数学分析教案(华东师大版)第七章实数的完备性
- 格式:doc
- 大小:518.00 KB
- 文档页数:14
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
课题:实数完备性问题与确界原理(一)引入主题数学分析研究的基本对象是定义在实数集上的函数.为此,先来讨论实数.我们在中学数学中已经知道实数由有理数与无理数两部分组成,并知道实数有如下一些主要性质:1.实数集R 对加、减、乘、除 ( 除数不为0 ) 四则运算是封闭的,即任意两个实数的和、差、积、商 ( 除数不为0 ) 仍然是实数.2.实数集是有序的,即任意两实数 必满足下述三个关系之一:b a ,b a b a b a >=<,,.3. 实数的大小关系具有传递性,即若 ,则有 .4.实数具有阿基米德(Archimedes)性,即对任何 c b b a >>,c a >R ∈b a ,,若 ,则存在正整数 ,使得 .5.实数集0>>a b n b na >R 具有稠密性,即任何两个不相等的实数之间必有另一个实数, 且既有有理数,也有无理数.6.如果在一直线(通常画成水平直线)上确定一点 O 作为原点,指定一个方向为正向( 通常把向右的方向规定为正向 ),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着1-1对应关系.提问: 在出现了无理数的情形下,你们对以上性质有什么疑问? ( 要善于提出疑问!请作简短讨论 )总结: 至少有三处存疑——1) 对于无理数(无限十进不循环小数),如何进行性质1中所说的四则运算?2)在性质2、3、4中出现了比较大小关系的不等式,然而如何对无理数进行大小比较呢?3)在性质6中所说的:“数轴上的每一点也都唯一地代表一个实数”,为什么一定是这样? 为什么在数轴上除实数点外不再有别的空隙?( 这就是实数的完备性,是实数与有理数的根本区别.)这些问题正是我们数学专业的学人必须正视的、不可回避的根本问题, 也就是这一单元教学的主题.( 其中第一个问题这里不去说它,有兴趣的同学可以去细心阅读课本第299-302页上的七、八两段. )(二) 比较实数大小的一种方法先把有限小数( 包括整数 )也表示为无限小数,使得实数有统一的表示形式. 为此作如下规定:对于正有限小数n ( 其中 ,a a a a x L 210.=90≤≤i a ,,,2,1n i L =0,0a a n ≠为非负整数 ),记L L 9999)1(.210−=n a a a a x ;而当为正整数时,则记0a x =L 9999.)1(0−=a x .例如把 2 记为1.999 9 …,把2.001 记为2.000 999 9 ….对于负有限小数,则先将正数 -表示为无限小数,再在所得无限小数之前加负号.例如把 –8.06 记为 -8.059 999 ….y y 规定整数0表示为 0.000 0 ….于是,任何实数都可用一个确定的无限小数来表示 ,并可用来定义两个实数的大小关系.定义1 给定两个非负实数L L L L n n b b b b y a a a a x 210210.,.==,其中为非负整数,.若有,00,b a 90,90,),2,1(,≤≤≤≤=k k k k b a k b a 为整数L L ,2,1,0,==k b a k k 则称 x 与 相等,记为 y y x = ; 若 或存在非负整数 ,使得00b a >l 11),,2,1,0(,++>==l l k k b a l k b a 而L ,则称 x 大于或小于x ,分别记为 x > 或 < x .对于负实数 x 、 ,若按上述规定分别有 , 则分别称y y y y y y x y x −>−−=−与y x = 与 .另外,自然规定任何非负实数大于任何负实数.为了进一步能用有限小数来比较两个实数的大小, 需要引入实数的不足近似与过剩近似.)(x y y x ><或 定义2 设为非负实数.我们把有限小数L L n a a a a x 210.=n n a a a a x L 210.=, n = 0, 1, 2,L 称为实数x 的n 位不足近似 ;而把有限小数n n n x x −+=10, n = 0, 1, 2,L称为x 的 n 位过剩近似 。
第七章 实数的完备性(9学时)§1 关于实数完备性的基本定理教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法.教学重点、难点:重点实数完备性的基本定理.难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下:一、区间套定理与柯西收敛准则定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++⊃= (2)lim ()0n n n b a →∞-=则称{[,]}n n a b 为闭区间套,或简称区间套.定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,即 ,1,2,.n n a b n ξ≤≤=证: 先证存在性{[,]}nn ab 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤∴可设lim n n a ξ→∞=且由条件2有lim lim ()lim n n n n n n n n b b a b a ξ→∞→∞→∞=-+==由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤= 再证唯一性设ξ'也满足,1,2,.n n a b n ξ'≤≤= 那么,,1,2,.n n b a n ξξ'-≤-= 由区间套的条件2得lim ()0n n n b a ξξ→∞'-≤-=故有ξξ'=推论 若[,](1,2,)n n a b n ξ∈= 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证 [必要性] 略.[充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有||m n a a ε-≤.取m N =,有对任给的0ε>,存在0N >,使得对n N ≥有||m n a a ε-≤,即 在区间[,]N N a a εε-+内含有{}n a 中几乎所有的项(指的是{}n a 中除有限项的所有项)∴令12ε=则存在1N ,在区间1111[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为11[,]αβ. 再令212ε=则存在21()N N >,在区间112211[,]22N N a a -+内含有{}n a 中几乎所有的项,记该区间为1122112211[,][,][,]22N N a a αβαβ=-+也含有{}n a 中几乎所有的项,且满足1122[,][,]αβαβ⊃及221.2βα-≤依次继续令311,,,,22nε=得一区间列{[,]}n n αβ,其中每个区间中都含有{}n a 中几乎所有的项,且满足11[,][,],1,2,;n n n n n αβαβ++⊃=110(),2n n n n βα--≤→→∞即时{[,]}n n αβ是区间套.由区间套定理,存在唯一的一个数[,],1,2,n n n ξαβ∈= . 再证lim n n a ξ→∞=.由定理7.1的推论对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n U αβξε⊂即在(,)U ξε内含{}n a 中除有限项的所有项,由定义1'lim n n a ξ→∞=. 二、聚点定理与有限覆盖定理定义 2 设S 为数轴上产的点集,ξ为定点,若ξ的任何邻域内都有含有S 中无穷多个点,则称ξ为点集S 的一个聚点.例如:1{(1)}nn -+有两聚点1,1ξξ==-.1{}n 有一个聚点0ξ=.(,)a b 内的点都是它的聚点,所以开区间集(,)a b 有无穷多个聚点. 聚点的等价定义;定义2'对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即(;)U S ξε≠∅ ,则称ξ为S 的一个聚点.定义2''若存在各项互异的数列{}n x S ⊂,则其极限lim n n x ξ→∞=称为S 的一个聚点.三个定义等价性的证明: 证明思路为:2222'''⇒⇒⇒.定义22'''⇒的证明:由定义2'设ξ为S 的一个聚点,则对任给的0ε>,存在0(,)x U S ξε∈ .令11ε=,则存在01(,)x U S ξε∈ ;令211m in(,||)2x εξ=-,则存在022(;)x U S ξε∈ ,且显然21x x ≠;令11m in(,||)2n n x εξ-=-,则存在0(;)n n x U S ξε∈ ,且显然n x 与11,,n x x - 互异;得S 中各项互异的数列{}n x ,且由1||n n n x n ξε-<≤,知lim n n x ξ→∞=.由闭区间套定理可证聚点定理.定理7.2 (Weierstrass 聚点定理) 实数轴上的任一有界无限点集S 致少有一个聚点. 证 S 有界, ∴存在0M >,使得[,]S M M ⊂-,记11[,][,]a b M M =-,将11[,]a b 等分为两个子区间.因S 为无限点集,故意两个子区间中至少有一个含有S 中无穷多个点,记此子区间为22[,]a b ,则1122[,][,]a b a b ⊃且122112()b a b a M -=-=.再将22[,]a b 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取出这样一个子区间记为33[,]a b ,则2233[,][,]a b a b ⊃,且133222()2M b a b a -=-=依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 20(),2n n n M b a n --=→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= .由定理1的推论, 对任给的0ε>,存在0N >,使得当n N >时有[,](,)n n a b U ξε⊂.从而(;)U ξε含有S 中无穷多个点按定义2ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证: 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,显然成立.若数列{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.由定义2'',存在{}n x 的一个收敛子列(以ξ为极限).由致密性定理证柯西收敛准则的充分性.柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有 ||m n a a ε-<.证: [充分性] 先证{}n a 有界,由忆知条件取1ε=,则存在正整数N, 则1m N =+及n N >时有1||1n N a a +-<由此得111||||1||n n N N N a a a a a +++=-+<+.