工程常用几何体面积体积计算公式
- 格式:docx
- 大小:653.40 KB
- 文档页数:11
各种形体面积体积计算公式
一、立体
1.椎体
椎体的表面积公式为:S=2πrh;椎体的体积公式为:V=1/3πr^2h,其中r为椎体半径,h为椎体的高。
2.圆柱体
圆柱体的表面积公式为:S=2πrh+2πr2;圆柱体的体积公式为:
V=πr²h,其中r为圆柱体底面的半径,h为圆柱体的高。
3.球体
球体的表面积公式为:S=4πr²;球体的体积公式为:V=4/3πr³,其中r为球体的半径。
4.圆锥体
圆锥体的表面积公式为:S=πrl+πrs;圆锥体的体积公式为:
V=1/3πr²h,其中r为圆锥体的底面半径,l为圆锥体的底面周长,h为圆锥体的高。
5.正方体
正方体的表面积公式为:S=6a²;正方体的体积公式为:V=a³,其中a为正方体的边长。
6.平行四边体
平行四边体的表面积公式为:S=2a²+2b²;平行四边体的体积公式为:V=a²b,其中a为平行四边体的底面的长度,b为平行四边体的底面的宽度。
二、平面
1.三角形
三角形的面积公式为:S=1/2absinC,其中a、b为三角形的两边,C
为三角形的夹角(以弧度为单位)。
2.矩形
矩形的面积公式为:S=ab,其中a为矩形的长,b为矩形的宽。
3.正方形
正方形的面积公式为:S=a²,其中a为正方形的边长。
4.圆
圆的面积公式为:S=πr²,其中r为圆的半径。
常见几何体的表面积体积公式1、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 {S=2(ab+ah+bh)(2)体积=长×宽×高(V=abh)2、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径3、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷34、正方体V:体积s:面积a:边长体积:边长×边长×边长扩展资料周长:1、正方形C周长S面积a边长周长=边长×4(C=4a)面积=边长×边长(S=a×a)2、长方形C周长S面积a边长周长=(长+宽)×2(C=2(a+b))面积=长×宽(S=ab)3、三角形s面积a底h高面积=底×高÷2(s=ah÷2)三角形高=面积×2÷底三角形底=面积×2÷高4、平行四边形s面积a底h高面积=底×高(s=ah)5、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2(s=(a+b)×h÷2)6、圆形S面积C周长πd=直径r=半径(1)周长=直径×π=2×π×半径(C=πd=2πr)(2)面积=半径×半径×π。
工程常用面积体积计算公式工程中常用的面积和体积计算公式非常多,涉及到各种建筑、土木、机械、电力等不同领域的工程。
以下是一些常见的面积和体积计算公式的示例:1.平面图形的面积计算公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-圆的面积公式:面积=π×半径×半径-椭圆的面积公式:面积=π×长轴半径×短轴半径-三角形的面积公式:面积=底边长×高/22.三维几何体的体积计算公式:-立方体的体积公式:体积=边长×边长×边长-直方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=圆的面积×高-圆锥体的体积公式:体积=圆锥的底面积×高/3-球体的体积公式:体积=4/3×π×半径×半径×半径3.土木工程中的体积计算公式:-坝体体积计算公式:体积=坝顶长度×每个梯段高度之和-挡土墙体积计算公式:体积=墙底长度×每个梯段高度之和-坡道体积计算公式:体积=坡度×坡道宽度×坡道长度-水库库容计算公式:体积=水库底面积×水位高度4.电力工程中的体积计算公式:-电容器体积计算公式:体积=电容量/电容器电压-变压器体积计算公式:体积=功率/变压器容量密度5.机械工程中的体积计算公式:-内燃机汽缸体积计算公式:体积=π×活塞直径×活塞行程×气缸数量这只是一些常见的面积和体积计算公式示例,实际应用中还有许多其他的公式,根据具体工程的需求会有所不同。
在工程实践中,我们还需要考虑到各种误差和修正因素,以及特殊形状和复杂结构的计算方法。
因此,在实际应用中,需要根据具体情况进行计算并选择合适的公式。
空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
