相反向量的定义可判断;(3)由平行向量的定义可判断.【详解】(1)由相等向量的定义知,大小相等,方向相同的两个向量为相等向量,所以与向量BC 相等的向量为,,AD A D B C '''' ;(2)由相反向量的定义知,大小相等,方向相反的两个向量为相反向量,所以与向量BC 相反的向量为,,,DA CB C B D A '''' ;(3)由平行向量的定义知,方向相同或相反的两个向量为平行向量,所以与向量EF 平行的向量为,,,,D C CD A B BA FE '''' .11.如图,已知平行六面体ABCD A B C D ''''-,化简下列表达式,并在图中标出化简结果的向量:(1)AB BC + ;(2)AB AD AA '++ ;(3)12AB AD CC '++ ;(4)()13AB AD AA '++ .【答案】(1)AC →,向量如图所示;(2)AC →',向量如图所示;(3)AE →,向量如图所示;(4)AF →,向量如图所示;【解析】【分析】根据平行六面体基本性质及空间向量基本运算化简每个小题即可.【详解】(1)AB BC AC →→→+=,向量如图所示;(2)在平行六面体ABCD A B C D ''''-中,有AD BC →→=,AA CC →→''=,故AB AD AA AB BC CC AC →→→→→→→'''++=++=,向量如图所示;(3)由AD BC →→=知,取CC '的中点为E ,12AB AD CC AB BC CE AE →→→→→→→'++=++=,向量如图所示;(4)由(2)知,取AC '的三等分点F 点,1()3AB AD AA AF →→→→'++=,向量如图所示;12.证明:如果向量a ,b 共线,那么向量2a b + 与a共线.【答案】证明见解析【解析】【分析】由向量共线定理可证明.【详解】如果向量a ,b 共线,则存在唯一实数λ,使得b a λ= ,则()222a b a a a λλ+=+=+ ,所以向量2a b + 与a 共线.13.如图,已知四面体ABCD 的所有棱长都等于a ,E ,F ,G 分别是棱AB ,AD ,DC 的中点.求:(1)AB AC ⋅uu u r uuu r ;(2)AD DB ⋅ ;(3)GF AC ⋅ ;(4)EF BC ⋅uu u r uu u r ;(5)FG BA ⋅ ;(6)GE GF ⋅ .【答案】(1)22a ;(2)22a -;(3)22a -;(4)24a ;(5)24a -;(6)24a 【解析】【分析】根据空间向量数量积的定义计算即可.【详解】 四面体ABCD 的所有棱长都等于a ,∴任意两条棱所在直线的夹角为3π, E ,F ,G 分别是棱AB ,AD ,DC 的中点,//,//,||||2a EF BD FG AC EF FG ∴==,(1)2cos 32a AB AC a a π⋅=⨯⨯= ;(2)22cos 32a AD DB a a π⋅=⨯⨯=- ;(3)2cos 22a a GF AC a π⋅=⨯⨯=- ;(4)//EF BD ,则直线BD 与直线BC 所成角就是直线EF 与直线BC 所成角,又3CBD π∠=,2cos 234a a EF BC a π⋅==∴⨯⨯ ;(5)//FG AC ,则直线AC 与直线AB 所成角就是直线FG 与直线BA 所成角,22cos 234a a FG BA a π⋅-∴=⨯⨯= ;(6)取BD 中点M ,连接AM ,CM ,则,AM BD CM BD ⊥⊥,AM CM M ⋂= ,BD ∴⊥平面ACM ,又AC ⊂平面ACM ,BD AC ∴⊥,//EF BD ,EF AC ∴⊥,又//AC FG ,EF FG ∴⊥,0EF FG ⋅= ,可知1122GF AC a ==,222()||024a a GE GF GF FE GF GF FE GF ⎛⎫⋅=+⋅=+⋅=+= ⎝⎭∴⎪ .综合运用14.如图,在平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M .设11111,,,=== A B a A D b A A c ,则下列向量中与1B M 相等的向量是()A.1122a b c --+B.1122a b c -++C.1122a b c -+ D.1122a b c ++ 【答案】B【解析】【分析】根据1112=+=+B M B B BM c BD uuuu r uuu r uuu r r uu u r代入计算化简即可.【详解】()1111112222=+=+=++=-++B M B B BM c BD c BA BC a b c uuuu r uuu r uuu r r uu u r r uu r uu u r rr r 故选:B.15.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量法证明:E ,F ,G ,H 四点共面.【答案】证明见解析【解析】【分析】根据给定条件利用空间向量的线性运算,结合空间向量共面定理即可得解..【详解】如图,E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,12EH FG BD == ,于是得:EG EF FG EF EH =+=+ ,即,,EG EF EH 共面,它们有公共点E ,所以E ,F ,G ,H 四点共面.16.如图,正方体ABCD A B C D ''''-(1)求A B '和B C '的夹角;(2)求证A A B C ''⊥.【答案】(1)3π;(2)证明见解析;【解析】【分析】(1)联结CD ',B D '',则A B CD '' ,A B '和B C '的夹角即CD '和B C '的夹角B CD ''∠,由B D CD B C ''''==知,B CD ''△是等边三角形,故A B '和B C '的夹角为3π.(2)联结AB ',则AB A B ''⊥,又B C ''⊥平面ABB A '',B C A B '''⊥,从而有A B '⊥平面AB C '',从而证得A A B C ''⊥.【详解】(1)联结CD ',B D '',则A B CD '' ,A B '和B C '的夹角即CD '和B C '的夹角B CD ''∠,在正方体中,设棱长为a ,则B D CD B C ''''===,则B CD ''△是等边三角形,即3B CD π''∠=故A B '和B C '的夹角为3π(2)联结AB ',则AB A B ''⊥,又B C ''⊥平面ABB A '',A B '⊂平面ABB A '',则B C A B '''⊥,又B C AB B ''''⋂=故A B '⊥平面AB C '',又AC '⊂平面AB C '',所以A A B C ''⊥17.用向量方法证明:在平面内的一条直线,如果与这个平面的一条斜线在这个平面上的射影垂直,那么它也与这条直线垂直(三垂线)【答案】证明见解析;【解析】【分析】根据向量运算法则,数量积为0即可证得垂直.【详解】如图所示,在平面α内,OB →是OA →在面内的投影向量,则BA CD →→⊥,由题知,CD OB →→⊥,则()0CD OA CD OB BA CD OB CD BA →→→→→→→→→⋅=⋅+=⋅+⋅=,故CD OA →→⊥,所以CD OA ⊥,即证得结论.拓广探索18.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.【答案】证明见解析【解析】【详解】试题分析:利用三个不共面的向量OA OB OC ,,作为基底,利用空间向量的数量积为0,证明向量垂直,即线线垂直.试题解析:∵OA BC ⊥,∴OA OB ⊥ .∵0OA OB ⋅= ,∴()0⋅-= OA OC OB .∴0⋅-=⋅ OA OC OA OB (1)同理:由OB AC ⊥得0⋅-=⋅ OC OB OA OB (2)由(1)-(2)得0⋅-=⋅ OA OC OC OB∴()0⋅=- OA OB OC ,∴0OC BA ⋅= ,∴OC BA ⊥u u u r u u u r,∴OC AB ⊥.19.如图,在四面体OABC 中,OA OB =,CA CB =,E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是矩形.【答案】证明见解析;【解析】【分析】取AB 的中点D ,联结OD ,CD ,证得AB ⊥平面ODC ,AB OC ⊥,从而有EH EF ⊥;又E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.从而有EF GH =,结合EH EF ⊥,证得四边形EFGH 是矩形.【详解】取AB 的中点D ,联结OD ,CD ,由OA OB =,CA CB =知,⊥OD AB ,CD AB ⊥,又OD CD D ⋂=,故AB ⊥平面ODC ,又OC ⊂平面ODC ,因此AB OC⊥又E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.则EF AD = ,GH AD =,故EF GH=,四边形EFGH是平行四边形同理EH GF=,且EH OC,又AB OC⊥所以EH EF⊥,四边形EFGH是矩形。