取121m ax{||,||,,||,1||}N N M a a a a +=+ 则对一切的正整数n 均有||n a M ≤. 再证{}n a 收敛,由致密性定理,数列{}n a 有收敛子列{}k n a ,设lim k n k a A→∞=由条件及数列极限的定义, 对任给的0ε>,存在0K >,使得对,,m n k N >有||m n a a ε-<,||k n a A ε-<取()k m n k K =≥>时得到 ||||||2kkn n n n a A a a a A ε-≤-+-<所以lim k n k a A→∞=定义3 设S 为数思轴上的点集,H 为开区间集合(即H 的每一个元素都是形如(,)αβ的开区间).若S 中的任何一个点都有含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,( H 覆盖S ).若H 中开区间的个数是无限的(有限)的,则称H 为S 的一个无限开覆盖(人限开覆盖).如(,),S a b ={(,)|(,)},x x H x x x a b δδ=-+∈H 为S 的一个无限开覆盖.定理7.3(海涅---博雷尔(Heine-Borel)有限覆盖定理) 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .证 用反证法 设定理的结论不成立,即不能用H 中有限个开区间来覆盖[,]a b . 将[,]a b 等分为两个子区间,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为11[,]a b ,则11[,][,]a b a b ⊂,且111()2b a b a -=-.再将11[,]a b 等分为两个子区间,同样,其中至少有一个不区间不能用H 中有限个开区间来覆盖.记这个子区间为22[,]a b ,则2211[,][,]a b a b ⊂,且2221()2b a b a -=-.依次继续得一区间列{[,]}n n a b ,它满足:11[,][,],1,2,;n n n n a b a b n ++⊃= 1()0(),2n n nb a b a n -=-→→∞即{[,]}n n a b 为闭区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖 由闭区间套定理, 存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,由于H 为闭区间[,]a b 的一个(无限)开覆盖,故存在(,),H αβ∈使得(,)ξαβ∈.于是,由定理7.1的推论,当n 充分大时有[,](,)n n a b αβ⊂.即用H 中一个开区间就能覆盖[,]n n a b 矛盾.课后记:这一节理论性强,学生学习困难较大,我认为应从以下几个方面和学生共同学习这一节.1 如何理解记忆定理内容.2 如何掌握定理的证明方法.3 怎样应用定理及定理的证明方法去解决问题.在应用闭区间套定理时,应先构造一个闭区间套,构造的方法一般是二等分法,在应用有限覆盖定理时,应先构造一个开覆盖构造的方法一般与函数的连续性定义结合.应用聚点定理时,应先构造一数列等.教材中P 16322[,]αβ中包含{}n a 的几乎所有项,是因为它中包含{}n a 的第2N 项以后的所有项,这里应强掉,容易被忽略.在下节的教学中就让学一注意到在什么时候用实数的完备性定理,这是一个难点,重点.三、 实数基本定理等价性的证明(未讲)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理 ; Ⅱ: 区间套定理 致密性定理Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理 .一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”: 定理7.4 单调有界数列必收敛 .2. 用“单调有界原理”证明“区间套定理”: 定理 7.5 设是一闭区间套. 则存在唯一的点,使对有.推论1 若是区间套确定的公共点, 则对,当时, 总有.推论2 若是区间套确定的公共点, 则有↗,↘,. 3. 用“区间套定理”证明“Cauchy 收敛准则”:定理 7.6数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )定理 7.6 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用三等分的方法证明,该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:定理7.7非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二. “Ⅱ”的证明:1. 用“区间套定理”证明“致密性定理”:定理7.8 (Weierstrass )任一有界数列必有收敛子列.证(突出子列抽取技巧)定理7.9每一个有界无穷点集必有聚点.2.用“致密性定理”证明“Cauchy收敛准则”:定理7.10数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1. 用“区间套定理”证明“Heine–Borel 有限复盖定理”:2. 用“Heine–Borel 有限复盖定理”证明“区间套定理”:§2 闭区间上连续函数性质的证明教学目的要求:掌握定理的证明方法.教学重点、难点:重点是定理的证明方法,难点是什么情况下用哪一个定理.学时安排: 2学时教学方法: 讲授法.教学过程:一. 有界性:命题1 , 在上.证法一 ( 用区间套定理 ). 反证法.证法二 ( 用列紧性 ). 反证法.证法三 ( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值.( 只证取得最大值 )证 ( 用确界原理 ) 参阅[1]P226[ 证法二 ] 后半段.三.介值性:证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一 ( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界, 有上确界. 设有. 现证, ( 为此证明且). 取>且.由在点连续和, ,. 于是. 由在点连续和,. 因此只能有.证法三 ( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一 ( 用区间套定理 ) .证法二 ( 用列紧性 ).五.实数基本定理应用举例:例1 设是闭区间上的递增函数, 但不必连续 . 如果,, 则, 使. ( 山东大学研究生入学试题 )证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ; ,有界 . 由确界原理 ,有上确界. 设, 则.下证.ⅰ)若, 有; 又, 得.由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ)若, 则存在内的数列, 使↗, ; 也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有.现证.事实上, 注意到时↗和↘以及递增,就有.令, 得于是有.例2 设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根 .证构造区间套,使.由区间套定理,, 使对,有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例3 试证明: 区间上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理,, 使对, 有. 当然有. 但对有而, . 矛盾.习题课( 3学时)一.实数基本定理互证举例:例4 用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项, .例5 用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 .设, .易见有和.由,.例6 用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点. …… .例7 用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个.易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界中大于的点有无穷多个; 由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .课后记强掉应先构造闭区间套、构造开覆盖、构造数列等的方法.通过大量的例子让同学们体会在什么时候用哪一个定理.。
数学分析教案第一章 第一章 实数集与函数§1 实数(一) 教学目的:掌握实数的基本概念和最常见的不等式,以备以后各章应用. (二) 教学内容:实数的基本性质和绝对值的不等式. (1) 基本要求:实数的有序性,稠密性,阿基米德性. (2) 较高要求:实数的四则运算. (三) 教学建议:(1) 本节主要复习中学的有关实数的知识.(2) 讲清用无限小数统一表示实数的意义以及引入不足近似值与过剩近似值的作用.§2 数集.确界原理(一) 教学目的:掌握实数的区间与邻域概念,掌握集合的有界性和确界概念. (二) 教学内容:实数的区间与邻域;集合的上下界,上确界和下确界;确界原理.(1) 基本要求:掌握实数的区间与邻域概念;分清最大值与上确界的联系与区别;结合具体集合,能指出其确界;能用一种方式,证明集合 A 的上确界为 λ.即: ,,λ≤∈∀x A x 且 ,λ<∀a ∃0x 0,x A ∈a >;或 ,,λ≤∈∀x A x 且 ,,00A x ∈∃>∀ε ελ->0x .(2) 较高要求:掌握确界原理的证明,并用确界原理认识实数的完备性. (三) 教学建议:(1) 此节重点是确界概念和确界原理.不可强行要求一步到位,对多数学生可只布置证明具体集合的确界的习题.(2) 此节难点亦是确界概念和确界原理.对较好学生可布置证明抽象集合的确界的习题.§3 函数概念(一) 教学目的:掌握函数概念和不同的表示方法.(二) 教学内容:函数的定义与表示法;复合函数与反函数;初等函数. (1) 基本要求:掌握函数的定义与表示法;理解复合函数与反函数;懂得初等函数的定义,认识狄利克莱函数和黎曼函数.(2) 较高要求:函数是一种关系或映射的进一步的认识. (三) 教学建议:通过狄利克莱函数和黎曼函数,使学生对函数的认识从具体上升到抽象.§4 具有某些特性的函数(一) 教学目的:掌握函数的有界性,单调性,奇偶性和周期性. (二) 教学内容:有界函数,单调函数,奇函数,偶函数和周期函数. (三) 教学建议:(1) 本节的重点是通过对函数的有界性的分析,培养学生了解研究抽象函数性质的方法.(2) 本节的难点是要求用分析的方法定义函数的无界性.对较好学生可初步教会他们用分析语言表述否命题的方法.第二章 第二章 数列极限§1 数列极限概念(一) 教学目的:掌握数列极限概念,学会证明数列极限的基本方法. (二) 教学内容:数列极限.