大学物理复习题集[精品文档]
- 格式:doc
- 大小:3.03 MB
- 文档页数:57
大学物理复习题(1)一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题号后的括号内。
错选、多选或未选均无分。
1.( )一质点做圆周运动,某时刻质点的切向加速度与法向加速度的大小分别为3m/s2和4 m/s2,此时质点运动的加速度的大小为2.( )一质点仅受大小相等方向垂直的两个力作用,加速度为a.若将其中一个力去掉,另一个力大小、方向不变,则该质点运动的加速度的大小变为原来的3.( )两个小球的动量大小相同,第一个小球的质量是第二个小球质量的2倍,则第一个小球的动能是第二个小球动能的4.( )将容器中的理想气体的温度提高为原来的4倍,分子的平均速率将增大为原来的5.( )有两个电量大小相同、符号相反的点电荷+q和-q,在它们连线的中垂线上有一点p,p点的电场强度的大小为E.若将两个点电荷的电量都变为它们原来的2倍,则p点的电场强度的大小变为6.( )下列叙述中正确的是A.质点受到几个力的作用时,一定产生加速度B.质点运动的速率不变时,它所受到的合外力不一定为零C.质点运动速度大,它所受的合外力也一定大D.质点运动的方向与合外力的方向一定相同7.( )如图,物体由静止开始沿竖直放置的圆弧形光滑轨道下滑,在从A到C的下滑过程中,物体所受的合外力A.大小不变,方向总是指向圆心B.大小变化,方向总是指向圆心C.大小不变,方向不总是指向圆心D.大小变化,方向不总是指向圆心8.( )一质量m=0.1kg的质点作平面运动,其运动方程为x=5+3t (SI),y=3+t-(1/2)t2 (SI),则质点在t=5s时的动量大小为9.( )一质点作匀速率圆周运动,该质点所受合外力大小为F,合外力对该质点做功为W. 则A.F=0,W=0B.F=0,W≠0C.F≠0,W=0D.F≠0,W≠010.( )一物块置于光滑斜面上,斜面放在光滑水平地面上.当物块下滑时,以木块、斜面和地球为系统,则该系统的A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能不守恒和T2时的麦克斯11.( ).某理想气体分子在温度T韦速率分布曲线如图所示,两温度下相应的分子平均速率分别为1υ和2υ,则12. ( )质点沿x 轴运动,运动方程为x =2t 2+6 (SI),则质点的加速度大小为13. ( )假设月亮绕地球作半径为R 的匀速率圆周运动,则月亮的运动周期正比于14. ( )质点在a 、b 两点的弹性势能分别为2a 1/2kx 和2b 1/2kx ,则在质点由b运动到a 的过程中,弹性力做功为15. ( )一辆装有沙子的小车以初速度v 沿水平方向运动,忽略一切阻力,若在运动过程中沙子不断地洒落,则装有沙子的小车A.速度不变,动量不变B.速度不变,动量改变C.速度改变,动量不变D.速度改变,动量改变16. ( )如图,杆的长度为L ,它的上端悬挂在水平轴O 上,杆对O 的转动惯量为J .起初,杆处于静止状态.现有一质量为m 的子弹以水平速度v 0击中杆的端点并以速度v 穿出,此时杆的角速度为17. ( )1mol 氧气和1mol 氢气,它们的A.质量相等,分子总数不等B.质量相等,分子总数也相等C.质量不等,分子总数相等D.质量不等,分子总数也不等18. ( )均匀带电球面球心处的场强大小以E 1表示,球面内其它任一点的场强大小以E 2表示,则A.E 1=0,E 2=0B.E 1=0,E 2≠0C.E 1≠0,E 2=0D.E 1≠0,E 2≠019. ( )一质点沿x 轴运动,其速度随时间的变化关系为v =5-t 2(SI ).在t =1s到t =2s 的时间内,质点的A.加速度与速度方向相反,速率不断减小B.加速度与速度方向相反,速率不断增大C.加速度与速度方向相同,速率不断减小D.加速度与速度方向相同,速率不断增大20. ( )质量为m 的物体置于水平桌面上.当一水平拉力F 作用在物体上时,物体在桌面上保持静止不动.已知物体与桌面之间的静摩擦因数为s μ,则桌面对物体的静摩擦力的大小为21. ( )质点绕O 点作匀速率圆周运动.质点所受的对O 点的合力矩用M 表示,质点对O 点的角动量用L 表示.则在该运动过程中A.M ≠0,L 守恒B.M ≠0,L 不守恒C.M =0,L 守恒D.M =0,L 不守恒22. ( )一定量的理想气体温度为T 1,经历一个等压膨胀过程后,分子数密度减小为原来的1/4,则气体的温度变为23. ( )理想气体在一个准静态过程中,温度升高,体积膨胀,则气体A.热力学能减少,对外界做正功B.热力学能减少,对外界做负功C.热力学能增加,对外界做正功D.热力学能增加,对外界做负功24. ( )理想气体初态时的压强为P 1,热力学能为U 1.经历一个等温过程后,气体的压强变化到212/3P P =,热力学能的增量∆U 为25. ( )一均匀带电无限长直线外一点处的电场强度大小为E 0,该点到带电直线的距离为r ,则距离带电直线为/2r 处的电场强度大小是26. ( )沿x 轴运动的质点,其运动方程为x =8-3t 2 (t ≥0),则质点A.沿x 轴负方向运动,速率不断增大B.沿x 轴负方向运动,速率不断减小C.沿x 轴正方向运动,速率不断增大D.沿x 轴正方向运动,速率不断减小27. ( )一辆质量为m 的汽车静止于斜坡上,斜坡与水平面之间的夹角为θ.已知汽车与斜坡之间的静摩擦因数为μs ,则斜坡对汽车的静摩擦力的大小为28. ( )一个绕固定轴O 旋转的刚体,对O 轴的角动量守恒.若刚体所受的合外力为F ,刚体所受的对O 轴的合外力矩为M ,则一定有A.F =0B.M =0C.F =0且M ≠0D.F ≠0且M =029. ( ).将储存于气缸中的理想气体等温压缩,使气体的分子数密度增大为原来的4倍,则气体的压强将变为原来的30. ( )理想气体经历了一个准静态过程,温度升高,同时气体对外界做正功,则气体A.热力学能增加,从外界吸收热量B.热力学能增加,向外界放出热量C.热力学能减少,从外界吸收热量D.热力学能减少,向外界放出热量31. ( )2mol 氢气(视为刚性分子理想气体)经历一个等压过程,温度从T 1变化到T 2,气体做功为32. ( )两个半径相同、带电量相同的金属球,一个是实心球,另一个是空心球,比较它们的电场强度分布A.球内部不同,球外部也不同B.球内部不同,球外部相同C.球内部相同,球外部不同D.球内部相同,球外部也相同33. ( )一质点沿直线运动,其运动学方程为x =6t -t 2,x 的单位为m ,t 的单位为s ,在t 从0到4s 的时间间间隔内,质点所走过的路程为34. ( )用一水平恒力F 推一静止在水平面上的物体,作用时间为∆t ,物体始终处于静止状态,则在∆t 时间内恒力F 对物体的冲量和该物体所受合力的冲量大小分别为35. ( )容积恒定的车胎内部气压要维持恒定,那么,车胎内空气质量最多的季节是A.春季B.夏季C.秋季D.冬季二、填空题请在每小题的空格中填上正确答案。