空间⼏何体的体积与⾯积的全部公式空间⼏何体的体积与⾯积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体⾼)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其⾼)S=πR²+πR[(h²+R²)的平⽅根]V=πR²h/33、正⽅体(a为边长)S=6a²V=a³4、长⽅体(a为长,b为宽,c为⾼)S=2(ab+ac+bc)V=abc5、棱柱(S为底⾯积,h为⾼)V=Sh6、棱锥(S为底⾯积,h为⾼)V=Sh/37、棱台(S1和S2分别为上、下底⾯积,h为⾼)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为⾼,C为底⾯周长,S底为底⾯积,S侧为侧⾯积,S表为表⾯积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为⾼)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间⼏何体中的⾯积和体积公式的⽅法:1. ⾯积问题:空间⼏何体的⾯积主要分为两类:侧⾯积和表⾯积,其中的重点是旋转体的侧⾯积公式。
对于多⾯体的⾯积,其各个⾯都是多边形,这个在⼩学阶段就研究过了。
其中,只需要记住圆台的侧⾯积公式就够了。
将圆台侧⾯打开,是⼀个扇环,很像⼀个梯形。
所以圆台的侧⾯积就按照梯形来进⾏计算,就很容易理解。
如下图所⽰:圆台侧⾯积公式对于圆柱和圆锥的侧⾯积公式,不需要单独去记忆,只需要将其看成⼀个特殊的圆台就⾏了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上⾯的思路,把柱体和椎体看成⼀个特殊的台体,因此也只需要记住⼀个台体的体积公式就可以啦。
常用几何体体积公式一、正方体体积公式。
1. 公式。
- 设正方体的棱长为a,其体积V = a^3。
2. 推导。
- 正方体是特殊的长方体,它的长、宽、高都相等,长方体体积V =长×宽×高,对于正方体来说,长、宽、高都是a,所以V=a× a× a=a^3。
3. 示例。
- 若正方体棱长a = 3cm,则其体积V=3^3=27cm^3。
二、长方体体积公式。
1. 公式。
- 设长方体的长、宽、高分别为a、b、c,则体积V = abc。
2. 推导。
- 可以把长方体看作是由许多个单位小正方体堆积而成的。
长a表示沿x轴方向小正方体的个数,宽b表示沿y轴方向小正方体的个数,高c表示沿z轴方向小正方体的个数,那么总的小正方体个数(即体积)就是abc。
3. 示例。
- 长方体长a = 4cm,宽b = 3cm,高c = 2cm,则体积V = 4×3×2 = 24cm^3。
三、圆柱体积公式。
1. 公式。
- 设圆柱底面半径为r,高为h,则体积V=π r^2h。
2. 推导。
- 把圆柱底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的长方体。
这个长方体的底面积等于圆柱的底面积π r^2,高等于圆柱的高h,根据长方体体积公式V = 底面积×高,所以圆柱体积V=π r^2h。
3. 示例。
- 圆柱底面半径r = 2cm,高h = 5cm,则体积V=π×2^2×5 = 20π cm^3≈62.8cm^3(π取3.14)。
四、圆锥体积公式。
1. 公式。
- 设圆锥底面半径为r,高为h,则体积V=(1)/(3)π r^2h。
2. 推导。
- 通过实验发现,等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的(1)/(3)。
因为圆柱体积V=π r^2h,所以圆锥体积V=(1)/(3)π r^2h。
3. 示例。
- 圆锥底面半径r = 3cm,高h = 4cm,则体积V=(1)/(3)π×3^2×4 = 12π cm^3≈37.68cm^3(π取3.14)。
常用面积计算公式
土方量计算的基本方法
土方量计算的基本方法主要有平均高度法和平均断面法两种。
1.平均高度法
土方量计算公式表(四方棱柱体法)
注:1.表中a为方格边长,b、c为计算图形相应的两个边长;
2.h1、h2、h3、h4分为各角点的施工高度;
3. Σh为各计算图形相应的挖方或填方的施工高度总和,用绝对值代入;
4. V为挖方或填方的体积(m3)。
2.平均断面法
当采用平均断面法计算基槽、管沟或路基土方量时,可先测绘出纵断面图,再根据沟槽基底的宽、纵向坡度及放坡宽度,绘出在纵断面图上各转折点处的横断面,算出各横断面面积后便可用平均断面法计算各段的土方量,即:V=(F1+ F2) ×L1/2 +(F2+ F3) ×L2/2+(F3+ F4) ×L3/2+…….