高二数学平面向量试题答案及解析1.若干个能唯一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组;①;②;③;④.【答案】①④【解析】由得,所以①唯一确定数列,由得,方程的解不定,所以②不能唯一确定数列,由得方程的解不定,所以③不能唯一确定数列,由得,所以④唯一确定数列.【考点】数列基本量运算2.下列各组向量中不平行的是()A.a="(1,2,-2),b=(-2,-4,4)"B.c=(1,0,0),d=(-3,0,0)C.e="(2,3,0)," f="(0,0,0)"D.g=(-2,3,5),h=(16,-24,40)【答案】D【解析】略3.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则4.已知向量与的夹角为且,若,且,则实数的值为A.B.1C.2D.【答案】B【解析】因为,所以,所以得.【考点】1.数量积;2.向量垂直.5.已知向量,,若,则__________________.【答案】或【解析】两向量平行,所以,解得:或.【考点】向量平行的坐标表示6.设,向量,且,则()A.﹣2B.4C.﹣1D.0【答案】D【解析】向量,且,可得,解得或(舍去,因为).则.故选:D.【考点】平面向量数量积的运算7.已知||=2,||=4,⊥(+),则与夹角的度数为.【答案】120【解析】设与夹角为.由⊥(+)得,,解得,所以.【考点】向量的数量积及其运算律并求向量的夹角.8.已知平面向量满足,且,则向量与的夹角为()A.B.C.D.【答案】C【解析】根据题意,由于平面向量满足,且,那么代入可知向量与的夹角的余弦值为,即可知向量与的夹角为,选C.【考点】向量的数量积公式.9.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.10.在平面直角坐标系中,为原点,,动点满足,则的最大值是.【答案】【解析】设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为【考点】1.圆的标准方程;2.向量模的运算11.若||=1,||=2,=+,且⊥,则与的夹角为________。
高二数学空间向量试题答案及解析1.如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.(Ⅰ)求证:(Ⅱ)求三棱锥的体积;(Ⅲ)求二面角的余弦值.【答案】(1)见解析;(2)1;(3)【解析】(1)利用线面垂直的判断定理证明线面垂直,条件齐全.(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.(5)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(Ⅰ)连接,由已知得和是等边三角形,为的中点,又边长为2,由于,在中,,(Ⅱ),(Ⅲ)解法一:过,连接AE,,即二面角的余弦值为.解法二:以O为原点,如图建立空间直角坐标系,则显然,平面的法向量为设:平面的法向量,由,,∴二面角的余弦值为.【考点】(1)空间中线面垂直的判定;(2)三棱锥的体积公式;(3)利用空间向量证明线线垂直和求夹角.2.如图,在三棱柱中,平面,,为棱上的动点,.⑴当为的中点,求直线与平面所成角的正弦值;⑵当的值为多少时,二面角的大小是45.【答案】(1),(2).【解析】(1)此小题考查用空间向量解决线面角问题,只需找到面的法向量与线的方向向量,注意用好如下公式:,且线面角的范围为:;(2)此小题考查的是用空间向量解决面面角问题,只需找到两个面的法向量,但由于点坐标未知,可先设出,利用二面角的大小是45,求出点坐标,从而可得到的长度,则易求出其比值.试题解析:如图,以点为原点建立空间直角坐标系,依题意得,⑴因为为中点,则,设是平面的一个法向量,则,得,取,则,设直线与平面的法向量的夹角为,则,所以直线与平面所成角的正弦值为;⑵设,设是平面的一个法向量,则,取,则,是平面的一个法向量,,得,即,所以当时,二面角的大小是.【考点】运用空间向量解决线面角与面面角问题,要掌握线面角与面面角的公式,要注意合理建系.3.在空间直角坐标系中,若两点间的距离为10,则__________.【答案】.【解析】直接利用空间两点间的距离公式可得,解之得,即为所求.【考点】空间两点间的距离公式.4. A(5,-5,-6)、B(10,8,5)两点的距离等于 .【答案】.【解析】∵,,由空间中两点之间距离公式可得:.【考点】空间坐标系中两点之间距离计算.5.如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)由已知中F为CD的中点,易判断四边形ABCD为平行四边形,进而AF∥BC,同时EF∥SC,再由面面平行的判定定理,即可得到答案.(II)取AB的中点O,连接SO,以O为原点,建立如图所示的空间坐标系,分别求出平面SAC与平面ACF的法向量,代入向量夹角公式,即可求出二面角S-AC-F的大小..(1)分别是的中点,.又,所以.,……2分四边形是平行四边形..是的中点,.……3分又,,平面平面……5分(2)取的中点,连接,则在正中,,又平面平面,平面平面,平面.…6分于是可建立如图所示的空间直角坐标系.则有,,,,,.…7分设平面的法向量为,由.取,得.……9分平面的法向量为.10分…11分而二面角的大小为钝角,二面角的余弦值为.【考点】1.用空间向量求平面间的夹角;2.平面与平面平行的判定.6.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈,〉的值为 ().A.B.C.D.【答案】B【解析】设正方体棱长为2,以D为坐标原点,DA为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,则C(0,2,0),M(2,0,1),D1(0,0,2),N(2,2,1),可知=(2,-2,1),=(2,2,-1),∴•=2×2−2×2−1×1=−1,|| = 3, | |=3;∴cos<,>=,所以sin<,>=.故选B .【考点】用空间向量求平面间的夹角.7.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】解法一(向量法)(I)建立如图所示的空间直角坐标系A-xyz,分别求出直线PF与FD的平行向量,然后根据两个向量的数量积为0,得到PF⊥FD;(2)求出平面PFD的法向量(含参数t),及EG的方向向量,进而根据线面平行,则两个垂直数量积为0,构造方程求出t值,得到G点位置;(3)由是平面PAD的法向量,根据PB与平面ABCD所成的角为45°,求出平面PFD的法向量,代入向量夹角公式,可得答案.解法二(几何法)(I)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD;(2)过点E作EH∥FD交AD于点H,则EH∥平面PFD,且有AH=AD,再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=AP,由面面平行的判定定理可得平面GEH∥平面PFD,进而由面面平行的性质得到EG∥平面PFD.从而确定G点位置;(Ⅲ)由PA⊥平面ABCD,可得∠PBA是PB与平面ABCD所成的角,即∠PBA=45°,取AD的中点M,则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角,解三角形MNF可得答案..试题解析:(1)证明:∵PA⊥平面ABCD,∠BAD=90°,AB=1,AD=2,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).不妨令P(0,0,t),∵=(1,1,-t),=(1,-1,0),∴=1×1+1×(-1)+(-t)×0=0,即PF⊥FD.(2)解:设平面PFD的法向量为n=(x,y,z),由得令z=1,解得:x=y=.∴n=.设G点坐标为(0,0,m),E,则,要使EG∥平面PFD,只需·n=0,即,得m=,从而满足AG=AP的点G即为所求.(3)解:∵AB⊥平面PAD,∴是平面PAD的法向量,易得=(1,0,0),又∵PA⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,得∠PBA=45°,PA=1,平面PFD的法向量为n= .∴.故所求二面角A-PD-F的余弦值为.【考点】1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系;3.直线与平面平行的判定.8.已知三棱柱,平面,,,四边形为正方形,分别为中点.(1)求证:∥面;(2)求二面角——的余弦值.【答案】(1)见解析(2)【解析】(1)只要证出∥,由直线与平面平行的判定定理即可得证(2)建立空间直角坐标系,利用求二面角的公式求解试题解析:(1)在中、分别是、的中点∴∥又∵平面,平面∴∥平面(2)如图所示,建立空间直角坐标系,则,,,,,∴,平面的一个法向量设平面的一个法向量为则即取.∴∴二面角的余弦值是.【考点】直线与平面平行的判定定理,在空间直角坐标系中求二面角9.如图,直三棱柱(侧棱垂直于底面的棱柱),底面中,棱,分别为的中点.(1)求>的值;(2)求证:【答案】(1)>的值为;(2)证明过程详见试题解析.【解析】(1)先以C为原点建立空间坐标系,由已知易求出,进而可求>的值;(2)由(1)所建立的空间坐标系可写出、、的坐标表示,即可知,从而得证.试题解析:以C为原点,CA、CB、CC1所在的直线分别为轴、轴、轴,建立坐标系(1)依题意得,∴∴ ,∴>= 6分(2) 依题意得∴,∴,,∴ ,∴,∴∴ 12分【考点】空间坐标系、线面垂直的判定方法.10.如右图,正方体的棱长为1.应用空间向量方法求:⑴求和的夹角⑵.【答案】(1)(2)对于线线垂直的证明可以运用几何性质法也可以运用向量法来证明向量的垂直即可。