(1) 基本要求:理解数列极限的分析定义,学会证明数列极限的基本方法,懂得数列极限的分析定义中 ε与 N 的关系.(2) 较高要求:学会若干种用数列极限的分析定义证明极限的特殊技巧. (三)教学建议:(1) 本节的重点是数列极限的分析定义,要强调这一定义在分析中的重要性.具体教学中先教会他们证明 ∞→n lim 01=k n ; ∞→n lim n a 0=;( )1||<a ,然后教会他们用这些无穷小量来控制有关的变量(适当放大但仍小于这些无穷小量). (2) 本节的难点仍是数列极限的分析定义.对较好学生可要求他们用数列极限的分析定义证明较复杂的数列极限,还可要求他们深入理解数列极限的分析定义.§2 数列极限的性质(一) 教学目的:掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限. (二) 教学内容:数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则和数列的子列及有关子列的定理.(1) 基本要求:理解数列极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用其中某些性质计算具体的数列的极限.(2) 较高要求:掌握这些性质的较难的证明方法,以及证明抽象形式的数列极限的方法. (三) 教学建议:(1) 本节的重点是数列极限的性质的证明与运用.可对多数学生重点讲解其中几个性质的证明,多布置利用这些性质求具体数列极限的习题. (2) 本节的难点是数列极限性质的分析证明.对较好的学生,要求能够掌握这些性质的证明方法,并且会用这些性质计算较复杂的数列极限,例如: ∞→n limnn =1,等.§3 数列极限存在的条件(一) 教学目的:掌握单调有界定理,理解柯西收敛准则. (二) 教学内容:单调有界定理,柯西收敛准则.(1) 基本要求:掌握单调有界定理的证明,会用单调有界定理证明数列极限的存在性,其中包括 1lim(1)n n n →∞+存在的证明.理解柯西收敛准则的直观意义.(2) 较高要求:会用单调有界定理证明数列极限的存在性,会用柯西收敛准则判别抽象数列(极限)的敛散性.(三) 教学建议:(1) 本节的重点是数列单调有界定理.对多数学生要求会用单调有界定理证明数列极限的存在性.(2) 本节的难点是柯西收敛准则.要求较好学生能够用柯西收敛准则判别数列的敛散性.第三章 函数极限 1 函数极限概念(一) 教学目的:掌握各种函数极限的分析定义,能够用分析定义证明和计算函数的极限. (二) 教学内容:各种函数极限的分析定义.基本要求:掌握当 0x x →; ∞→x ; ∞+→x ; ∞-→x ; +→0x x ;-→0x x 时函数极限的分析定义,并且会用函数极限的分析定义证明和计算较简单的函数极限.(三) 教学建议:本节的重点是各种函数极限的分析定义.对多数学生要求主要掌握当 0x x →时函数极限的分析定义,并用函数极限的分析定义求函数的极限.§2 函数极限的性质(一) 教学目的:掌握函数极限的性质.(二) 教学内容:函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则.(1) 基本要求:掌握函数极限的唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则,并会用这些性质计算函数的极限.(2) 较高要求:理解函数极限的局部性质,并对这些局部性质作进一步的理论性的认识. (三) 教学建议:(1) (1) 本节的重点是函数极限的各种性质.由于这些性质类似于数列极限中相应的性质,可着重强调其中某些性质与数列极限的相应性质的区别和联系. (2) 本节的难点是函数极限的局部性质.对较好学生,要求懂得这些局部的 δ(的大小)不仅与 ε有关,而且与点 0x 有关,为以后讲解函数的一致连续性作准备.§3 函数极限存在的条件(一) 教学目的:掌握函数极限的归结原理和函数极限的单调有界定理,理解函数极限的柯西准则.(二) 教学内容:函数极限的归结;函数极限的单调有界定理;函数极限的柯西准则. (1) 基本要求:掌握函数极限的归结,理解函数极限的柯西准则. (2) 较高要求:能够写出各种函数极限的归结原理和柯西准则. (三) 教学建议:(1) 本节的重点是函数极限的归结原理.要着重强调归结原理中数列的任意性. (2) 本节的难点是函数极限的柯西准则.要求较好学生能够熟练地写出和运用各种函数极限的归结原理和柯西准则.§4两个重要的极限(一) 教学目的:掌握两个重要极限: 0lim →x 1sin =x x ; ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.(二) 教学内容:两个重要极限: 0lim →x 1sin =x x; ∞→x limxx ⎪⎭⎫⎝⎛+11e =.(1) 基本要求:掌握 0lim→x 1sin =xx的证明方法,利用两个重要极限计算函数极限与数列极限.(2) 较高要求:掌握 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =证明方法.(三) 教学建议:(1) 本节的重点是与两个重要的函数极限有关的计算与证明.可用方法:1)()(sin lim 0)(=→x x x ϕϕϕ; e x x x =⎪⎪⎭⎫⎝⎛+∞→)()()(11lim ψψψ,其中 )(x ϕ、 )(x ψ分别为任一趋于0或趋于∞的函数.(2) 本节的难点是利用迫敛性证明 ∞→x lim xx ⎪⎭⎫⎝⎛+11e =.§5 无穷小量与无穷大量(一) 教学目的:掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 教学内容:无穷小量与无穷大量,高阶无穷小,同阶无穷小,等阶无穷小,无穷大. (1) 基本要求:掌握无穷小量与无穷大量以及它们的阶数的概念. (2) 较高要求:能够写出无穷小量与无穷大量的分析定义,并用分析定义证明无穷小量与无穷大量.在计算及证明中,熟练使用“ o ”与“ O ”. (三) 教学建议:(1) 本节的重点是无穷小量与无穷大量以及它们的阶数的概念. (2) (2) 本节的难点是熟练使用“ o ”与“ O ”进行运算.第四章 第四章 函数的连续性§1 连续性概念(一) 教学目的:掌握函数连续性概念.(二) 教学内容:函数在一点和在区间上连续的定义,间断点的分类.(1) 基本要求:掌握函数连续性概念,可去间断点,跳跃间断点,第二类间断点,区间上的连续函数的定义.(2) 较高要求:讨论黎曼函数的连续性. (三) 教学建议:(1) (1) 函数连续性概念是本节的重点.对学生要求懂得函数在一点和在区间上连续的定义,间断点的 分类.(2) 本节的难点是用较高的分析方法、技巧证明函数的连续性,可在此节中对较好学生布置有关习题.§2 连续函数的性质(一) 教学目的:掌握连续函数的局部性质和闭区间上连续函数的整体性质.(二) 教学内容:连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.(1) 基本要求:掌握函数局部性质概念,可去间断点,跳跃间断点,第二类间断点;了解闭区间上连续函数的性质.(2) 较高要求:对一致连续性的深入理解.(三)教学建议:(1)函数连续性概念是本节的重点.要求学生掌握函数在一点和在区间上连续的定义,间断点的分类,了解连续函数的整体性质.对一致连续性作出几何上的解释.(2)(2)本节的难点是连续函数的整体性质,尤其是一致连续性和非一致连续性的特征.可在此节中对较好学生布置判别函数一致连续性的习题.§3 初等函数的连续性(一) 教学目的:了解指数函数的定义,掌握初等函数的连续性.(二) 教学内容:指数函数的定义;初等函数的连续性.(1) 基本要求:掌握初等函数的连续性.(2) 较高要求:掌握指数函数的严格定义.(三)教学建议:(1) 本节的重点是初等函数的连续性.要求学生会用初等函数的连续性计算极限.(2) 本节的难点是理解和掌握指数函数的性质.第五章导数和微分§1 导数的概念(一) 教学目的:掌握导数的概念,了解费马定理、达布定理.(二) 教学内容:函数的导数,函数的左导数,右导数,有限增量公式,导函数.(1) 基本要求:掌握函数在一点处的导数是差商的极限.了解导数的几何意义,理解费马定理.(2) 较高要求:理解达布定理.(三) 教学建议:(1) 本节的重点是导数的定义和导数的几何意义.会用定义计算函数在一点处的导数.(2) 本节的难点是达布定理.对较好学生可布置运用达布定理的习题.§2 求导法则(一) 教学目的:熟练掌握求导法则和熟记基本初等函数的求导公式.(二) 教学内容:导数的四则运算,反函数求导,复合函数的求导,基本初等函数的求导公式.基本要求:熟练掌握求导法则和熟记基本初等函数的求导公式.(三) 教学建议:求导法则的掌握和运用对以后的学习至关重要,要安排专门时间督促和检查学生学习情况.§3 参变量函数的导数(一) 教学目的:掌握参变量函数的导数的求导法则.(二) 教学内容:参变量函数的导数的求导法则.基本要求:熟练掌握参变量函数的导数的求导法则.(三) 教学建议:通过足量习题使学生掌握参变量函数的导数的求导法则.§4高阶导数(一) 教学目的:掌握高阶导数的概念,了解求高阶导数的莱布尼茨公式.(二) 教学内容:高阶导数;求高阶导数的莱布尼茨公式.(1)基本要求:掌握高阶导数的定义,能够计算给定函数的高阶导数.(2) 较高要求:掌握并理解参变量函数的二阶导数的求导公式.(三) 教学建议:(1) 本节的重点是高阶导数的概念和计算.要求学生熟练掌握.(2) 本节的难点是高阶导数的莱布尼茨公式,特别是参变量函数的二阶导数.要强调对参变量求导与对自变量求导的区别.可要求较好学生掌握求参变量函数的二阶导数.§5 微分(一) 教学目的:掌握微分的概念和微分的运算方法,了解高阶微分和微分在近似计算中的应用.(二) 教学内容:微分的概念,微分的运算法则,高阶微分,微分在近似计算中的应用.(1) 基本要求:掌握微分的概念,微分的运算法则,一阶微分形式的不变性.(2) 较高要求:掌握高阶微分的概念.(三) 教学建议:(1) 本节的重点是掌握微分的概念,要讲清微分是全增量的线性主部.(2) 本节的难点是高阶微分,可要求较好学生掌握这些概念.第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(一) 教学目的:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(二) 教学内容:罗尔中值定理;拉格朗日中值定理.(1) 基本要求:掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.(2) 较高要求:掌握导数极限定理.(三) 教学建议:(1)(1)本节的重点是掌握罗尔中值定理和拉格朗日中值定理,要求牢记定理的条件与结论,知道证明的方法.(2)(2)本节的难点是用拉格朗日中值定理证明有关定理与解答有关习题.可要求较好学生掌握通过设辅助函数来运用微分中值定理.§2 柯西中值定理和不定式极限(一) 教学目的:了解柯西中值定理,掌握用洛必达法则求不定式极限. (二) 教学内容:柯西中值定理;洛必达法则的使用.(1) 基本要求:了解柯西中值定理,掌握用洛必达法则求各种不定式极限.(2) 较高要求:掌握洛必达法则 0型定理的证明.