注:F1、F2……表示横断面面积;
L1、L2……表示断面之间距离。
常用体积计算公式圆台体积
V=π*h*(R2+R*r+r2)/3
V=π*h*(D2+d2+D*d) /12
圆柱体积
V=π*R2*h
V=π*D2*h/4
球缺体积
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
V=πh2(3r-h)/3
a2=h(2r-h)。
常用面积体积公式大全在日常生活和学习中,我们经常会遇到需要计算面积和体积的问题。
掌握常用的面积和体积公式可以帮助我们更快、更准确地解决这些问题。
下面是一些常见的面积和体积公式:1.矩形的面积公式:矩形的面积=长×宽2.正方形的面积公式:正方形的面积=边长×边长3.三角形的面积公式:三角形的面积=底边长×高÷24.梯形的面积公式:梯形的面积=(上底+下底)×高÷25.平行四边形的面积公式:平行四边形的面积=底边长×高6.圆的面积公式:圆的面积=π×半径×半径7.正圆锥的体积公式:正圆锥的体积=圆锥的底面积×高÷3=π×半径×半径×高÷38.球体的体积公式:球体的体积=4/3×圆的面积×半径9.直角梯形的体积公式:直角梯形的体积=(上面积+下面积+上底×下底)×高÷310.圆柱体的体积公式:圆柱体的体积=圆的面积×高=π×半径×半径×高11.弧长公式:弧长=θ×半径其中,θ为弧度(以弧长所对的圆心角所对应的弧长)12.扇形面积公式:扇形的面积=θ×π×半径×半径÷360°其中,θ为弧度(以弧长所对的圆心角所对应的弧度)13.椭圆的面积公式:椭圆的面积=π×长轴×短轴14.菱形的面积公式:菱形的面积=对角线1×对角线2÷215.立方体的体积公式:立方体的体积=边长×边长×边长16.正方体的表面积公式:正方体的表面积=6×边长×边长17.圆柱体的侧面积公式:圆柱体的侧面积=π×直径×高18.圆锥的侧面积公式:圆锥的侧面积=π×半径×斜高19.球体的表面积公式:球体的表面积=4×π×半径×半径20.圆锥的全面积公式:圆锥的全面积=圆锥的侧面积+圆锥的底面积通过掌握上述面积和体积公式,我们可以在实际问题中快速准确地进行求解。
立体几何的面积和体积公式在我们学习数学的旅程中,立体几何那可是个相当有趣又有点小挑战的部分。
特别是其中的面积和体积公式,就像是打开立体世界大门的神奇钥匙。
先来说说长方体吧。
长方体的表面积公式是 2×(长×宽 + 长×高 + 宽×高),体积公式是长×宽×高。
这就好比我们盖房子,你要知道用多少材料来盖四周的墙和房顶(表面积),也要清楚房子内部能有多大的空间(体积)。
记得有一次,我和朋友一起做手工,要做一个长方体的收纳盒。
我们量好了尺寸,长是 20 厘米,宽 15 厘米,高 10 厘米。
算表面积的时候,可把我俩忙坏了。
先算长×宽,20×15 = 300 平方厘米;再算长×高,20×10 = 200 平方厘米;接着算宽×高,15×10 = 150 平方厘米。
然后把它们加起来乘以 2,(300 + 200 + 150)× 2 = 1300 平方厘米,这就是我们需要的材料面积。
算体积就简单多啦,20×15×10 = 3000 立方厘米,心里想着能装不少小玩意儿呢。
正方体的情况就简单些啦,表面积是 6×棱长×棱长,体积是棱长×棱长×棱长。
想象一下,一个漂亮的魔方,它就是个正方体。
每个面都一样大,算起来轻松不少。
圆柱体也有它独特的公式。
圆柱体的侧面积是底面圆的周长乘以高,表面积还要加上两个底面圆的面积,体积是底面积乘以高。
这让我想起家里的水桶,要知道能装多少水,就得用体积公式来算算。
圆锥体呢,体积是三分之一乘以底面积乘以高。
有一回在公园里,看到一个圆锥形的花坛,我就在想,要是知道它的底面半径和高度,就能算出需要多少土来填满啦。