高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。
2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。
【考点】本题主要考查平面向量的线性运算。
点评:简单题,在平行四边形中,由平行四边形法则。
注意相等向量及相反向量。
3.已知点,向量,且,则点的坐标为。
【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。
【考点】本题主要考查平面向量的概念及其坐标运算。
点评:简单题,注意若A(a,b),B(c,d),则。
4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。
【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。
B.单位向量都相等;方向不一样。
C.共线的向量,若起点不同,则终点一定不同;不一定。
D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。
平面向量与空间向量重要概念解析向量是数学中常见的概念,它在平面几何和空间几何中都扮演着重要的角色。
本文将对平面向量和空间向量的概念进行解析,并探讨它们在几何学和物理学中的应用。
一、平面向量的概念解析平面向量是指在平面上具有大小和方向的量。
平面向量通常用符号表示,如AB表示从点A指向点B的向量。
平面向量有两个重要的性质,即大小和方向。
平面向量的大小可以用模长来表示,通常用两个坐标差的平方和的开方来计算。
设向量AB的坐标为(x1, y1)和(x2, y2),则向量AB的模长记作||AB||,计算公式为:||AB|| = √((x2 - x1)^2 + (y2 - y1)^2)平面向量的方向可以用角度或方向角来表示。
与x轴的正向之间的夹角称为向量的方向角。
方向角的计算可以通过与x轴的夹角的三角函数比值来得到。
如果向量AB的方向角为α,则有:tanα = (y2 - y1) / (x2 - x1)平面向量的加法、减法和数量乘法等运算规则也是平面向量的重要性质。
向量的加法按照平行四边形法则进行,向量的减法可以通过加上负向量来实现,向量的数量乘法是将向量的模长与一个标量相乘。
二、空间向量的概念解析空间向量是指在空间中具有大小和方向的量。
与平面向量相比,空间向量多了一个维度,即在三维空间中进行描述。
空间向量通常用符号表示,如AB表示从点A指向点B的向量。
空间向量也有大小和方向两个重要的性质。
空间向量的大小可以用模长来表示,计算公式同平面向量。
设向量AB的坐标为(x1, y1, z1)和(x2, y2, z2),则向量AB的模长记作||AB||,计算公式为:||AB|| = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)空间向量的方向可以用方向角来表示。
与x轴的正向之间的夹角称为向量的方向角,与xOy平面的法线向量之间的夹角称为倾斜角。
空间向量的方向可以通过方向角和倾斜角来确定。
肖博数学高中数学必修二空间向量及其运算目录CONTENTS 知识点梳理经典案例剖析要点整合010203LOGO01知识点梳理一、空间向量的有关定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(1)共线向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(2)共面向量定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.(3)空间向量基本定理空间向量二、两个向量的数量积(与平面向量基本相同)已知两个非零向量a ,b ,在空间中任取一点O ,作=a ,=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=,则称向量a ,b 互相垂直,记作a ⊥b .(1)两向量的夹角:两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉.(2)两向量的数量积①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量);②a ⊥b ⇔a ·b =0;③|a |2=a ·a =a 2;④|a ·b |≤|a ||b |.(3)向量的数量积的性质空间向量三、直线的方向向量与平面的法向量的确定l 是空间一直线,A ,B 是直线l 上任意两点,则称为直线l 的方向向量,与平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(1)直线的方向向量:①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.(2)平面的法向量②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为(3)平面的法向量空间向量要点整合。
高中数学空间向量经典例题及解析一、引言空间向量是高中数学的一个重要知识点,它涉及到三维空间中向量的加法、数乘、数量积和向量积等运算。
这些运算在解决实际问题中有着广泛的应用,因此学好空间向量对于学生来说至关重要。
本篇文章将通过经典例题的方式,对空间向量的相关知识点进行深入解析,以期帮助学生更好地掌握这一知识点。
二、经典例题及解析【例题1】在空间四边形中,已知两个向量,,求异面直线的夹角(锐角或直角)。
【解析】本题考查空间向量的夹角问题,需要利用两个向量的夹角公式。
【解答】首先根据向量的定义,可得到向量,的坐标分别为(, )。
根据向量的加法,可得向量的坐标为(, )。
又因为两个向量垂直,所以它们的数量积为0,即,所以。
根据异面直线夹角公式,可得异面直线的夹角为。
【例题2】在长方体中,已知三个向量,,求异面直线的夹角(锐角或直角)。
【解析】本题除了需要用到向量的加法、数乘、数量积和向量积等运算,还需要用到长方体的性质。
【解答】首先根据向量的定义,可得到向量的坐标分别为(, , )。
又因为长方体中,所以可以表示为和的线性组合,即或。
设所在直线的方向向量,所在平面的法向量,则的坐标分别为(, )。
根据向量夹角公式和向量垂直的条件,可得垂直于平面,所以。
又因为两个向量垂直,所以它们的数量积为0,即,所以。
根据异面直线夹角公式,可得异面直线AB与CD的夹角为。
【例题3】已知长方体,设点,求与平面之间的距离。
【解析】本题需要利用长方体的性质和向量的数量积求解。
【解答】设平面的法向量,则所在直线的方向向量。
因为点在平面内,所以点在平面外,所以向量,即。
又因为向量与平面共线,所以向量,即。
根据向量的数量积和点到平面的距离公式,可得与平面之间的距离为。
三、总结空间向量是高中数学的一个难点也是重点,通过经典例题的解析,我们可以更好地掌握空间向量的相关知识点。
在解决实际问题时,我们需要灵活运用向量的加法、数乘、数量积和向量积等运算,同时还要注意向量的表示和坐标的确定。
解密高考数学中的平面向量与空间向量运算数学作为高考的一门重要科目,其内容繁多且考察层次较高。
其中,平面向量与空间向量运算作为高考数学中的重要知识点,被广大考生所关注。
本文将针对平面向量与空间向量运算进行详细解密,帮助考生更好地理解和应用这一知识点。
一、平面向量的定义和基本运算在解密平面向量运算之前,我们首先需要了解平面向量的定义和基本运算。
平面向量是指在平面内具有大小和方向的量,通常用箭头来表示。