《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。
2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。
教学重点:位矢、运动方程,切向加速度和法向加速度。
教学难点:角加速度、切向加速度和法向加速度。
主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。
其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。
(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。
运动学1.选择题某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( )(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. 答:(D ).以下五种运动形式中,a保持不变的运动是 ( ) (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. 答:(D )对于沿曲线运动的物体,以下几种说法中哪一种是正确的: ( ) (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零. 答:(B )质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)( )(A) t d d v . (B) R2v .(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .答:(D )质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为 ( )(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. 答:(B )一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度 ( ) (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. 答:(D )一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为 ( )(A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x答:(D )质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, ( ) (1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. 答:(D )28.一质点沿x 轴运动,其运动方程为2353x t t =-,其中t 以s 为单位。
第9章振动学基础复习题T 1.已知质点的振动方程为 x A cos( t ),当时间t —时(T 为周期),质点的振动速4度为:(A ) v A sin (B ) v A sin (C ) v A cos (D ) v A cos2 •两个分振动的位相差为 2n 时,合振动的振幅是: A.A 1+A 2;B.| A 1-A 2IC.在.A I +A 2 和 | A I -A 2|之间D.无法确定3•一个做简谐运动的物体,在水平方向运动,振幅为8cm ,周期为0.50s 。
t =0时,物体位于离平衡位置4cm 处向正方向运动,则简谐运动方程为 _______________ . 4.一质点沿x 轴作简谐振动,振动方程为x 4 10 2 cos(2 t ) m 。
从t = 0时刻起,3到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 _____________ .5•一个简谐振动在t=0时位于离平衡位置 6cm 处,速度v=0 ,振动的周期为2s ,则简谐振 动的振动方程为 ________________________ . 6.—质点作谐振动,周期为 T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 ____________ . 7.—个质量为0.20kg 的物体作简谐振动,其振动方程为x 0.6cos(5t -)m ,当振动动2能和势能相等时振动物体的位置在A •0.3 m B • 0.35 m C .0.42 mD . 010•一个作简谐振动的物体的振动方程为s 12cos(t 3)cm ,当此物体由s 12cm 处 回到平衡位置所需要的最短时间为 ________________________________________ 。
11. 一个质点在一个使它返回平衡位置的力的作用下,它是否一定作简谐运动? 12. 简谐振动的周期由什么确定?与初始条件有关吗?14. 两个同方向同频率的简谐振动合成后合振动的振幅由哪些因素决定? 15. 两个同方向不同频率的简谐振动合成后合振动是否为简谐振动?&某质点参与x 1 4cos(3 t ) cm 和x 24振动,其合振动的振幅为 ________________ 3cos(3 t -)cm 两个同方向振动的简谐49.某质点参与x 110 cos( 2 t ) cm 和x 12运动,其合振动的振幅为 ______________ ; 4cos(2t2)cm 两个同方向振动的简谐教材习题P/223: 9-1 , 9-2, 9-3, 9-4 9-10, 9-12, 9-18第9章振动学基础复习题答案3. x 8cos(4 t ) m .3 "4.5. ___ x 6cos t cm 。