还有球体,表面积是4π×半径×半径,体积是三分之四π×半径×半径×半径。
常用形体体积面积计算公式大全以下是常用的形体体积和面积计算公式:
1.立方体:
-体积公式:V=s^3(s为立方体的边长)
-表面积公式:A=6s^2
2.球体:
-体积公式:V=(4/3)πr^3(r为球的半径)
-表面积公式:A=4πr^2
3.圆柱体:
-体积公式:V=πr^2h(r为圆柱的底面半径,h为高)
-表面积公式:A=2πr(r+h)+2πr^2
4.圆锥体:
-体积公式:V=(1/3)πr^2h(r为圆锥的底面半径,h为高) -表面积公式:A=πr(r+√(r^2+h^2))
5.圆环:(两个同心圆之间的区域)
-面积公式:A=π(R^2-r^2)(R为大圆半径,r为小圆半径)
6.正方形:(四边相等,每个角为直角的四边形)
-面积公式:A=a^2(a为边长)
7.长方形:(四边都不相等,每个角为直角的四边形)
-面积公式:A=l×w(l为长,w为宽)
8.三角形:
- 面积公式:A = (1/2)bh (b为底边长,h为高)
9.梯形:(有两个平行的底边)
-面积公式:A=(1/2)(a+b)h(a和b为两个底边的长度,h为高)
10.五边形:
- 面积公式:A = (1/4)sqrt(5(5+2sqrt(5)))a^2 (a为边长)
11.六边形:
-面积公式:A=(3√3)/2a^2(a为边长)
12.椭圆:
- 面积公式:A = πab (a为长轴的一半,b为短轴的一半)
这些是常见的形体体积和面积计算公式,可以帮助你快速计算各种形状的物体的体积和面积。
体积和表面积的概念和计算体积和表面积是数学中涉及到的两个重要概念,它们在几何学、物理学以及工程领域中都有着广泛的应用。
本文将介绍体积和表面积的定义以及它们的计算方法,帮助读者更好地理解和运用这两个概念。
一、体积的概念和计算体积是指物体所占据的空间大小,通常用单位立方米(m³)或立方厘米(cm³)来表示。
对于一些简单的几何体,可以通过基本的公式来计算其体积。
1. 立方体的体积计算公式:立方体是边长相等的正方体,其体积计算公式为边长的三次方。
假设立方体的边长为a,则其体积V可以通过公式V=a³来计算。
2. 直方体的体积计算公式:直方体与立方体类似,但其三个边长不一定相等。
对于直方体,可以通过长度、宽度和高度的乘积来计算。
假设直方体的长度为L,宽度为W,高度为H,则其体积V可以通过公式V=L×W×H来计算。
3. 圆柱体的体积计算公式:圆柱体是一个由底面圆和柱体侧面构成的几何体。
对于圆柱体,可以通过底面圆的面积和高度来计算其体积。
假设底面圆的半径为r,高度为h,则其体积V可以通过公式V=πr²h来计算,其中π约等于3.14159。
4. 其他几何体的体积计算:对于其他更为复杂的几何体,计算其体积可能需要使用不同的公式或方法,例如球体、棱锥等。
这些公式可以在相关的数学书籍或在线资源中找到。
在实际应用中,也可以利用测量方法来获取几何体的体积。
二、表面积的概念和计算表面积是指几何体外部所占据的空间大小,在物理学和工程领域中常用于表示物体的包裹面积或接触面积。
不同的几何体有不同的计算方法来求解其表面积。
1. 立方体的表面积计算公式:立方体的六个面都是正方形,且边长相等。
因此,计算立方体的表面积,只需将一个正方形的面积乘以6即可。
假设立方体的边长为a,则其表面积S可以通过公式S=6a²来计算。
2. 直方体的表面积计算公式:直方体的表面积计算方法与立方体类似,只是需要考虑到不同的长方形面的尺寸。
常用形体体积面积计算公式大全形体的体积和面积是几何学中重要的概念,常用于计算物体的大小和空间占用。