(三) 教学建议:(1) (1) 本节的重点是掌握用洛必达法则求各种不定式极限.可强调洛必达法则的重要性,并总结求各 种不定式极限的方法. (2) 本节的难点是掌握洛必达法则定理的证明,特别是 ∞∞型的证明.§3 泰勒公式(一) 教学目的:理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.(二) 教学内容:带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.(1) 基本要求:了解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式,熟记六个常见函数的麦克劳林公式. (2) 较高要求:用泰勒公式计算某些 0型极限.(三) 教学建议:(1) 本节的重点是理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式. (2) 本节的难点是掌握带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.对较好学生可要求掌握证明的方法. §4函数的极值与最大(小)值(一) 教学目的:掌握函数的极值与最大(小)值的概念. (二) 教学内容:函数的极值与最值.(1) 基本要求:掌握函数的极值的第一、二充分条件;学会求闭区间上连续函数的最值及其应用.(2) 较高要求:掌握函数的极值的第三充分条件. (三) 教学建议:教会学生以函数的不可导点和导函数(以及二阶导数)的零点(稳定点)分割函数定义域,作自变量、导函数(以及二阶导数)、函数的性态表,这个表给出函数的单调区间,凸区间,极值.这对后面的函数作图也有帮助.§5 函数的凸性与拐点(一) 教学目的:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式. (二) 教学内容:函数的凸性与拐点.(1) 基本要求:掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.(2) 较高要求:运用詹森不等式证明或构造不等式,左、右导数的存在与连续的关系. (三) 教学建议:(1) 教给学生判断凸性的充分条件即可,例如导函数单调. (2) 本节的难点是运用詹森不等式证明不等式.§6 函数图象的讨论(一) 教学目的:掌握函数图象的大致描绘.(二) 教学内容:作函数图象.(1) 基本要求:掌握直角坐标系下显式函数图象的大致描绘.(2) 较高要求:能描绘参数形式的函数图象.(三)教学建议:教会学生根据函数的性态表,以及函数的单调区间,凸区间,大致描绘函数图象.第七章实数的完备性§1关于实数集完备性的基本定理(一)教学目的:掌握区间套定理和柯西判别准则的证明,了解有限覆盖定理和聚点定理(较熟练运用致密性定理).(二)教学内容:区间套定理、柯西判别准则的证明;聚点定理;有限覆盖定理.(1) 基本要求:掌握和运用区间套定理、致密性定理.(2)较高要求:掌握聚点定理和有限覆盖定理的证明与运用.(三) 教学建议:(1)(1)本节的重点是区间套定理和致密性定理.教会学生在什么样情况下应用区间套定理和致密性定理以及如何应用区间套定理和致密性定理.(2) 本节的难点是掌握聚点定理和有限覆盖定理.教会较好学生如何应用聚点定理和有限覆盖定理.§2 闭区间上的连续函数性质的证明(一) 教学目的:证明闭区间上的连续函数性质.(二) 教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.(1)(1)基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.(2) 较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性.(三) 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题.第八章不定积分§1不定积分的概念与基本积分公式(一) 教学目的:掌握原函数的概念和基本积分公式(二) 教学内容:原函数的概念;基本积分公式;不定积分的几何意义.基本要求:熟练掌握原函数的概念和基本积分公式.(三) 教学建议:(1) 不定积分是以后各种积分计算的基础,要求熟记基本积分公式表.(2) 适当扩充基本积分公式表.§2 换元积分法与分部积分法(一) 教学目的:掌握第一、二换元积分法与分部积分法.(二) 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.(三) 教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.§3 有理函数和可化为有理函数的不定积分(一) 教学目的:会计算有理函数和可化为有理函数的不定积分.(二) 教学内容:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(1) 基本要求:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(2) 较高要求:利用欧拉代换求某些无理根式的不定积分.(三) 教学建议:(1) 适当布置有理函数的不定积分,三角函数有理式的不定积分,某些无理根式的不定积分的习题.(2) 本节的难点是利用欧拉代换求某些无理根式的不定积分,可要求较好学生掌握.第九章定积分§1 定积分的概念(一) 教学目的:引进定积分的概念.(二) 教学内容:定积分的定义.基本要求:掌握定积分的定义,了解定积分的几何意义和物理意义.(三) 教学建议:要求掌握定积分的定义,并了解定积分的几何意义.§2 牛顿-莱布尼茨公式(一) 教学目的:熟练掌握和应用牛顿-莱布尼茨公式.(二) 教学内容:牛顿-莱布尼茨公式.(1) 基本要求:熟练掌握和应用牛顿-莱布尼茨公式.(2) 较高要求:利用定积分的定义来处理一些特殊的极限.(三) 教学建议:(1) 要求能证明并应用牛顿-莱布尼茨公式.(2) 利用定积分的定义来处理一些特殊的极限是一个难点,对学习较好的学生可布置这种类型的题目.§3 可积条件(一) 教学目的:理解定积分的充分条件,必要条件和充要条件.(二) 教学内容:定积分的充分条件和必要条件;可积函数类(1) 基本要求:掌握定积分的第一、二充要条件.(2) 较高要求:掌握定积分的第三充要条件.(三) 教学建议:(1) 理解定积分的第一、二充要条件是本节的重点,要求学生必须掌握.(2) 证明定积分的第一、二、三充要条件是本节的难点.对较好学生可要求掌握这些定理的证明以及证明某些函数的不可积性.§4定积分的性质(一) 教学目的:掌握定积分的性质.(二) 教学内容:定积分的基本性质;积分第一中值定理.(1) 基本要求:掌握定积分的基本性质和积分第一中值定理.(2) 较高要求:较难的积分不等式的证明.(三) 教学建议:(1) 定积分的基本性质和积分第一中值定理是本节的重点,要求学生必须掌握并灵活应用.(2) 较难的积分不等式的证明是本节的难点.对较好学生可布置这方面的习题.§5 微积分学基本定理(一) 教学目的:掌握微积分学基本定理.(二) 教学内容:变上限的定积分;变下限的定积分;微积分学基本定理;积分第二中值定理,换元积分法;分部积分法;泰勒公式的积分型余项.(1) 基本要求:掌握变限的定积分的概念;掌握微积分学基本定理和换元积分法及分部积分法.(2) 较高要求:掌握积分第二中值定理和泰勒公式的积分型余项.(三)教学建议:(1) 微积分学基本定理是本节的重点,要求学生必须掌握微积分学基本定理完整的条件与结论.(2) 积分第二中值定理和泰勒公式的积分型余项是本节的难点.对较好学生要求他们了解这些内容.第十章定积分的应用§1平面图形的面积(一) 教学目的:掌握平面图形面积的计算公式.(二) 教学内容:平面图形面积的计算公式.(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.(2) 较高要求:提出微元法的要领.(三) 教学建议:(1)本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.(二) 教学内容:无穷积分;瑕积分.基本要求:掌握无穷积分与瑕积分的定义与计算方法.(三) 教学建议:讲清反常积分是变限积分的极限.(2) 领会微元法的要领.§2 由平行截面面积求体积(一) 教学目的:掌握由平行截面面积求体积的计算公式(二) 教学内容:由平行截面面积求体积的计算公式.基本要求:掌握由平行截面面积求体积的计算公式.(三) 教学建议:(1) 要求学生必须熟记由平行截面面积求体积的计算公式并在应用中熟练掌握.(2) 进一步领会微元法的要领.§3 平面曲线的弧长与曲率(一) 教学目的:掌握平面曲线的弧长与曲率(二) 教学内容:平面曲线的弧长与曲率的计算公式.(1) 基本要求:掌握平面曲线的弧长计算公式.(2) 较高要求:掌握平面曲线的曲率计算公式.(三) 教学建议:(1) 要求学生必须熟记平面曲线的弧长计算公式.(2) 对较好学生可要求他们掌握平面曲线的曲率计算公式.§4 旋转曲面的面积(一) 教学目的:掌握旋转曲面的面积计算公式.(二) 教学内容:旋转曲面的面积计算公式.基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式.(三) 教学建议:要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积.§5 定积分在物理中的某些应用(一) 教学目的:掌握定积分在物理中的应用的基本方法.(二) 教学内容:液体静压力;引力;功与平均功率.(1) 基本要求:要求学生掌握求液体静压力、引力、功与平均功率的计算公式.(2) 较高要求:要求学生运用微元法导出求液体静压力、引力、功与平均功率的计算公式.(三) 教学建议:要求学生必须理解和会用求液体静压力、引力、功与平均功率的计算公式.十一章反常积分§1反常积分的概念(一) 教学目的:掌握反常积分的定义与计算方法.。
数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