具体来说,平面向量由起点和终点确定,箭头的方向表示向量的方向,箭头的长度表示向量的大小。
平面向量的基本运算包括加法、减法和数乘。
平面向量的加法用两个向量的始点相连作为新向量的始点,将两个向量的终点相连作为新向量的终点。
平面向量的减法则是将被减向量取相反向量后再进行加法运算。
平面向量的数乘是将向量的大小乘以一个实数。
在解密高考数学中的平面向量运算时,我们需要牢记这些基本运算规则,并能够熟练地应用到具体的题目中去。
二、平面向量的数量积和向量积除了基本的向量运算外,平面向量还涉及到数量积和向量积。
数量积又称点积或内积,用来计算两个向量之间的夹角和相对方向。
向量积又称叉积或外积,用来计算两个向量构成的平行四边形的面积和方向。
平面向量的数量积定义为两个向量的模长相乘再乘以它们的夹角的余弦值。
数学上可表示为:A·B = |A||B|cosθ其中,A和B分别为两个向量,|A|和|B|为它们的模长,θ为夹角。
平面向量的向量积定义为两个向量的模长相乘再乘以它们的夹角的正弦值乘以一个法向量,以得到一个新的向量。
数学上可表示为:A ×B = |A||B|sinθn其中,A和B分别为两个向量,|A|和|B|为它们的模长,θ为夹角,n为法向量。
高考数学中的平面向量运算题目往往会考查考生对数量积和向量积的理解和应用能力,因此我们需要通过大量练习题目来掌握这两种运算方法。
三、空间向量的定义和基本运算在解密高考数学中的空间向量运算之前,我们同样需要理解和掌握空间向量的基本概念和基本运算。
高二数学复习典型题型与知识点专题讲解 01空间向量及其运算+空间向量基本定理+空间向量及其运算的坐标表示一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角知识点2 共线与共面知识点3 空间向量基本定理知识点4 建系设点二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角例1.(2021·湖北省直辖县级单位·高二阶段练习)如图,平行六面体ABCD A B C D ''''-,其中4AB =,3AD =,3AA '=,90BAD ∠=︒,60BAA '∠=︒,60DAA '∠=︒,则AC '的长为________【详解】根据题意,''AC AC CC AB BC AA =+='++'AC AB BC AA ∴=++'根据题中的数据可知,()()()()2'22'2'2222'2?··433243cos9033cos 6043cos 6055AB BC AA AB BC AA AB BC BC AA AB AA AC AB BC AA ++=+++++=+++⨯⨯︒+⨯⨯︒+⨯⨯︒=∴=++=名师点评:回路法求模,比如AD AB BC CD =++,则有22||()AD AB BC CD =++。
也如本例中:AC AB BC CC '=+'+,特别提醒:找向量夹角时,注意共起点才能找夹角,当两个向量不共起点时,需平移成共起点条件下找夹角.例2.(2021·重庆南开中学高二阶段练习)如图,平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长均为2,且它们彼此的夹角都是60︒,则AC 与1BD 所成角的余弦值___________.【详解】 因为111,AC AB AD BD AD AB AA AD AB =+=-=+-,所以()()()()111AC BD AB AD AA AD AB AB AD AA AD AB ⋅=+⋅+-=+⋅+-,2211AB AA AB AD AA AD =⋅-+⋅+, 2222cos60222cos6024=⨯⨯-+⨯⨯+=, ()22222AC AB AD AB AB AD AD =+=+⋅+, 222222cos60212=+⨯⨯⨯+=,所以23AC =()2211BD AA AD AB =+-,222111222AA AD AB AA AD AA AB AD AB =+++⋅-⋅-⋅,222222222cos60222cos60222cos60=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯, 8= 所以122BD =设AC 与1BD 所成的角为θ,所以111cos cos ,2AC BD AC BD AC BD θ⋅====⋅. 名师点评:利用向量求异面直线所成角时注意:①0,a b π≤<>≤,利用公式cos ,||||a b a b a b ⋅<>=,求出的cos ,a b <>可正可负可为零;②异面直线a ,b 所成角02πθ<≤,在利用向量求异面直线所成角时注意转化cos |cos ,|a b θ=<>. 知识点2 共线与共面例1.(2021·辽宁·大连市第一中学高三期中)在ABC ∆中,点D 是线段BC 上任意一点(不包含端点),若AD mAB nAC=+,则41m n+的最小值为______. 【答案】9【详解】 D 是线段BC 上一点,B ∴,C ,D 三点共线,AD mAB nAC =+,1m n ∴+=,且0m >,0n >,∴14()()52459441n m n m n m n m n m+=++=+++=, 当且仅当4m n n m=时取等号. ∴41m n+的最小值为9.故答案为:9.练习1-1.(2021·广东深圳·高三阶段练习)如图,在ABC ∆中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =,∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()11333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即1233λμ==时取等,∴λμ+的最小值为1故答案为:1练习1-2.(2021·全国·高二单元测试)已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使OA λ+mOB +nOC =0,那么m n λ++的值为________.【答案】0【详解】因A ,B ,C 三点共线,则存在唯一实数k 使AB k AC =,显然0k ≠且1k ≠,否则点A ,B 重合或点B ,C 重合,则()OB OA k OC OA -=-,整理得:(1)0k OA OB kOC -+-=,令λ=k -1,m =1,n =-k ,显然实数λ,m ,n 不为0,因此,存在三个不为0的实数λ,m ,n ,使λOA +m OB +n OC =0,此时λ+m +n = k -1+1+(-k )=0, 所以λ+m +n 的值为0.故答案为:0另解:由A ,B ,C 三点共线,且OA λ+mOB +nOC =0⇒mnOA OB OC λλ=--()10mn m n m n λλλλ⇒-+-=⇒+=-⇒++= 名师点评:①空间中三点,,P A B 共线⇔PA PB λ=;②空间中三点,,P A B 共线⇔对于空间中任意一点O ,(1)OP OA OB λμλμ=++=合理的利用好三点共线向量的充要条件,在解题时可以迅速得出结论。
高二数学空间向量试题答案及解析1.如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点.(1)证明:直线平面;(2)若,求二面角的平面角的余弦值.【答案】(1)见解析;(2)3.(3)【解析】(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量平行;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)连结QM 因为点,,分别是线段,,的中点所以,所以平面, 平面因为,所以平面∥平面 ,平面所以∥平面(2)方法1:过M作MH⊥AN于H,连QH,则∠QHM即为二面角的平面角, 令即QM=AM=1所以此时,MH=,记二面角的平面角为则tan=,所以COS=即为所求.方法2:以B为原点,以BC、BA所在直线为x轴y轴建空间直角坐标系,设则A(0,2,0),M(0,1,0),N(1,0,0),p(0,2,2),Q(0,1,1),=(0,-1,1),记,则取又平面ANM的一个法向量,所以cos=即为所求.【考点】空间几何体的线面平行以及二面角.2.如图,正三棱柱中,是的中点,.(Ⅰ)求证:平面;(Ⅱ)求二面角的平面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)想要解决这个问题,需要构造平行线,连结交于,连结,则又平面平面(Ⅱ)解决本题的关键是构造二面角的平面角,过作的垂线,过作的垂线,则就是二面角的平面角,然后根据条件计算出 .试题解析:(Ⅰ)连结交于,连结,则分别是,的中点,又平面平面(Ⅱ)过作的垂线,垂足为,则,且面,过作的垂线,垂足为,则,连结,则就是二面角的平面角,且,即二面角的余弦值为【考点】线面平行的判定,二面角.3.