本文将介绍一些常用的形体体积和面积计算公式,包括立方体、长方体、球体、圆柱体、圆锥体等常见的几何形体。
1.立方体:立方体是一种具有六个相等的正方形面的形体,它的体积和表面积可以通过以下公式计算:-体积公式:V=a^3,其中a表示立方体的边长。
-表面积公式:A=6a^22.长方体:长方体是一种具有六个面的形体,每个面都是矩形,它的体积和表面积可以通过以下公式计算:- 体积公式:V = lwh,其中l表示长方体的长度,w表示宽度,h表示高度。
- 表面积公式:A = 2lw + 2lh + 2wh3.球体:球体是一种具有球面的形体,它的体积和表面积可以通过以下公式计算:-体积公式:V=(4/3)πr^3,其中r表示球体的半径。
-表面积公式:A=4πr^24.圆柱体:圆柱体是一种具有两个平行圆底和侧面的形体,它的体积和表面积可以通过以下公式计算:-体积公式:V=πr^2h,其中r表示圆柱体的底面半径,h表示圆柱体的高度。
- 表面积公式:A = 2πrh + 2πr^25.圆锥体:圆锥体是一种具有一个圆锥形底面和一个顶点的形体,它的体积和表面积可以通过以下公式计算:-体积公式:V=(1/3)πr^2h,其中r表示圆锥体的底面半径,h表示圆锥体的高度。
-表面积公式:A=πr(r+√(r^2+h^2))6.整体公式:对于一些复合的形体或不规则的形体,可以使用下列常用的整体公式进行体积和表面积的计算:-立方体和长方体的合并体积公式:V=V1+V2,其中V1和V2分别为两个立方体或长方体的体积。
-球体的切割体积公式:V=V1-V2,其中V1为球体的体积,V2为切割球体的体积。
-面积的整体公式:A=A1+A2+...+An,其中A1,A2,...,An分别为各个面的面积。
这些公式是几何学中常用的形体体积和面积计算公式,可以帮助我们计算各种形体的大小和空间占用。
造价师常用面积体积计算公式一、常见平面图形面积计算公式。
1. 矩形(长方形)- 面积公式:S = a× b,其中a为长,b为宽。
- 例如:一个长方形,长为5米,宽为3米,其面积S = 5×3=15平方米。
2. 正方形。
- 面积公式:S = a^2,其中a为边长。
- 例如:正方形边长为4米,其面积S = 4^2=16平方米。
3. 三角形。
- 面积公式:S=(1)/(2)ah,其中a为底边长,h为这条底边对应的高。
- 例如:三角形底边长为6米,高为4米,其面积S=(1)/(2)×6×4 = 12平方米。
4. 平行四边形。
- 面积公式:S = ah,其中a为底边长,h为这条底边对应的高。
- 例如:平行四边形底边长为5米,高为3米,其面积S = 5×3 = 15平方米。
5. 梯形。
- 面积公式:S=((a + b)h)/(2),其中a、b为梯形的上底和下底,h为梯形的高。
- 例如:梯形上底a = 2米,下底b = 4米,高h = 3米,其面积S=((2 +4)×3)/(2)=9平方米。
6. 圆。
- 面积公式:S=π r^2,其中r为圆的半径,π取3.14(通常情况)。
- 例如:圆的半径r = 2米,其面积S = 3.14×2^2=12.56平方米。
二、常见立体图形体积计算公式。
1. 长方体。
- 体积公式:V=abc,其中a、b、c分别为长方体的长、宽、高。
- 例如:长方体长a = 3米,宽b = 2米,高c = 4米,其体积V = 3×2×4 = 24立方米。
2. 正方体。
- 体积公式:V = a^3,其中a为正方体的边长。
- 例如:正方体边长a = 3米,其体积V = 3^3=27立方米。
3. 圆柱体。
- 体积公式:V=π r^2h,其中r为底面半径,h为圆柱体的高。
- 例如:圆柱体底面半径r = 2米,高h = 5米,其体积V = 3.14×2^2×5=62.8立方米。