§1 关于实数集完备性的基本定理1.证明数集有且只有两个聚点和解:令数集数列则数列都是各项互异的数列,根据定义2,1和-1是S的两个聚点.对任意且令由得取,则当n>N时,或者有或者有总之由定义2知x0不是S的聚点,故数集有且只有1和-1两个聚点.2.证明:任何有限数集都没有聚点.证明:用反证法.设S是一个有限数集.假设ζ是S的一个聚点,按照定义2,在ζ的任何邻域内都含有S中无穷多个点,这个条件是不可能满足的,因为S是一个有限集.故任何有限集都没有聚点.3.设是一个严格开区间套,即满足且证明:存在惟一的一点ξ,使得证明:由题设知,是一个闭区间套.由区间套定理知,存在惟一的点ξ,使n以…,即4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.解:(1)设则S是有界集,并且但故有理数集S在Q内无上、下确界,即确界原理在有理数集内不成立.(2)由的不足近似值形成数列这个数列是单调有上界的,2是它的一个上界.它的上确界为于是它在有理数集内没有上确界.因此,单调有界原理在有理数集内不成立.(3)设M是由的所有不足近似值组成的集合.则1.4是M的一个下界,2是M 的一个上界.即M是一个有界无限集,但它只有一个聚点故在有理数集内不存在聚点.因此,聚点定理在有理数集内不成立.(4)的不足近似值形成的数列满足柯西条件(因为当m,n>N时,但其极限是而不是有理数,于是这个满足柯西条件的数列在有理数集内没有极限.因此,柯西收敛准则在有理数集内不成立.5.设问(1)H能否覆盖(0,1)?(2)能否从H中选出有限个开区间覆盖(i)解:(1)有有所以即故H 能覆盖(0,1).(2)设从H 中选出m 个开区间,它们是令则并集的下确界为于是的子集,实际上故不能从H 中选出有限个开区间来覆盖从H 中选出98个开区间因为所以这些开区间覆盖了故可以从H 中选出有限个开区间覆盖6.证明:闭区间的全体聚点的集合是本身.证明:设的全体聚点的集合是M .设不妨设则由实数集的稠密性知,集合中有无穷多个实数,故a 是的一个聚点.同理,b也是的一个聚点.设不妨设则故x 0的任意邻域内都含有中的无穷多个点,故x 0为的一个聚点.总之设令则即不是的聚点,即故M.综上所述,M=,即闭区间的全体聚点的集合是本身.7.设为单调数列.证明:若存在聚点,则必是惟一的,且为的确界.证明:设是一个单调递增数列.假设ξ,η是它的两个不相等的聚点,不妨设ξ<η.令δ=η-ξ,则δ>0,按聚点的定义,中含有无穷多个中的点,设则当n>n1时,x n 于是中只能含有{x n }中有穷多个点,这与ξ是聚点矛盾.因此,若存在聚点,则必是惟一的.假设无界,则即任给M>0,存在正整数N,当n>N时,x n>M,于是小于M 的只有有限项,因此不可能存在聚点,这与已知题设矛盾,故有界.对任给的ε>0,由聚点定义,必存在x N,使按上确界定义知综上,若有聚点,必惟一,恰为的确界.8.试用有限覆盖定理证明聚点定理.证明:设S 是实轴上的一个有界无限点集,并且假设S没有聚点,则任意都不是S 的聚点,于是存在正数使得中只含有S中有穷多个点.而开区间集是的一个开覆盖.由有限覆盖定理知,存在的一个有限覆盖,设为它们也是S的一个覆盖.因为每一个中只含有S 中有穷多个点,故S 是一个有限点集.这与题设矛盾.故实轴上的任一有界无限点集S至少有一个聚点.9.试用聚点定理证明柯西收敛准则.证明:设收敛,令于是,对任给的ε>0,存在正整数N,使得当n,m >N时,有于是设数列满足柯西收敛准则的条件.如果集合只含有有限多个不同的实数,则从某一项起这个数列的项为常数,否则柯西条件不会成立.此时,这个常数就是数列的极限.如果集合含有无限多个不同的实数,则由柯西条件容易得知它是有界的.于是由聚点定理,集合至少有一个聚点假如有两个不等的聚点ξ,η,不妨设η>ξ,令δ=η-ξ,则与都含有集合中无限多个点.这与取,存在正整数N ,当n ,m >N 时,有矛盾.故的聚点是惟一的,记之为ξ.对于任意ε>0,存在N ,使得当n ,m >N 时,又因为ξ是的聚点,所以存在n0>N ,使得因而,当n >N 时,故数列收敛于ξ.10.用有限覆盖定理证明根的存在性定理.证明:根的存在定理:若函数f 在闭区间上连续,且f (a )与f (b )异号,则至少存在一点,使得f (x 0)=0.假设方程f (x )=0在(a ,b )内无实根,则对每一点有由连续函数的局部保号性知,对每一点存在x 的一个邻域,使得f (x )在内保持与f (x )相同的符号.于是,所有的形成的一个开覆盖.根据有限覆盖定理,从中可以选出有限个开区间来覆盖.把这些开区间的集合记为S ,则点a 属于S 的某个开区间,设为它的右端点x 1+δ1又属于S的另一个开区间,设为以此类推,经过有限次地向右移动,得到开区间,使得δn )这n 个开区间显然就是的一个开覆盖.f (x )在每一个内保持同一个符号.在内f (x )与f (a )具有相同的符号.因为所以f (x )在内也具有f (a )的符号.以此类推,f (b )与f (a )具有相同的符号.这与f (a )与f (b )异号矛盾.故至少存在一点,使得f (x 0)=0.11.用有限覆盖定理证明连续函数的一致连续性定理.证明:一致连续性定理:若函数f 在闭区间上连续,则f 在上一致连续.因为f 在上连续,所以任绐任意ε>0,存在对任意有取.则H 是的无限开覆盖.由有限覆盖定理,从中可以选出有限个开区间来覆盖不妨设选出的这有限个开区间为取对任意不妨设,即当时,由于因此由一致连续定义,f 在上一致连续.§2 上极限和下极限1.求以下数列的上、下极限。
第七章 实数的完备性目的与要求:使学生掌握反映实数完备性的六个基本定理,能准确地加以表述,并深刻理解其实质意义;明确六个基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上的连续函数性质和一些有关命题.了解数列上极限和下极限的概念及其与数列极限的关系.重点与难点:重点是实数完备性基本定理的证明,难点是实数完备性基本定理的应用.第一节 关于实数集完备性的基本定理一 区间套定理与柯西收敛准则 1 区间套定义1 区间套: 设[]{}n n b a ,是一闭区间序列. 若满足条件 (1) 对n ∀, 有[][]n n n n b a b a ,,11⊂++, 即n n n n b b a a ≤<≤++11, 亦即后一个闭区间包含在前一个闭区间中;(2) 0→-n n a b ()∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为闭区间套, 简称为区间套 .区间套还可表达为:1221b b b a a a n n ≤≤≤≤<≤≤≤≤ , 0→-n n a b ()∞→n .我们要提请大家注意的是, 这里涉及两个数列{}n a 和{}n b , 其中{}n a 递增, {}n b 递减.例如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-n n 1,1和⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡n 1,0 都是区间套. 但()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-+n n n 21,11、⎭⎬⎫⎩⎨⎧]1,0(n 和⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n11,1都不是. 2 区间套定理定理7.1(区间套定理) 设[]{}n n b a ,是一闭区间套. 则在实数系中存在唯一的点ξ, 使对n ∀有[]n n b a ,∈ξ. 简言之, 区间套必有唯一公共点.证明 (用单调有界定理证明区间套定理)由假设(1)知,序列{}n a 单调上升,有上界1b ;序列{}n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知()0lim 12=-=-+∞→c c a b n n n ,记c c c ==12. 从而有==+∞→c a n n lim n n b +∞→lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切[]n n b a ,的唯一公共点.证毕.注: 这个定理称为区间套定理.关于定理的条件我们作两点说明:(1)要求[]n n b a ,是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如()⎪⎭⎫⎝⎛=n b a n n 1,0,.显然有 ⎪⎭⎫⎝⎛⊂⎪⎭⎫ ⎝⎛+n n 1,011,0 , 但 ∅=⎪⎭⎫ ⎝⎛+∞= 11,0n n .如果开区间套是严格包含:n n n n b b a a <<<++11,这时定理的结论还是成立的.(2) 若[][],2,1,,11=⊃++n b a b a n n n n ,但()0lim ≠-∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有[] +∞=∈1,n n n b a c .全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,该定理刻划实数集是完备的.该定理也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设[]{}n n b a ,为一区间套,[],2,1,=∈n b a n n ξ.则0,0>∃>∀N ε当N n >时,恒有[]()εξ,,U b a n n ⊂.用区间套定理证明其他命题时,最后常会用到这个推论.3 数列的柯西收敛准则的证明 数列的柯西收敛准则:数列{}n a 收敛的充要条件是:0>∀ε,0>∃N ,当N n m >,时,有ε<-n m a a .(后者又称为柯西(Cauchy )条件,满足柯西条件的数列又称为柯西列,或基本列.)证明 必要性设 A a n n =∞→lim .由数列极限定义,0>∀ε,0>∃N ,当N n m >,时有2ε<-A a m , 2ε<-A a n ,因而εεε=+<-+-≤-22A a A a a a n m n m .充分性 按假设,0>∀ε,0>∃N ,使得对一切N n ≥有ε≤-n m a a ,即在区间[]εε+-N N a a ,内含有{}n a 中除有限项外的所有项. 据此,令21=ε,则1N ∃,在区间⎥⎦⎤⎢⎣⎡+-21,2111N N a a 内含有{}n a 中除有限项外的所有项.记这个区间为[]11,βα.再令221=ε,则)(12N N >∃,在区间⎥⎦⎤⎢⎣⎡+-2221,2122N N a a 内含有{}n a 中除有限项外的所有项.记[]=22,βα⎥⎦⎤⎢⎣⎡+-2221,2122N N a a []11,βα,它也含有{}n a 中除有限项外的所有项, 且满足 []11,βα⊃[]22,βα及 2122≤-αβ.继续依次令 ,21,,212n=ε,照以上方法得一闭区间列[]{}n n βα,,其中每一个区间都含有{}n a 中除有限项外的所有项,且满足 []n n βα,⊃[]11,++n n βα, ,2,1=n ,()∞→→≤--n n n n 0211αβ即[]{}n n βα,是区间套.由区间套定理,存在唯一的一个数∈ξ[]n n βα, ( ,2,1=n ).现在证明数ξ就是数列{}n a 的极限.事实上,由区间套定理的推论,,0>∃>∀N ε当N n >时,恒有[]()εξβα,,U n n ⊂.因此在()εξ;U 内含有{}n a 中除有限项外的所有项,这就证得ξ=∞→n n a lim .二 聚点定理与有限覆盖定理 1 聚点定义2 设S 是无穷点集. 若在点ξ (未必属于S )的任何邻域内有S 的无穷多个点, 则称点ξ为S 的一个聚点.数集⎭⎬⎫⎩⎨⎧=n E 1有唯一聚点0, 但E ∉0;开区间)1,0(的全体聚点之集是闭区间[]1,0;设Q 是[]1,0中全体有理数所成之集, 易见Q 的聚点集是闭区间[]1,0. 2 聚点概念的另两个等价定义定义2' 对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即∅≠S U );(0εξ,则称点ξ为S 的一个聚点.定义2'' 若存在各项互异的收敛数列{}S x n ⊂ ,则其极限ξ=∞→n n x lim 称为S 的一个聚点.3 以上三个定义互相等价的证明:证:定义2⇒定义2' 显然成立.