如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求EF和平面ABCD所成的角α的正切;(Ⅲ)求异面直线EF与BD所成的角β的余弦.【答案】(1)由已知PA⊥AD,AB⊥AD,所以为平面PAD与平面ABCD所成二面角的平面角.由已知平面PAD⊥平面ABCD得,PA⊥AB,又AB平面ABCD,AD平面ABCD,且AB∩AD=A,所以PA⊥平面ABCD;(2)所求的角α的正切值为;(3)异面直线EF与BD所成角β的余弦值为.【解析】(1)根据两个平面垂直的性质定理可得PA⊥平面ABCD;(2)连接AF,则即为α,在直角三角形EAF中,根据计算求得结果即可;(3))欲求异面直线EF与BD所成的角β的大小,只需平移两条异面直线中的一条,使它们成为相交直线,则相交直线所成的锐角或直角,就是异面直线所成角,再放入三角形中,通过解三角形,求出此角.试题解析:(1)由已知PA⊥AD,AB⊥AD,所以为平面PAD与平面ABCD所成二面角的平面角.由已知平面PAD⊥平面ABCD得,PA⊥AB,又AB平面ABCD,AD平面ABCD,且AB∩AD=A,所以PA⊥平面ABCD.(2)连接AF,因为PA⊥平面ABCD,则AF是EF在平面ABCD上的射影,即=α.设PA=AD=a,FD=,则.在中,,所以所求的角的正切值为.(3)取BC的中点M,连接EM、FM,则FM∥BD,∴∠EFM(或其补角)就是异面直线EF 与BD所成的角.可求得,同理,,又,∴在△MFE中,,故异面直线EF与BD所成角β的余弦值为.【考点】异面直线及其所成的角;直线与平面平行、垂直的判定;直线与平面所成的角.4.如图,分别是正三棱柱的棱、的中点,且棱,.(1)求证:平面;(2)在棱上是否存在一点,使二面角的大小为,若存在,求的长,若不存在,说明理由。
高考数学中的平面向量与空间向量几何问题解析技巧在高考数学中,平面向量与空间向量是一个重要而且常见的考点。
理解和掌握平面向量与空间向量的几何问题解析技巧对于解题非常关键。
本文将通过实例和分析,介绍高考数学中平面向量与空间向量几何问题解析的技巧和方法。
一、平面向量的几何问题解析技巧1. 问题转化为向量求解在解决平面向量的几何问题时,可以将问题转化为向量求解的问题。
通过将图形和线段等几何信息表示成向量形式,可以简化问题的复杂度,从而更容易求解。
例如,给定平面中的三角形ABC,若已知点A、B、C的坐标,要求证明三角形ABC是等腰三角形。
我们可以将AB和BC两个向量相等,即AB = BC,然后通过向量的运算和坐标的计算来证明等腰性质。
2. 平面向量的投影问题在解决平面向量的投影问题时,我们可以运用向量的投影公式来求解。
向量的投影是一个较为常见的考点,多表现为线段或者阴影的长度。
例如,给定平面中的点P和直线L,要求求点P到直线L的距离。
我们可以先求点P到直线L的方向向量以及直线L上的点B坐标,然后使用向量的投影公式计算出点P到直线L的距离。
3. 平面向量的共线问题解决平面向量的共线问题时,我们可以运用向量共线的判断方法。
共线的判断一般通过向量的线性组合关系来实现。
例如,给定平面中的三个点A、B、C,要求判断三个点是否共线。
我们可以将AB和BC两个向量进行线性组合,若存在实数k使得AB+ kBC = 0,则可以判定三个点共线。
二、空间向量的几何问题解析技巧1. 空间向量的平行问题在解决空间向量的平行问题时,我们可以通过向量的夹角关系来判断。
例如,给定空间中的向量a和向量b,要求判断向量a和向量b是否平行。
我们可以计算向量a和向量b的夹角,若夹角为0度或180度,则可以判定向量a和向量b平行。
2. 空间向量的垂直问题在解决空间向量的垂直问题时,我们可以通过向量的数量积关系来判断。
例如,给定空间中的向量a和向量b,要求判断向量a和向量b是否垂直。
第五章 平面向量与空间向量●考点阐释1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题.向量法和坐标法是研究和解决向量问题的两种方法.坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用"数〞的运算处理"形〞的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题.2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化. ●试题类编 一、选择题 1.〔2002春,13〕假设a 、b 、c 为任意向量,m ∈R ,那么以下等式不一定...成立的是〔 〕 A.〔a +b 〕+c =a +〔b +c 〕 B.〔a +b 〕·c =a ·c +b ·c C.m 〔a +b 〕=m a +m b D.〔a ·b 〕c =a 〔b ·c 〕2.〔2002XX 文12,理10〕平面直角坐标系中,O 为坐标原点,两点A 〔3,1〕,B 〔-1,3〕,假设点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,那么点C 的轨迹方程为〔 〕A.3x +2y -11=0B.〔x -1〕2+〔y -2〕2=5C.2x -y =0D.x +2y -5=0 3.〔2001、、XX 文〕假设向量a =〔3,2〕,b =〔0,-1〕,那么向量2b -a 的坐标是〔 〕 A.〔3,-4〕 B.〔-3,4〕 C.〔3,4〕 D.〔-3,-4〕 4.〔2001、、XX 〕设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,那么OB OA ⋅等于〔 〕A.43B.-43C.3D.-3 5.〔2001〕如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设B A 1=a ,11D A =b ,A A 1=c .那么以下向量中与M B 1相等的向量是〔 〕A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 6.〔2001、、XX 理,5〕假设向量a =〔1,1〕,b =〔1,-1〕,c =〔-1,2〕,那么c 等于〔 〕A.-21a +23b B.21a -23bC.23a -21b D.-23a +21b 7.(2000、、XX 理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,那么①〔a ·b 〕c -〔c ·a 〕b =0②|a |-|b |<|a -b | ③〔b ·c 〕a -〔c ·a 〕b 不与c 垂直 ④〔3a +2b 〕〔3a -2b 〕=9|a |2-4|b |2中,是真命题的有〔 〕 A.①②B.②③C.③④D.②④8.〔1997全国,5〕如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为〔 〕A.-31B.-3 C.31D.3 二、填空题 9.〔2002文,理2〕向量a 和b 的夹角为120°,且|a |=2,|b |=5,那么〔2a -b 〕·a =_____. 10.〔2001春,8〕假设非零向量α、β满足|α+β|=|α-β|,那么α与β所成角的大小为_____. 11.〔2000,1〕向量OA =〔-1,2〕,OB =〔3,m 〕,假设OA ⊥AB ,那么m =. 12.〔1999理,8〕假设将向量a =〔2,1〕围绕原点按逆时针方向旋转4π得到向量b ,那么向量b 的坐标为_____.13.〔1997,14〕设a =〔m +1〕i -3j ,b =i +〔m -1〕j ,〔a +b 〕⊥〔a -b 〕,那么m =_____. 14.〔1996,15〕a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.15.〔1996,15〕O 〔0,0〕和A 〔6,3〕两点,假设点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,那么点B 的坐标是_____.三、解答题16.〔2003春,19〕三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.〔其中m 、n >0〕.如图5—2.〔1〕证明:三棱柱ABC —A 1B 1C 1是正三棱柱; 〔2〕假设m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.17.〔2002春,19〕如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:〔1〕二面角O 1—AB —O 的大小;〔2〕异面直线A 1B 与AO 1所成角的大小.图5—2〔上述结果用反三角函数值表示〕 18.