立体几何面积和体积公式立体几何面积和体积公式立体几何是三维空间中物体的形状和大小的研究,可以从表面面积和体积两方面进行探究。
在数学中,计算几何就是研究空间中的几何图形及其性质的一门学科,而立体几何是计算几何的一个重要分支。
本文将简要介绍立体几何的面积和体积公式。
一、立体几何面积公式立体图形表面的面积是指该物体上外表面积的总和。
立体几何面积公式的推导是通过三维几何公式及微积分基本定理进行特定面积的求导推导的。
至于常见图形的具体推导将在下面讨论。
1.长方体表面积公式长方体一共有6个面,每个面的面积都是$l \times w$。
根据此,长方体的表面积公式可以表示为$ S=2lw+2lh+2wh$。
2.球体表面积公式球体的表面积为球的表面面积,即 $S=4\pi r^2 $,其中,$\pi$是圆周率,$r$是球体的半径。
3.圆锥表面积公式圆锥的表面积是锥和底面的总和。
锥的表面积为$S_a=\pi rl$,其中 $l$ 为斜高,$r$ 为底面半径。
底面的面积为$S_b=\pi r^2$。
根据此,圆锥表面积公式可以表示为$S_a+S_b=\pi r^2+\pi rl$。
4.圆柱表面积公式圆柱的表面积是上下两个圆面积和侧面积之和。
上下圆面积为 $\pi r^2$,侧面积为$l \times 2 \pi r$。
根据此,圆柱表面积公式可以表示为$ S=2 \pi r^2 +2\pi rl$。
5.正四面体表面积公式正四面体相对简单,它的表面积是所有面积的总和,即 $S=a^2\sqrt{3}$,其中,$a$是正四面体的边长。
6.棱锥表面积公式棱锥的表面积是锥和底面的总面积。
锥体积为$S_a=\sqrt{h^2+b^2}$,其中,$h$ 为棱锥高,$b$ 为底部边长。
底面积为 $S_b=\frac{1}{2}(bl)$,其中,$l$ 为底部棱长。
根据此,棱锥表面积公式可以表示为$S=S_a+S_b=\frac{1}{2}bh+\frac{1}{2}bl+\sqrt{h^2+b^ 2}$。
土建所有算量的公式1,建筑土方开挖工程量计算公式:圆柱体:体积=底面积×高长方体:体积=长×宽×高正方体:体积=棱长×棱长×棱长.锥体: 底面面积×高÷3台体: V=[ S上+√(S上S下)+S下]h÷3球缺体积公式=πh²(3R-h)÷3球体积公式:V=4πR³/3棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注:V:体积;S1:上表面积;S2:下表面积;h:高。
------几何体的表面积计算公式圆柱体:表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体:表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形名称符号周长C和面积S正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα梯形 a和b -上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d -直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长S=r2/2·(πα/180-sinα)b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2r-半径=r(l-b)/2 + bh/2α-圆心角的度数≈2bh/3 圆环 R-外圆半径 S=π(R2-r2)r-内圆半径=π(D2-d2)/4D-外圆直径d-内圆直径椭圆 D-长轴 S=πDd/4d-短轴2,建筑工程量计算公式:计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。