定义2'⇒定义2'' 由定义2',取11=ε,S U x );(101εξ∈∃;再取⎪⎭⎫ ⎝⎛-=12,21min x ξε则S U x );(202εξ∈∃,且显然12x x ≠;……一般取⎪⎭⎫ ⎝⎛-=-1,21min n n x ξε则S U x n n );(0εξ∈∃,且显然n x 与11,,-n x x 互异;……无限地重复以上步骤,得到S 中各项互异的数列{}n x ,且由nx n n 1≤<-εξ,易见ξ=∞→n n x lim .定义2''⇒定义2 ξ=∞→n n x lim ⇒0>∀ε,0>∃N ,当N n >时,必有);(εξU x n ∈,且因{}n x 各项互不相同,故);(εξU 内含有S中无限多个点.[证毕]4 聚点定理定理 7.2 (魏尔斯特拉斯聚点定理 Weierstrass ) 直线上的任一有界无限点集S 至少有一个聚点ξ,即在ξ的任意小邻域内都含有S 中无限多个点(ξ本身可以属于S ,也可以不属于S ).证 因为S 为有界无限点集,故存在0>M ,使得[]M M S ,-⊂,记[]11,b a []M M ,-=.现将[]11,b a 等分为两个子区间.因为S 为有界无限点集,故两个子区间中至少有一个含有S 中无穷多个点,记此区间为[]22,b a ,则[]11,b a ⊃[]22,b a ,且=-22a b Ma b =-)(2111.再将[]22,b a 等分为两个子区间.则两个子区间中至少有一个含有S 中无穷多个点,记此区间为[]33,b a ,则[]22,b a ⊃[]33,b a ,且=-33a b 2)(2122M a b =-.将此等分区间的手续无限地进行下去,得到一个闭区间列[]{}n n b a ,,它满足 []n n b a ,⊃[]11,++n n b a , ,2,1=n , ()∞→→≤--n M a b n n n 022即[]{}n n βα,是区间套,且每一个闭区间中都含有S 中无穷多个点. 由区间套定理,存在唯一的一个数∈ξ[]n n b a , ( ,2,1=n ).于是由区间套定理的推论,0,0>∃>∀N ε当N n >时,恒有[]()εξ,,U b a n n ⊂.从而()εξ,U 内含有S 中无穷多个点,按定义2 ,ξ为S 的一个聚点.5 致密性定理.推论:任一有界数列必有收敛子列.证 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,则由这些项组成的子列是一个常数列,而常数列总是收敛的.若{}n x 中不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有 界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ.于是按定 义2'',存在{}n x 的一个收敛的子列以ξ为极限.作为致密性定理的应用,我们用它重证数列的柯西收敛准则的充分性 证明 充分性由已知条件:0>∀ε,0>∃N ,当N n m >,时,有ε<-n m a a .欲证{}n a 收敛.首先证{}n a 有界. 取1=ε,则N ∃,N m n >,有1<-m n a a特别地,N n >时11<-+N n a a ⇒ 11+<+N n a a 设 {}1,,,,m ax 121+=+N N a a a a M ,则n ∀,M a n ≤ 再由致密性定理知,{}n a 有收敛子列{}Kna ,设A a K n k =∞→lim.对任给0>ε,存在0>K ,当K k n m >,,时,同时有2ε<-m n a a ,和 2ε<-A a kn因而当取 k n m =()K k >≥时,得到εεε=+<-+-≤-22A a a a A a k k n n n n故 A a n n =∞→lim .6 海涅–博雷尔(Heine –Borel) 有限覆盖定理: 1. 定义(覆盖 )设S 为数轴上的点集 , H 为开区间的集合(即H 的每一个元素都是形如()βα,的开区间). 若S 中任何一点都含在H 中至少一个开区间内,则称H 为S 的一个开覆盖,或称H 覆盖S .若H 中开区间的个数是无限(有限)的,则称H 为S 的一个无限开覆盖(有限开覆盖).例 ()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=1,023,2x x x M 覆盖了区间()1,0, 但不能覆盖[]1,0;()⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛-+--=b a x x b x x b x H ,2,2 覆盖 ),[b a , 但不能覆盖],[b a .2. 海涅–博雷尔Heine –Borel 有限复盖定理:定理7.3 (有限覆盖定理) 设(){}βα,=H 是闭区间[]b a ,的一个无限开覆盖,即[]b a ,中每一点都含于H 中至少一个开区间()βα,内.则在H 中必存在有限个开区间,它们构成[]b a ,的一个有限开覆盖.证明 (用区间套定理证明有限覆盖定理)用反证法设H 为闭区间[]b a ,的一个无限开覆盖.假设定理的结论不成立:即[]b a ,不能用H 中有限个开区间来覆盖.对[]b a ,采用逐次二等分法构造区间套[]{}n n b a ,,[]n n b a ,的选择法则:取“不能用H 中有限个开区间来覆盖”的那一半.由区间套定理, []n n b a ,∈∃ξ ,2,1=n . 因为[]b a ,∈ξ,所以()H ∈∃βα, 使 ()βαξ,∈记{}0,m in >--=ξβαξε由推论,当n 足够大时, 有[]()()βαεξ,,,⊂⊂U b a n n这表示[]n n b a ,用H 中一个开区间()βα,就能覆盖,与其选择法则相违背.所以[]b a ,必能用H 中有限个开区间来覆盖.说明 当[]b a ,改为),(b a 时,或者H 不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) H : ,21,1,1,12,43,21,32,0⎪⎭⎫⎝⎛++-⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛n n nn n nn n . H是开区间()1,0的一个无限开覆盖,但不能由此产生()1,0的有限覆盖.2) ∙H :),1,1[,),32,21[),21,0[),3,1[+-n n nn .∙H是[]2,0的一个无限覆盖,但不是开覆盖,由此也无法产生[]2,0的有限覆盖. 三 实数完备性基本定理的等价性1 实数完备性基本定理的等价性至此,我们已经介绍了有关实数完备性的六个基本定理,即 定理1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与它等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理2 (单调有界定理) 任何单调有界数列必定收敛.定理3 (区间套定理) 设[]{}n n b a ,为一区间套: 1)[][],2,1,,11=⊃++n b a b a n n n n2)()0lim =-∞→n n n a b .则存在唯一一点[],2,1,=∈n b a n n ξ定理4 (有限覆盖定理) 设(){}βα,=H 是闭区间[]b a ,的一个无限开覆盖,即[]b a ,中每一点都含于H 中至少一个开区间()βα,内.则在H 中必存在有限个开区间,它们构成[]b a ,的一个有限开覆盖.定理5 (聚点定理) 直线上的任一有界无限点集S 至少有一个聚点ξ,即在ξ的任意小邻域内都含有S 中无限多个点(ξ本身可以属于S ,也可以不属于S ).定理6 (柯西准则) 数列{}n a 收敛的充要条件是:N ∈∃>∀N ,0ε,只要N m n >, 恒有ε<-n m a a .(后者又称为柯西(Cauchy )条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.2 实数完备性基本定理等价性的证明证明若干个命题等价的一般方法.即循环论证,当然也可以用其他的方法进行,下面我们按循环论证来进行实数完备性基本定理等价性的证明:定理1(确界原理)⇒ 定理2 (单调有界定理)⇒ 定理3 (区间套定理) ⇒ 定理4 (有限覆盖定理) ⇒定理5 (聚点定理) ⇒定理6 (柯西准则)⇒定理1(确界原理)其中 定理1(确界原理)⇒ 定理2 (单调有界定理),定理2 (单调有界定理)⇒ 定理3 (区间套定理)与定理3 (区间套定理) ⇒ 定理4 (有限覆盖定理)分别见定理2.9, 7.1与7.3; 定理4 (有限覆盖定理) ⇒定理5 (聚点定理)和定理5 (聚点定理) ⇒定理6 (柯西准则)⇒定理1(确界原理)作为练习自证;而定理6 (柯西准则)⇒定理1(确界原理)见下例.例1 用“数列柯西收敛准则” 证明“确界原理” :即 非空有上界数集必有上确界 ;非空有下界数集必有下确界 . 证 (只证“非空有上界数集必有上确界”)设S 为非空有上界数集 . 由实数的阿基米德性,对任何正数α ,存在整数αk ,使得αλααk =为S 的上界,而()ααλαα1-=-k 不是S 的上界,即存在S ∈'α,使得()ααα1->'k .分别取n1=α, ,2,1=n ,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而nn 1-λ不是S 的上界,故存在S ∈'α,使得nn 1->'λα.又对正整数m ,m λ是S 的上界,故有αλ'≥m .再由nn 1->'λα得nm n 1<-λλ;同理有mn m 1<-λλ.从而得⎭⎬⎫⎩⎨⎧<-n m n m 1,1max λλ.于是,对任给的0>ε,存在0>N ,使得当N n m >,时有ελλ<-m n . 由柯西收敛准则,知数列{}n λ收敛.记λλ=∞→n n lim .下面证明λ就是S 的上确界.首先,对任何S ∈α和正整数n 有n λα≤, 由λλ=∞→n n lim 得λα≤,即λ是S 的上界.其次, 对任何0>δ,由()∞→→nn1及λλ=∞→n n lim ,对充分大的n 同时有21δ<n,2δλλ->n .又因nn 1-λ不是S 的上界, 故存在S ∈'α,使得nn 1->'λα.再结合21δ<n,2δλλ->n 得 δλδδλλα-=-->->'221nn .这说明λ为S 的上确界.同理可证:非空有下界数集必有下确界. 作业 P168 1,2,3,4,5,6,7.第二节 闭区间上连续函数性质的证明在本节中,将利用关于实数完备性的基本定理来证明第四章第二节中给出的闭区间上连续函数的基本性质 一 有界性定理若函数)(x f 在闭区间],[b a 上连续,则)(x f 在],[b a 上有界 证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107证法 二 ( 用致密性定理). 反证法.证明: 如若不然,)(x f 在],[b a 上无界,N n ∈∀,],[b a x n ∈∃,使得()n x f n >,对于序列{}n x ,它有上下界b x a n ≤≤,致密性定理告诉我们kn x ∃使得],[0b a x x kn ∈→,由)(x f 在0x 连续,及()knnx f k>有()()+∞==∞→knk x f x f lim 0,矛盾.