〔2002,17〕如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,假设OP ⊥BD ,求OP 与底面AOB 所成角的大小.〔结果用反三角函数值表示〕图5—3 图5—4 图5—519.〔2002XX 文9,理18〕如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .〔1〕建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; 〔2〕求AC 1与侧面ABB 1A 1所成的角.20.〔2002XX 文22,理21〕两点M 〔-1,0〕,N 〔1,0〕,且点P 使,MN MP ⋅,PN PM ⋅NP NM ⋅成公差小于零的等差数列.〔1〕点P 的轨迹是什么曲线.〔2〕假设点P 坐标为〔x 0,y 0〕,θ为PM 与PN 的夹角,求tan θ.21.〔2001、、XX 理〕如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .〔1〕求cos<DE BE , >;〔2〕记面BCV 为α,面DCV 为β,假设∠BED 是二面角α—VC —β的平面角,求∠BED .图5—6 图5—7 图5—822.〔2001春〕在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.〔1〕求证:A 1C ⊥平面AEF ;〔2〕假设规定两个平面所成的角是这两个平面所组成的二面角中的锐角〔或直角〕.那么在空间中有定理:假设两条直线分别垂直于两个平面,那么这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.〔用反三角函数值表示〕23.〔2001〕在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.〔1〕求证:A ′F ⊥C ′E .〔2〕当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小〔结果用反三角函数表示〕24.〔2000春,21〕四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.〔1〕求证:PA ⊥底面ABCD ; 〔2〕求四棱锥P —ABCD 的体积;〔3〕对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算:〔a ×b 〕·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算〔AB ×AD 〕·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算〔AB ×AD 〕·AP 的绝对值的几何意义.25.〔2000,18〕如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos1010,求四面体ABCD 的体积. 图5—9 图5—10 图5—1126.〔2000XX 、、〕如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.〔1〕求BN 的长;〔2〕求cos<11,CB BA >的值;〔3〕求证:A 1B ⊥C 1M .27.〔2000全国理,18〕如图5—11,平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.〔1〕证明:C 1C ⊥BD ;〔2〕假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;〔3〕当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD .请给出证明. 28.〔1999,20〕如图5—12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.〔1〕假设AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; 〔2〕求异面直线AE 与CD 所成角的大小.29.〔1995,21〕如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是〔21,23,0〕,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°。
高二数学平面向量与空间向量的垂直与共线数学中,平面向量和空间向量是两个重要的概念。
在这篇文章中,我们将探讨平面向量与空间向量之间的垂直与共线的关系。
垂直向量是指两个向量的夹角为90度的情况。
对于平面向量来说,我们可以通过向量的点乘与零向量的判断来确定垂直关系。
设有平面向量a和b,若a·b=0,则a与b垂直。
而对于空间向量来说,我们可以通过向量的数量积与零向量的判断来确定垂直关系。
设有空间向量A和B,若A·B=0,则A与B垂直。
举个简单的例子来理解垂直向量的概念。
设有两个平面向量a=(1, 2)和b=(-2, 1),我们可以计算它们的点乘:a·b=1*(-2)+2*1=0。
因此,向量a和b是垂直的。
在数学中,共线向量是指两个或多个向量的方向相同或相反的情况。
对于平面向量来说,我们可以通过向量的叉乘和零向量的判断来确定共线关系。
设有平面向量a和b,若a×b=0,则a与b共线。
而对于空间向量来说,我们可以通过向量的叉积和零向量的判断来确定共线关系。
设有空间向量A和B,若A×B=0,则A与B共线。
举个简单的例子来理解共线向量的概念。
设有两个空间向量A=(1, 2, 3)和B=(2, 4, 6),我们可以计算它们的叉积:A×B=(2*3-4*2, 6*1-2*3, 1*4-2*2)=(0, 0, 0)。
因此,向量A和B是共线的。
在实际应用中,垂直向量和共线向量有着重要的意义。
例如在物理学中,力的合成和分解中的平行四边形法则和三角法则都是基于向量的垂直和共线性质而建立的。
总结起来,平面向量和空间向量之间的垂直与共线关系可以通过点乘和叉乘来判断。
而在实际应用中,垂直向量和共线向量有着广泛的应用,特别是在力学、物理学等领域。
通过本文的探讨,我们对于高二数学中平面向量与空间向量的垂直与共线关系有了更深入的理解。
垂直向量的判断可以通过点乘与零向量进行,而共线向量的判断则可以通过叉乘与零向量进行。
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
空间向量-期中必做题12为的中点,,.平面,如图.所成角的正弦值.,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.3所成角的正弦值.上是否存在点,使得平面?若存在,求出的值.若不存在,请4)的平面展开图(如图)中,四边形为边长为的正方形,均为正三角形.在三棱锥中:(图1)(图2)证明:平面平面.(1)5 67 8 910所成角最小时,求线段的长.11,.12平面.,求二面角的余弦值.13的正方形中,,分别为的中点,沿将矩形折起使得所示,点在上,,分别为中点.平面.的余弦值.14中,侧面为等边三角形且垂直于底面三角形,,是的中点.15的中点,点在线段上.点到直线1617 D.个的三等分点,到各顶点的距离的不同取181920 2122D.4个23坐标平面上的一组正投影图像如.24椭圆的一部分 D.抛物线的一部分25 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(262728D.29,的中点,为上一动).30空间向量-期中必做题1,..,连接...,,,因为,为的中点,所以因为平面,平面,所以平面因为平面平面,平面所以平面.因为.所以平面.设直线与平面所成角为,则所以直线与平面所成角的正弦值为由()知,设平面的法向量为,则有,即,令,则,. 即所以.由题知二面角为锐角,所以它的大小为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用2所成角的正弦值.,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由..,分别为,的中点, ∴,.,又为的中点,. ∵ 平面平面,且平面, ∴平面.,连接,∴.,.如图建立空间直角坐标系.由题意得,,∴,设平面的法向量为则即令,则,,∴设直线和平面所成的角为则∴ 直线和平面所成角的正弦值为线段上存在点适合题意.设,其中.设,则有∴,从而∴,又∴令整理得.解得,舍去.∴ 线段上存在点适合题意,且立体几何与空间向量立体几何初步空间向量空间向量的应用3所成角的正弦值.上是否存在点,使得平面?若存在,求出的值.若不存在,请证明见解析.如图,在矩形中,,为中点,,的中点,由题意可知,,平面,平面,平面,,,.