大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
《大学物理》复习题一、填空题(每题2分,共20分)1、一质点在xOy 平面内运动,速度22t t =+υi j ,且0=t 时 1.0m x =,m 0.2=y ,则t 时刻质点的位矢r = ,加速度a = 。
2、刚体的运动一般比较复杂,常可看作是 和 的叠加。
3、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为_________________。
4、爱因斯坦提出狭义相对论是为了解决 和 的矛盾。
5、反映静电场性质的高斯定理表明静电场是 场。
6、根据磁场的高斯定理d 0⋅=⎰SB S 可知磁场是______场(填写:有源场或无源场)。
根据安培环路定理0d μ⋅=∑⎰i LI B l 可知磁场是______场(填写:保守场或非保守场)。
7、由于导体或导体回路在稳恒磁场中运动,导致导体或导体回路内产生的感应电动势,称为 。
8、根据相干光的条件,如果将一个普通点光源所发出的每一束光分成两束,即每个分子或原子发出的每一个波列都一分为二,这样分出的两束光为相干光。
其获得相干光的方法有分波阵面法和 。
9、准静态过程和非准静态过程都必须遵守热力学第 定律。
10、用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示速率大于100m/s 的分子数为 ;分子平动动能的平均值为 。
二、选择题(每题2分,共20分)1.、一质点沿x 轴运动,加速度与位置的关系为32x a =,且0=t 时,m 1-=x ,11m s υ-=⋅,则质点的运动方程为( )。
A )1/(1+=t xB )1/(1+-=t xC 2)1/(1+=t xD 2)1/(1+-=t x 2.下列说法正确的是( )。
A 物体所受摩擦力的方向不一定和它的运动方向相反;B 物体的运动方向和合外力方向一定相同;C 物体运动的速率不变,所受的合外力一定为零;D 物体的速度很大时,所受的合外力也一定很大3、当飞轮作加速转动时,在飞轮上半径不同的两个质点( )。
大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。
2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。
3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。
4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。
5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。
6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。
7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。
8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。
9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。
练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)【提示:当1r R ≤时,有10E =;当12R r R <≤时,有2204Qr E πε=,得2204Q E r πε=;当2r R >时,有230()4Q Q r E πε+-=,得30E =】2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。
解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。
O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E r πε=,移动电荷后,由于OP=OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。
因而正确答案(D )3. 在边长为a 的正立方体中心有一个电量为q 场强度通量为 ) (A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。
【提示:闭合面穿出的总通量为:0qε4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ;(C) U a >U b >U c ; (D) U a <U b <U c 。
【提示:顺着电场线的方向,电势是逐步降低的】5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E ϖ处处为零; (B) 如果高斯面上E ϖ处处不为零,则该面内必无电荷;12121221(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E ϖ处处为零,则该面内必无电荷。
《大学物理学》复习题一、填空题1.一物体在某瞬间以速度v从某点开始运动,在t∆时间内,经一长度为s的路径后,又回到出发点,此时速度为-v,则在这段时间内,物体的平均加速度是_________。
υ水平射入沙土中。
设子弹所受阻力与速度反向,2.质量为m的子弹以速度大小与速度成正比,比例系数为k,忽略子弹的重力。
则子弹射入沙土后,速度随时间变化的函数式为__________。
3. 质量为M的木块静止在光滑的水平桌面上,质量为m、速度为v0的子弹水平的射入木块,并陷在木块内与木块一起运动。
则子弹相对木块静止后,子弹与木块共同运动的速度v=________,在这个过程中,子弹施与木块的冲量I=_________。
4. 在系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫_________________过程。