证法 三 ( 用有限复盖定理 ).证明:(应用有限覆盖定理) 由连续函数的局部有界性(定理4.2)对每一点],[b a x ∈'都存在邻域()x x U ''δ,及正数x M '使x Mx f '≤)(,()],[,b a x U x x ''∈δ考虑开区间集 ){}],[,b a x x U H x ∈''='δ显然H 是],[b a 的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集(){}ki b a x x U Hi x i i ,,2,1],[, =∈''='*δ覆盖了],[b a ,且存在正整数k M M M ,,21使对一切()],[,b a x U x ix i ''∈δ有i M x f ≤)( k i ,,2,1 =,令i ki M M ≤≤=1max 则对],[b a x ∈∀,x 必属于某()ix i x U ''δ,,M M x f i ≤≤⇒)(,即证得)(x f 在],[b a 上有上界. 二 最大、最小值定理若函数)(x f 在闭区间] , [b a 上连续, 则)(x f 在] , [b a 上取得最大值和最小值.证 ( 用确界原理 ) ( 只证取得最大值 )令{})(sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x g -=,则)(x g 在] , [b a 上连续,因而有界,设G 是)(x g 的一个上界,则Gx f M x g ≤-=<)(1)(0, ],[b a x ∈从而GM x f 1)(-≤,],[b a x ∈这与M 是上确界矛盾,因此],[b a ∈∃ξ,使得M f =)(ξ. 类似地可以证明达到下确界. 三 介值性定理设)(x f 在闭区间] , [b a 上连续,且)()(b f a f ≠若c 为介于)(a f 与)(b f 之间的任何实数)()(b f c a f <<或)()(b f c a f >>,则存在),(0b a x ∈使c x f =)(0.证法一 (应用确界定理)不妨设)()(b f c a f <<,令c x f x g -=)()(则)(x g 也是] , [b a 上连续函数,0)(<a g ,0)(>b g ,于是定理的结论转为: 存在),(0b a x ∈,使0)(0=x g 这个简化的情形称为根的存在性定理(定理4.7的推论)记{}],[,0)(b a x x g x E ∈>=,显然E 为非空有界数集()E b B A E∈⊂且],,[故有确界定理, E 有下确界,记E x inf 0=.因0)(<a g ,0)(>b g 由连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在],(b b δ-内0)(>x g .由此易见a x ≠0,b x ≠0,即),(0b a x ∈. 下证)(0=x g .倘若0)(0≠x g ,不妨设0)(>x g ,则又由局部保号性,存在()()),(,0b a x U ⊂η使在其内0)(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-2200ηη,但此与E x inf 0=矛盾,则必有0)(0=x g .几何解释: 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,x x =',c y y -='启示我们作函数c x f x g -=)()(;② 从结果c x f =)(0着手.利用零点定理证:令c x f x g -=)()(,则)(x g 在] , [b a 上连续,往下即转化为零点存在问题.证法二 ( 用区间套定理 ) .这里我们证明与介值性定理等价的“零点定理 ”.命题(零点存在定理或根的存在性定理)设函数)(x f 在闭区间] , [b a 上连续,即()],[)(b a C x f ∈,且)(a f 与)(b f 异号,则在),(b a 内至少存在一点0x 使得0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证明 设0)(<a f ,0)(>b f .将] , [b a 二等分为] , [c a 、] , [b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取] , [c a 否则取] , [b c ,将所取区间记为] , [11b a ,从而有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(ic 即为所求);否则得[]{}n n b a ,满足:(1) ⊃⊃⊃⊃],[] , [],[11n n b a b a b a ;(2) 02lim)(lim =-=-∞→∞→nn n n n a b a b ;(3) 0)(<n a f ,0)(>n b f由闭区间套定理知,∃唯一的],[0n n b a x ∈, ,2,1=n ,且0lim lim x b a n n n n ==∞→∞→由)(x f 在0x 处的连续性及极限的保号性得()()0lim 0≤=∞→x f a f n n ,()()0lim 0≥=∞→x f b f n n ,0)(0=⇒x f这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.四 一致连续性定理若函数)(x f 在闭区间] , [b a 上连续, 则)(x f 在] , [b a 上一致连续. 证法 一 ( 用有限复盖定理) .证明: 由)(x f 在闭区间] , [b a 上连续性, 0>∀ε,对每一点] , [b a x ∈,都存在0>x δ,使当()x x U x δ,∈'时,有()()2ε<-'x f x f (2)考虑开区间集合 ⎭⎬⎫⎩⎨⎧∈⎪⎭⎫⎝⎛=],[2,b a x x U H x δ显然H 是] , [b a 的一个开覆盖,由有限覆盖定理,存在H 的一个有限子集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛=*k i x U Hix i ,,2,12, δ覆盖了] , [b a . 记02min 1>⎭⎬⎫⎩⎨⎧=≤≤i ki δδ对],[,b a x x ∈'''∀,δ<''-'x x ,x '必属于*H 中某开区间,设⎪⎪⎭⎫ ⎝⎛2,i x ix U δ,即2ixi x x δ<-',此时有iiiix xxxi i x x x x x x δδδδδ=+≤+<-'+'-''≤-''222故由(2)式同时有 2)()(ε<-'i x f x f 和2)()(ε<-''i x f x f由此得 ε<''-')()(x f x f .所以)(x f 在] , [b a 上一致连续.证法二 ( 用致密性定理).证明: 如果不然,)(x f 在] , [b a 上不一致连续,0>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'x x ,而0)()(ε≥''-'x f x f .取n1=δ,(n 为正整数)],[,b a x x n n∈'''∃,nx x n n 1<''-',而0)()(ε≥''-'n nx f x f ,当n 取遍所有正整数时,得数列{}n x '与{}],[b a x n ⊂''. 由致密性定理,存在{}nx '的收敛子序列{}kn x ',设)(],[0∞→∈→'k b a x x kn , 而由kn nn x x kk1<''-',可推出)(000∞→→-'+''-'≤-''k x x x x x x kkkkn n n n又得)(0∞→→''k x x k n .再由)(x f 在0x 连续,在0)()(ε≥''-'kk n n x f x f 中令∞→k ,得 ()()000)()(lim 0ε≥''-'=-=∞→kk n n k x f x f x f x f , 与00>ε矛盾.所以)(x f 在] , [b a 上一致连续.作业 P172 1,2,3,4, 5.第三节 上极限和下极限一 上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:(){}n 1-.一般地,数列{}n x ,若{}k n x :a x k n → ()∞→k ,则称a 是数列{}n x 的一个极限点.如点例(){}n1-有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为n n x ∞→lim (n n x ∞→lim ).如1)1(lim =-∞→n n ,1)1(lim -=-∞→nn . 例1 求数列⎭⎬⎫⎩⎨⎧3sinπn 的上、下极限 例2 设[]n n n x )1(1-+=,求上、下极限.二 上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在.定理1 每个数列{}n x 的上极限和下极限必定唯一,且n n x ∞→lim ={}k nk n n n x x x ≥∞→+=sup lim ,,sup 1 , n n x ∞→lim ={}k nk n n n x x x ≥∞→+=inf lim ,,inf1 . 三 上下极限和极限的关系≥∞→n n x lim n n x ∞→lim . 定理2 {}n x 存在极限则{}n x 的上极限和下极限相等, 即n n x ∞→lim =n n x ∞→lim =n n x ∞→lim .四 上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如: 2)1(lim )1(lim 0])1()1[(lim 11=-+-<=-+-+∞→∞→+∞→n n n n n n n . 一般地有:n n n n n n n y x y x ∞→∞→∞→+≤+lim lim )(lim ,当{}n x 收敛时,等号成立. 作业 p175 1,2,3.。
数学分析教案(华东师⼤版)第七章实数的完备性第七章实数的完备性教学⽬的:1. 使学⽣掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;2. 明确基本定理是数学分析的理论基础,并能应⽤基本定理证明闭区间上连续函数的基本性质和⼀些有关命题,从⽽掌握应⽤基本定理进⾏分析论证的能⼒。
教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应⽤。
教学时数:14 学时§ 1 关于实数集完备性的基本定理( 4 学时)教学⽬的:1. 使学⽣掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;2. 明确基本定理是数学分析的理论基础。
教学重点难点:实数完备性的基本定理的证明。