在中,由,则所以,设平面的一个法向量为则,,令所以,设直线与平面所成角为,所以直线与平面所成角的正弦值为假设在线段上存在点,满足设,由,所以,若平面,则,所以,解得所以.立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用(图1)(图2)证明:平面平面.(1)求二面角的余弦值.(2)若点在棱上,满足,,点在棱上,且范围.(3)4由题意,因为在中,,为所以,因为在中,,所以,因为,,平面所以平面,因为平面,所以平面平面.方法:设的中点为,连接,.因为在中,,为所以,因为,因为在中,,为所以.因为在中,,为所以.因为,,平面所以平面,因为平面,所以.因为,,平面所以平面,因为平面.所以平面平面.由平面,,则,,,由平面,故平面的法向量为由,设平面的法向量为由,得:令,得,,即由二面角是锐二面角,所以二面角的余弦值为设,,则令,得即,是关于当时,,所以.立体几何与空间向量立体几何初步空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用567空间直角坐标系空间向量及其运算空间向量的应用8空间向量空间向量及其运算空间向量的应用910所成角最小时,求线段的长.轴,建立空间直角坐标系,考点设平面的一个法向量,,,,所示二面角的余弦值为.设,∵在线段上,直线上点坐标满足,∵,,,设,整理得:,,解得,∴当与夹角最小时,,此时解得,,∴点坐标为,∵,长度为.(2)立体几何与空间向量空间向量空间直角坐标系11?并说明理由.,的延长线于,连结.∵平面平面,平面平面∴平面,即是直线设,,则∴.∵,∴,∴.解得.∵,,∴.∴,方程无解.∴直线与平面所成的角不能为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的垂直12如图在直角梯形中,,,且折起,使,得到如下的立体图形.平面.,求二面角的余弦值.证明见解析.由题可得,,则,,且,所以平面.平面,所以平面平面.方法一、过点作交于点,,则平面,.,,平面,.,则,.为坐标原点,方向为轴正方向,建立如图所示的空间直角坐标系.则,,,,因为,所以.又平面平面,所以因为,且,,所以所以,即四边形是平行四边形.所以.从而平面.所以作交于点,连结,因为,,所以平面所以,所以是二面角过点做交于点,连结,则平面,又,,13则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用14空间直角坐标系空间向量及其运算15为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体16∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.17在侧面中,.由勾股定理知,设点,则点轨迹为而,则立体几何与空间向量立体几何初步空间中的垂直解析几何双曲线双曲线的定义、图形及标准方程双曲线的性质B.个 D.个如图,在正方体).18B∵,即∴,,,,∴点到各顶点的距离的不同取值有故选.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系19的正方体中,点,,则满足条件的点的个数为若满足的点的个数为(1)(2)(1)如下图所示,。
高二数学平面向量与空间向量的投影与夹角在高二数学学习中,平面向量与空间向量是必不可少的内容,其中投影与夹角是这两个概念中的重要部分。
接下来,本文将重点讨论平面向量与空间向量的投影与夹角,以帮助同学们更好地理解和应用这一知识点。
一、平面向量的投影与夹角1. 平面向量的投影平面向量的投影是指一个向量在另一个向量上的投影长度。
由于向量是具有方向的,因此投影也具有正负之分。
计算平面向量a在平面向量b上的投影的方法如下:设向量a的长度为|a|,向量b的长度为|b|,向量a与向量b的夹角为θ。
则向量a在向量b上的投影长度为|a|cosθ。
2. 平面向量的夹角平面向量的夹角是指两个向量之间的夹角,它可以通过内积公式计算得出。
设向量a和向量b分别为AB和AC两条线段的方向向量,它们的夹角可以通过以下公式计算得出:cosθ = (AB·AC) / (|AB||AC|),其中AB·AC表示向量AB和向量AC 的内积。
二、空间向量的投影与夹角与平面向量类似,空间向量的投影和夹角也是指一个向量在另一个向量上的投影长度以及两个向量之间的夹角。
1. 空间向量的投影计算空间向量a在空间向量b上的投影的方法与平面向量类似,即投影长度为|a|cosθ。
2. 空间向量的夹角空间向量的夹角可以通过两个向量的点积和模长相除得到:cosθ = (a·b) / (|a||b|),其中a·b表示向量a和向量b的点积。
三、应用举例现以一个典型的应用举例来加深对平面向量与空间向量的投影与夹角的理解。
例:已知平面向量a = (3, 2) 和平面向量b = (5, -1),求a在b上的投影长度以及a与b的夹角。
解:首先,计算a在b上的投影长度:|a| = √(3^2 + 2^2) = √13|b| = √(5^2 + (-1)^2) = √26θ = arccos((3*5 + 2*(-1))/(√13 * √26)) ≈ 0.705 弧度因此,a在b上的投影长度为|a|cosθ = √13 * cos(0.705) ≈ 3.61。
高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。
高二数学平面向量与空间向量的夹角与平行数学中的向量是广泛应用于各个领域的概念,其夹角和平行性是研究向量性质的重要内容。
在高中数学的学习阶段,我们首先学习了平面向量,然后逐渐引入了空间向量。
本文将讨论高二阶段数学中平面向量和空间向量之间夹角的概念和计算方法,以及向量的平行性。
一、平面向量的夹角与平行性在平面上,我们常常遇到两个向量的夹角和平行性的问题。
夹角指的是一个向量与另一个向量之间的角度关系。
平行性则指的是两个向量的方向相同或相反。
1. 夹角的定义与计算两个非零向量A和A在平面上的夹角可以用余弦定理来计算。
假设向量A的模为 |A|,向量A的模为 |A|,两向量的夹角为θ,则有以下公式:A·A = |A||A|cosθ其中,A·A表示向量的数量积或点积。
通过上述公式,我们可以求出两个向量的点积值,由点积值求解出夹角θ。
若两向量的点积为零,则它们垂直;若点积大于零,则它们夹角为锐角;若点积小于零,则它们夹角为钝角。
2. 平行与共线的判定如果两个向量A和A的夹角为0或180度,它们即为平行向量。
要判断两向量是否平行,我们可以计算它们的方向向量,若方向向量相等,则它们平行。
此外,两个非零向量平行的充分必要条件是它们的数量积等于零。
二、空间向量的夹角与平行性当我们进一步学习空间向量时,针对夹角和平行性的概念也需要进行拓展。
1. 夹角的定义与计算对于空间中的两个向量A和A,它们的夹角θ 满足以下公式:cosθ = (A·A) / (|A||A|)其中,(A·A) 表示向量的数量积或点积,|A| 和 |A| 分别表示向量的模。
通过该公式,我们可以求出两个向量的点积,从而计算出夹角的值。
同样,若点积为零,则两向量垂直;若点积大于零,则夹角为锐角;若点积小于零,则夹角为钝角。
2. 平行与共线的判定空间中的两个向量A和A,若满足以下条件,则它们平行或共线:a) 两向量的方向向量相等;b) 两向量的数量积等于零。
高中数学典型例题分析第八章 平面向量与空间向量§8.1平面向量及其运算一、知识导学1.模(长度):向量的大小,记作||。
长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。
2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。
3.相等向量:长度相等且方向相同的向量。
4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。
记作-a 。
5.向量的加法:求两个向量和的运算。
已知a ,b 。
在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。
记作a +b 。
6. 向量的减法:求两个向量差的运算。
已知a ,b 。
在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。
记作a -b 。
7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0(2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa③λ(a +)=λa+λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。