5.温度为T的热平衡态下,自由度为i的物质分子的每个自由度都具有的平均动能为6.位移电流和传导电流的共同点是_________________________________________。
7.在无限长载流导线附近有一个闭合球面S,当S面向导线靠近时,穿过S 面的磁通量Φm将;面上各点的磁感应强度的大小将(填:增大、不变或变小)。
8. 真空中,有一个长直螺线管,长为l,截面积为S,线圈匝数线密度为n,则其自感系数L 为________。
9.波长nm 600=λ的单色光垂直照射到牛顿环装置上,第二级明纹与第五级明纹所对应的空气膜厚度之差为______nm 。
10.有一单缝,宽a =0.2mm ,缝后放一焦距为50cm 的会聚透镜,用平行绿光λ=546nm 垂直照射单缝,则位于透镜焦面处的屏幕上的中央明纹宽度为______mm 。
11.在x ,y 面内有一运动质点其运动方程为10cos510sin5r i j t t =+,则t 时刻其速度______________。
【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S SE d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-120114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___RQ 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ 04πε__________。
第一章一、填空题1、一质点做圆周运动,轨道半径为R=2m,速率为v = 5t2+ m/s,则任意时刻其切向加速度aτ=________,法向加速度a n=________.2、一质点做直线运动,速率为v =3t4+2m/s,则任意时刻其加速度a =________,位置矢量x =________.3、一个质点的运动方程为r = t3i+8t3j,则其速度矢量为v=_______________;加速度矢量a为________________.4、某质点的运动方程为r=A cosωt i+B sinωt j, 其中A,B,ω为常量.则质点的加速度矢量为a=_______________________________,轨迹方程为________________________________。
5、质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正的常数,该下落物体的极限速度是_________。
二、选择题1、下面对质点的描述正确的是 [ ]①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。
A.①②③;B.②④⑤;C.①③;D.①②③④。
2、某质点的运动方程为x = 3t-10t3+6 ,则该质点作[ ]A.匀加速直线运动,加速度沿x轴正方向;B.匀加速直线运动,加速度沿x轴负方向;C.变加速直线运动,加速度沿x轴正方向;D.变加速直线运动,加速度沿x轴负方向。
3、下面对运动的描述正确的是 [ ]A.物体走过的路程越长,它的位移也越大;B质点在时刻t和t+∆t的速度分别为 "v1和v2,则在时间∆t内的平均速度为(v1+v2)/2 ;C.若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动;D.在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。
期末复习一、力学(一)填空题:1、质点沿x 轴运动,运动方程23262x t t =+-,则其最初4s 内位移是 -32m i ,最初4s 内路程是 48m 。
2、质点的加速度(0),0a mx m t =->=时,00,x v v ==,则质点停下来的位置是x3、半径为30cm 的飞轮,从静止开始以0.5rad/s 2匀角加速度转动。
当飞轮边缘上一点转过o240时,切向加速度大小 0.15 m/s 2,法向加速度大小 1.26 m/s 2。
4、一小车沿Ox 轴运动,其运动函数为233x t t =-,则2s t =时的速度为 -9m/s ,加速度为 -6m/s 2 ,2s t =内的位移为 -6m 。
5、质点在1t 到2t 时间内,受到变力2At B F x +=的作用(A 、B 为常量),则其所受冲量为3321211()()3B t t A t t -+-。
6、用N 10=F 的拉力,将g k 1=m 的物体沿30=α的粗糙斜面向上拉1m ,已知1.0=μ,则合外力所做的功A 为 4.13J 。
7、 银河系中有一天体,由于引力凝聚,体积不断收缩。
设它经一万年后,体积收缩了1%,而质量保持不变,那时它绕自转轴的转动动能将 增大 ; (填:增大、减小、不变)。
;8、 A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。
开始时B 轮静止,A 轮以角速度A ω转动,设啮合过程中两飞轮不再受其他力矩的作用,当两轮连结在一起后,其相同的角速度为ω。
若A 轮的转动惯量为A I ,则B 轮的转动惯量B I 为A AA I I ωω- 。
9、斜面固定于卡车上,在卡车沿水平方向向左匀速行驶的过程中,斜面上物体m 与斜面无相对滑动。
则斜面对物体m 的静摩擦力的方向为 。
沿斜面向上;10、牛顿第二定律在自然坐标系中的分量表达式为n n F ma =;F ma ττ=11、质点的运动方程为22r ti t j =-,则在1s t =时的速度为 22v i j =-,加速度为2a j =-; 12、 一质点沿半径为0.1m 的圆周运动,其角位移342t +=θ,则2s t =时的法向加速度为 230.4m/s 2,切向加速度为 4.8m/s 2。
《大学物理》复习题库大学物理习题 班级: 姓名: 学号: 成绩:刚体定轴转动(Ⅰ)一、选择题1.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮。
A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB ; (B) βA >βB ;(C) βA <βB ; (D) 开始时βA =βB ,以后βA <β B 。