工程常用面积体积计算公式在工程中,常常需要计算面积和体积,以确定材料的用量、空间的大小等。
以下是一些常用的面积和体积计算公式:一、平面图形的面积计算:1.矩形的面积(或正方形的面积):面积=长×宽2.三角形的面积:面积=(底边长×高)/23.梯形的面积:面积=(上底长+下底长)×高/24.平行四边形的面积:面积=底边长×高5.圆的面积:面积=π×半径的平方(其中π可以取3.14或22/7)6.扇形的面积:面积=π×半径的平方×(度数/360)(度数为扇形的角度)二、立体图形的体积计算:1.立方体的体积:体积=长×宽×高2.正方体的体积:体积=边长的立方3.圆柱的体积:体积=π×半径的平方×高(其中π可以取3.14或22/7)4.锥体的体积:体积=(底面积×高)/35.球体的体积:体积=(4/3)×π×半径的立方6.角锥的体积:体积=(底面积×高)/3(其中,不规则三角形的底面积计算方式同三角形面积的公式)三、其他常用的面积和体积计算公式:1.圆环的面积:面积=π×(外半径的平方-内半径的平方)2.圆台的体积:体积=(底面积+顶面积+侧面积)/33. 正多边形的面积:面积 = (n × 边长× 边长)/ (4 × tan (π / n))(其中 n 为边的数量)4.棱柱的体积:体积=底面积×高这些公式是工程中常用的面积和体积计算公式,通过灵活运用这些公式,可以有效地计算出所需的面积和体积值,从而进行工程设计和规划。
同时,在实际应用中,还需要注意单位的转换和准确性,以及考虑到材料的浪费和排除不规则因素对计算结果的影响。
第1篇一、引言在数学、物理、工程等领域,体积和表面积的计算是基本且重要的。
了解并掌握常见的体积和表面积公式对于解决实际问题具有重要意义。
本文将详细介绍一些常见的体积和表面积公式,以供读者参考。
二、常见体积公式1. 立方体体积公式立方体体积公式为:V = a^3,其中a为立方体的边长。
2. 球体体积公式球体体积公式为:V = (4/3)πr^3,其中r为球体的半径。
3. 圆柱体体积公式圆柱体体积公式为:V = πr^2h,其中r为圆柱体底面半径,h为圆柱体高。
4. 圆锥体体积公式圆锥体体积公式为:V = (1/3)πr^2h,其中r为圆锥体底面半径,h为圆锥体高。
5. 棱柱体积公式棱柱体积公式为:V = Bh,其中B为底面积,h为棱柱高。
6. 棱锥体积公式棱锥体积公式为:V = (1/3)Bh,其中B为底面积,h为棱锥高。
7. 梯形体积公式梯形体积公式为:V = (a+b)h/2,其中a和b为梯形上底和下底,h为梯形高。
8. 三角形体积公式三角形体积公式为:V = (1/2)ah,其中a为底边,h为高。
9. 矩形体积公式矩形体积公式为:V = lwh,其中l、w和h分别为矩形长、宽和高。
长方体体积公式为:V = lwh,其中l、w和h分别为长方体长、宽和高。
三、常见表面积公式1. 立方体表面积公式立方体表面积公式为:S = 6a^2,其中a为立方体的边长。
2. 球体表面积公式球体表面积公式为:S = 4πr^2,其中r为球体的半径。
3. 圆柱体表面积公式圆柱体表面积公式为:S = 2πrh + 2πr^2,其中r为圆柱体底面半径,h为圆柱体高。
4. 圆锥体表面积公式圆锥体表面积公式为:S = πrl + πr^2,其中r为圆锥体底面半径,l为圆锥体斜高。
5. 棱柱表面积公式棱柱表面积公式为:S = 2B + Ph,其中B为底面积,P为侧面积,h为棱柱高。
6. 棱锥表面积公式棱锥表面积公式为:S = πrl + πr^2,其中r为棱锥底面半径,l为棱锥斜高。