另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=09.平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2使 a =λ11e +λ22e ,其中不共线向量1e 、2e叫做表示这一平面内所有向量的一组基底。
10.定比分点设P 1,P 2是直线l 上的两点,点P 是不同于P 1,P 2的任意一点则存在一个实数λ,使21P P =λ21P P ,λ叫做分有向线段所成的比。
若点P 1、P 、P 2的坐标分别为(x 1,y 1),(x,y),(x 2,y 2),则有特别当λ=1,即当点P 是线段P 1P 2的中点时,有⎪⎩⎪⎨⎧+=+=222121y y y x x x 11.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·=|a ||b |cos θ规定:零向量与任一向量的数量积是0。
(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积。
(3)性质:设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则e ·a =a ·e =|a |cos θ ,a ⊥b ⇔a ·b =0当a 与b 同向时,a ·b =|a ||b |当a 与b 反向时,a ·b =-|a ||b |特别地,a ·a =|a |2或|a |=a a⋅ cos θ=ba b a ⋅⋅ |a ·b |≤|a ||b | (4)运算律:a ·b =b ·a (交换律)(λa )·b =λ(b ·a )=a ·(λb )(a +b )·c =a ·c +b ·c(5)平面向量垂直的坐标表示的充要条件:设a =(x 1 ,y 1), b = (x 2,y 2),则a ⊥b ⇔a ·b =|a |·|b |cos90°=0a ⊥b ⇔x 1x 2+y 1y 2=012.平移公式:设P (x ,y )是图形F 上的任意一点,它在平移后图形F /上对应点为P /(x /,y /),且设/PP 的坐标为(h ,k ),则由/OP =+/PP ,得:(x /,y /)=(x ,y )+(h ,k ) 二、疑难知识导析1.向量的概念的理解,尤其是特殊向量“零向量”向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量;2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点;3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。
因此,建议在记忆时对比记忆;4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的;5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。
三、经典例题导讲[例1] 和a = (3,-4)平行的单位向量是_________;错解:因为a 的模等于5,所以与a 平行的单位向量就是51a ,即 (35 ,-45 ) 错因:在求解平行向量时没有考虑到方向相反的情况。
正解:因为a 的模等于5,所以与a 平行的单位向量是±51a ,即(35 ,-45 )或(-35 ,45 ) 点评:平行的情况有方向相同和方向相反两种。
读者可以自己再求解“和a = (3,-4)垂直的单位向量”,结果也应该是两个。
[例2]已知A (2,1),B (3,2),C (-1,4),若A 、B 、C 是平行四边形的三个顶点,求第四个顶点D 的坐标。
错解:设D 的坐标为(x ,y ),则有x-2=-1-3,y-1=4-2 ,即x=-2,y=3。
故所求D 的坐标为(-2,3)。
错因:思维定势。
习惯上,我们认为平行四边形的四个顶点是按照ABCD 的顺序。
其实,在这个题目中,根本就没有指出四边形ABCD 。
因此,还需要分类讨论。
正解:设D 的坐标为(x ,y )当四边形为平行四边形ABCD 时,有x-2=-1-3,y-1= 4-2 ,即x= -2,y= 3。
解得D 的坐标为(-2,3);当四边形为平行四边形ADBC 时,有x-2=3-(-1),y-1= 2-4 ,即x= 6,y= -1。
解得D的坐标为(6,-1);当四边形为平行四边形ABDC 时,有x-3=-1-2,y-2= 4-1 ,即x= 0,y= 5。
解得D 的坐标为(0,5)。
故第四个顶点D 的坐标为(-2,3)或(6,-1)或(0,5)。
[例3]已知P 1(3,2),P 2(8,3),若点P 在直线P 1P 2上,且满足|P 1P|=2|PP 2|,求点P 的坐标。
错解:由|P 1P|=2|PP 2|得,点P 分P 1P 2所成的比为2,代入定比分点坐标公式得P (38,319) 错因:对于|P 1P|=2|PP 2|这个等式,它所包含的不仅是点P 为 P 1,P 2 的内分点这一种情况,还有点P 是 P 1,P 2的外分点。
故须分情况讨论。
正解:当点P 为 P 1,P 2 的内分点时,P 分P 1P 2所成的比为2,此时解得P (38,319); 当点P 为 P 1,P 2 的外分点时,P 分P 1P 2所成的比为-2,此时解得P (13,4)。
则所求点P 的坐标为(38,319)或(13,4)。
点评:在运用定比分点坐标公式时,要审清题意,注意内外分点的情况。
也就是分类讨论的数学思想。
[例4] 设向量 ),(11y x a = ,),(22y x b = ,0 ≠b ,则“b a //”是“1221y x y x =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:根据向量的坐标运算和充要条件的意义进行演算即可.解:若b a //,∵0 ≠b ,则b r a =,代入坐标得:),(),(2211y x r y x =,即21rx x =且21ry y = .消去r ,得1221y x y x =;反之,若1221y x y x =,则21rx x =且21ry y =,即),(),(2211y x r y x =则b r a =,∴b a //故“b a //”是“1221y x y x = ”的充要条件.答案:C点评:本题意在巩固向量平行的坐标表示.[例5].已知a =(1,-1),b =(-1,3),c =(3,5),求实数x 、y ,使c =x a +y b .分析:根据向量坐标运算和待定系数法,用方程思想求解即可.解:由题意有x a +y b =x (1,-1)+y (-1,3)=(x-y ,-x+3y ).又c =(3,5)∴x -y=3且-x+3y=5解之得 x=7 且y=4点评:在向量的坐标运算中经常要用到解方程的方法.[例6]已知A (-1,2),B (2,8),=31 ,= -31,求点C 、D 和向量的坐标.分析:待定系数法设定点C 、D 的坐标,再根据向量 , 和 关系进行坐标运算,用方程思想解之.解:设C 、D 的坐标为),(11y x 、),(22y x ,由题意得 AC =(2,111-+y x ),AB =(3,6), DA =(222,1y x ---),BA =(-3,-6) 又=31 ,= -31 ∴(2,111-+y x )=31(3,6), (222,1y x ---)=-31(-3,-6) 即 (2,111-+y x )=(1,2) , (222,1y x ---)=(1,2)∴111=+x 且221=-y ,112=--x 且222=-y∴01=x 且41=y ,且22-=x 02=y∴点C 、D 和向量 的坐标分别为(0,4)、(-2,0)和(-2,-4)小结:本题涉及到方程思想,对学生运算能力要求较高.四、典型习题导练)2.(2006年高考浙江卷)设向量,,a b c 满足0a b c ++= ,,||1,||2a b a b ⊥== ,则2||c =(A)1 (B)2 (C)4 (D)53. 将函数y= 4x -8的图象L 按向量a 平移到L /,L /的函数表达式为y= 4x ,则向量a =4. →→→-=j i a 63方向取线段AB ,使5||=→AB ,则B 点坐标为6.(2006年高考辽宁卷)已知ABC ∆的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+ ,(,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23π§8.2平面向量与代数、几何的综合应用一、知识导学1.余弦定理:三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的2倍,即 A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin === 二、疑难知识导析1.初中学过的勾股定理只是余弦定理的一种特殊情况。