[ ]2.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小; (B) 角速度从小到大,角加速度从小到大; (C) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大。
[ ]3.关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
[ ] 二、填空题4.质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是____ __ __。
5.一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________。
6.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O 轴的转动惯量为__________。
S ′三、计算题7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D ) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A ) |v |= v ,|v |= v (B ) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |—|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B ).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A ) 只有(1)(2)正确 (B ) 只有(2)正确(C ) 只有(2)(3)正确 (D ) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t sd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D ).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A ) 只有(1)、(4)是对的 (B ) 只有(2)、(4)是对的(C ) 只有(2)是对的 (D ) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t sd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1 —4 一个质点在做圆周运动时,则有( ) (A ) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B ).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D ) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h ,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C ). 讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m ,t 的单位为 s .求: (1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用t x d d 和22d d tx两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在4。
复习题第一章刚体的定轴转动1名词解释:刚体,转动惯量,自由度2填空:(1) 陀螺在绕本身对称轴旋转的同时,其还将绕回转,这种回转现象称为进动。
(2) 刚体的定轴转动与质点直线运动有相应的对照,试根据质点直线运动物理量概念,对下列对照表填空:3问答:(1) 有一个鸡蛋不知是熟还是生,请你判断一下,并说明为什么?(2) 地球自转的角速度方向指向什么方向?作图说明。
(3) 中国古代用指南针导航,现代用陀螺仪导航,请说明陀螺仪导航的原理。
4计算:图是宇宙飞船对其中心轴的转动惯量为2⨯103kg∙m2,以0.2 rad/s的角速度绕中心轴旋转。
宇航员用两个切向的控制喷管使飞船停止旋转,每个喷管都距离轴线1.5m。
两个喷管的喷气流量恒定,共2 kg/s,喷气速度50 m/s。
问喷管喷射多长时间才能使飞船停止旋转?第二章气体分子运动论1. 名词解释:状态,状态参数,平衡态,布郎运动,分子热运动,平均自由程,平均碰撞次数,玻尔兹曼分布律,最概然速率2. 填空:(1) 分子热运动的基本特征是和。
(2) 分子运动的微观量包括、、、等,宏观量包括、、等。
(3) 气体温度是 的度量。
(4) 理想气体的内能完全决定于分子运动的 和 。
3. 问答:(1) 气体分子的平均速率、方均根速率、最概然速率各是怎样定义的?它们的大小由哪些因素决定?各有什么用处?(2) 平均自由程与气体的状态、分子本身性质有何关系?在计算平均自由程时,什么地方体现了统计平均?(3) 速度分布函数的物理意义是什么?试说明下列各量的意义:f (v )d v ;Nf (v )d v ;⎰21)(v v dv v f ;⎰21)(v v dv v Nf ;⎰21)(v v dv v vf ;⎰21)(v v dv v Nvf4. 计算:(1) 在27o C 温度下,氧分子和氢分子的均方根速率和平均平动动能是多少?(2) 求速度在v p -1.01v p 之间气体分子占总分子数的百分比。
物理上册复习题集一、力学习题1. 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离.2. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 - 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.3. 在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为 ( )(A) k M a /. (B) M k a /.(C) k M a /2. (D) k M a /21.4. 一质点沿半径为R 的圆周运动,在t = 0时经过P 点,此后它的速率v 按Bt A +=v (A ,B 为正的已知常量)变化.则质点沿圆周运动一周再经过P 点时的切向加速度a t = ___________ ,法向加速度a n = _____________.k A Bm 21v5. 如图,两个用轻弹簧连着的滑块A 和B ,滑块A 的质量为m 21,B 的质量为m ,弹簧的劲度系数为k ,A 、B 静止在光滑的水平面上(弹簧为原长).若滑块A 被水平方向射来的质量为m 21、速度为v 的子弹射中,则在射中后,滑块A 及嵌在其中的子弹共同运动的速度v A =________________,此时刻滑块B 的速度v B =__________,在以后的运动过程中,滑块B 的最大速度v max =__________. 6. 质量为0.25 kg 的质点,受力i t F = (SI)的作用,式中t 为时间.t = 0时该质点以j 2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________.7. 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间,A 的加速度大小a A =_______,B 的加速度的大小a B =_______.B mA C θ8.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比T : T ′=____________________.9.θl m一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_______________; (2) 摆锤的速率v=_______________. 10. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.11. (1) 试求赤道正上方的地球同步卫星距地面的高度.(2) 若10年内允许这个卫星从初位置向东或向西漂移10°,求它的轨道半径的误差限度是多少?已知地球半径R =6.37×106 m ,地面上重力加速度g =9.8 m/s 2.ωPC O12. 一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为(A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]αm13. 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少.(C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°. [ ]14. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)k mg . (B) k g2 . (C) gk . (D)gk . [ ] O Mm m15. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]A MB F16. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]17. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]18. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]19. 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________..mO ml 0v 俯视图20. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________.21. 一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度w =__________________________.(已知圆柱体绕固定轴的转动惯量J =221MR )22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.23. 两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度w =__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦) 24. 质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5p rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω =______________________.25. 已知一定轴转动体系,在各个时间间隔内的角速度如下:ω=ω0 0≤t ≤5 (SI)ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI)式中ω0=18 rad /s(1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.26. 一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).27. 一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10-3 kg ·m 2.一变力F =0.5t (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度.m 1 m ,r28. 质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.29. 质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s -1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.一、力学答案。