⼀.确界存在定理:回顾确界概念.Th 1 ⾮空有上界数集必有上确界;⾮空有下界数集必有下确界 .⼆ . 单调有界原理 : 回顾单调和有界概念 .Th 2 单调有界数列必收敛三 . Cantor 闭区间套定理 :1. 区间套 : 设是⼀闭区间序列 . 若满⾜条件ⅰ> 对 , 有 , 即 , 亦即后⼀个闭区间包含在前⼀个闭区间中 ;ⅱ > . 即当时区间长度趋于零 .则称该闭区间序列为⼀个递缩闭区间套 , 简称为区间套 .简⽽⾔之 , 所谓区间套是指⼀个“闭、缩、套” 区间列 . 区间套还可表达为 :.我们要提请⼤家注意的是 , 这⾥涉及两个数列和 , 其中递增 , 递减 .例如和都是区间套 . 但、和都不是 .2. Cantor 区间套定理 :Th 3 设是⼀闭区间套 . 则存在唯⼀的点 , 使对有简⾔之 , 区间套必有唯⼀公共点四. Cauchy 收敛准则数列收敛的充要条件1.基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy列.例 1 验证以下两数列为 Cauchy 列 :⑴ .解⑴对,为使,易见只要于是取当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号有⼜当为奇数时综上 , 对任何⾃然数 , 有Cauchy 列的否定 :例2 验证数列不是 Cauchy 列.证对 , 取 , 有因此 , 取,??2. Cauchy 收敛原理 :Th 4 数列收敛是 Cauchy列 .(要求学⽣复习函数极限、函数连续的 Cauchy 准则,并以 Cauchy 收敛原理为依据,利⽤ Heine 归并原则给出证明)五 . 致密性定理 :数集的聚点定义设是⽆穷点集 . 若在点(未必属于)的任何邻域内有的⽆穷多个点 , 则称点为的⼀个聚点 .数集 = 有唯⼀聚点 , 但 ; 开区间的全体聚点之集是闭区间 ; 设是中全体有理数所成之集 , 易见的聚点集是闭区间 .1. 列紧性 : 亦称为 Weierstrass 收敛⼦列定理 .Th 5 ( Weierstrass )任⼀有界数列必有收敛⼦列2.聚点原理 : Weierstrass 聚点原理 .Th 6 每⼀个有界⽆穷点集必有聚点 .六 . Heine–Borel 有限复盖定理 :1. 复盖 : 先介绍区间族 .定义(复盖)设是⼀个数集 , 是区间族 . 若对, 则称区间族复盖了 , 或称区间族是数集的⼀个复盖 .记为若每个都是开区间 , 则称区间族是开区间族 . 开区间族常记为.定义(开复盖)数集的⼀个开区间族复盖称为的⼀个开复盖 , 简称为的⼀个复盖 .⼦复盖、有限复盖、有限⼦复盖 .例 3 复盖了区间 , 但不能复盖; 复盖 , 但不能复盖.2. Heine –Borel 有限复盖定理 :Th 7 闭区间的任⼀开复盖必有有限⼦复盖 .§ 2 实数基本定理等价性的证明( 4 学时)证明若⼲个命题等价的⼀般⽅法 . 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进⾏ : Ⅰ: 确界原理单调有界原理区间套定理Cauchy 收敛准则确界原理Ⅱ: 区间套定理致密性定理 Cauchy 收敛准则 ;Ⅲ: 区间套定理Heine –Borel 有限复盖定理区间套定理⼀.“Ⅰ” 的证明 : (“确界原理单调有界原理”已证明过).1. ⽤“确界原理”证明“单调有界原理” :Th 2 单调有界数列必收敛 .证2. ⽤“单调有界原理”证明“区间套定理” :Th 3 设是⼀闭区间套 . 则存在唯⼀的点 , 使对有证系 1 若是区间套确定的公共点 , 则对 ,当时 , 总有 .系 2 若是区间套确定的公共点 , 则有↗ , ↘ , .3.⽤“区间套定理”证明“ Cauchy 收敛准则” :Th 4 数列收敛是 Cauchy列 .引理 Cauchy 列是有界列 . (证)Th 4 的证明: (只证充分性)教科书 P217—218上的证明留作阅读现采⽤[3]P70 — 71例2的证明, 即三等分的⽅法 , 该证法⽐较直观 .4.⽤“ Cauchy收敛准则” 证明“确界原理” :Th 1 ⾮空有上界数集必有上确界;⾮空有下界数集必有下确界证(只证“⾮空有上界数集必有上确界”)设为⾮空有上界数集 . 当为有限集时 , 显然有上确界 . 下设为⽆限集 , 取不是的上界 ,为的上界 . 对分区间 , 取 , 使不是的上界 ,为的上界 . 依此得闭区间列 . 验证为 Cauchy 列, 由Cauchy收敛准则 , 收敛; 同理收敛. 易见↘. 设↘ . 有↗ . 下证. ⽤反证法验证的上界性和最⼩性 .⼆.“Ⅱ” 的证明 :1. ⽤“区间套定理”证明“致密性定理” :Th 5 ( Weierstrass )任⼀有界数列必有收敛⼦列 .证(突出⼦列抽取技巧)Th 6 每⼀个有界⽆穷点集必有聚点 .证(⽤对分法)2.⽤“致密性定理” 证明“ Cauchy收敛准则” :Th 4 数列收敛是 Cauchy 列 .证(只证充分性)证明思路: Cauchy列有界有收敛⼦列验证收敛⼦列的极限即为的极限 .三.“Ⅲ” 的证明 :1. ⽤“区间套定理”证明“ Heine –Borel 有限复盖定理” 证2. ⽤“Heine –Borel 有限复盖定理” 证明“区间套定理” 证采⽤[3]P72 例 4 的证明.§ 3 闭区间上连续函数性质的证明( 4 学时)教学⽬的:能应⽤基本定理证明闭区间上连续函数的基本性质和⼀些有关命题,从⽽掌握应⽤基本定理进⾏分析论证的能⼒。
华东师大版八年级上册数学说课稿《实数》一. 教材分析华东师大版八年级上册数学教材在实数这一章节中,主要介绍了实数的概念、分类和运算。
这一章节是学生继初中一年级学习有理数之后,进一步拓展和深化实数知识的重要内容。
教材从学生的认知规律出发,通过丰富的实例和生动的语言,引导学生理解和掌握实数的概念,认识实数的分类,以及熟练掌握实数的运算方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,他们已经学习了有理数,对数的概念和运算有了初步的认识。
但实数的概念和分类相对于有理数来说更为抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要关注学生的学习困难,通过具体实例和生活中的实际问题,帮助学生理解和掌握实数的概念和分类。
三. 说教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够进行实数的混合运算。
3.能够运用实数的概念和运算解决实际问题,提高学生的数学应用能力。
四. 说教学重难点1.实数的概念和分类。
2.实数的运算方法。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例教学法和小组合作学习法等教学方法。
同时,利用多媒体课件和教具,以直观、生动的方式展示实数的概念和运算方法,帮助学生理解和掌握。
六. 说教学过程1.导入:通过复习有理数的相关知识,引出实数的概念,激发学生的学习兴趣。
2.讲解实数的概念:通过实例和生活中的实际问题,讲解实数的概念,让学生感知实数的存在和意义。
3.讲解实数的分类:讲解整数、分数和小数的分类,让学生理解实数的分类。
4.实数的运算:讲解实数的加、减、乘、除运算方法,并通过例题进行演示和讲解。
5.巩固练习:布置练习题,让学生巩固所学知识,能够熟练进行实数的运算。
6.应用拓展:通过实际问题,让学生运用实数的概念和运算方法进行解决问题,提高学生的数学应用能力。
七. 说板书设计板书设计要清晰、简洁,能够突出实数的概念和分类,以及实数的运算方法。
例如:实数的概念:•有理数:分数、整数•无理数:π、√2实数的分类:•整数:正整数、0、负整数•分数:正分数、负分数•小数:正小数、负小数实数的运算:•加法:a + b•减法:a - b•乘法:a × b•除法:a ÷ b八. 说教学评价通过课堂提问、练习题和课后作业等方式,对学生的学习情况进行评价。
实数完备性的证明第一部分 七个定理的证明1.单调有界定理→区间套定理证明:已知n a ≤1+n a (∀n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞→n limna = r ,同理可知{n b }存在极限,设∞→n lim n b =r ' ,由∞→n lim (nna b-)=0得r r '-=0即r r '=∀n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴∀n ,有n a ≤r ≤n b 。
下面证明唯一性。
用反证法。
如果不然。
则∃ 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤对任意b 有1r b ≥ 2r b ≥,不妨设21r r <,令221'r r r +=显然2'1r r r <<⇒A r ∈',B r ∈',这与B A |是R 的一个分划矛盾。
唯一性得证。
定理证完。
2.区间套定理→确界定理证明:由数集A 非空,知∃A a ∈,不妨设a 不是A 的上界,另外,知∃b 是A 的上界,记[1a ,1b ]=[a ,b ],用1a ,1b 的中点211b a +二等分[1a ,1b ],如果211b a+是A 的上界,则取[2a ,2b ]=[1a ,211b a+];如果211b a+不是A 的上界,则取[2a ,2b ]=[211b a +,1b ];用2a ,2b 的中点222b a+二等分[2a ,2b ]……如此继续下去,便得区间套[na ,nb ]。
其中n a 不是A 的上界,n b 是A 的上界。
由区间套定理可得,∃唯一的 ∞=∈1],[n n nb ar ,使∞→n lim n a =∞→n limn b = r 。
A x ∈∀,由≤x n b (n=1,2,……), 令∞→n ,≤x ∞→n lim n b = r ∴ r是A 的上界。
第七章实数的完备性§1 关于实数集完备性的基本定理在第一、二章中,我们证明了关于实数集的确界原理和数列的单调有界定理,给出了数列的柯西收敛准则.这三个命题以不同方式反映了实数集R的一种特性,通常称为实数的完备性或实数的连续性.可以举例说明,有理数集就不具有这种特性(本节习题4).有关实数集完备性的基本定理,除上述三个外,还有区间套定理、聚点定理和有限覆盖定理,在本节中将阐述这三个基本定理,并指出所有这六个基本定理的等价性.下一节中将应用这些基本定理证明第四章中已给出的关于闭区间上连续函数的性质.从而使极限理论乃至整个数学分析能建立在坚实的基础之上.一区间套定理与柯西收敛准则定义1 设闭区间列{[ a n,b n ]}具有如下性质: ( i)[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2, ;(i i)) lim ( b n - a n ) = 0,n →∞则称{[ a n , b n ] } 为闭区间套, 或简称区间套.这里性质(i)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:a1 ≤a2 ≤≤a n ≤≤b n ≤≤ b2 ≤b1 . (1) 定理7.1 ( 区间套定理)若{ [ a n , b n ]}是一个区间套, 则在实数系中存在唯一的一点ξ, 使得ξ∈[ a n , b n ] , n = 1 , 2 ,, 即a n ≤ ξ≤b n , n = 1 ,2, . (2) 证由(1 ) 式, { a n } 为递增有界数列, 依单调有界定理, { a n } 有极限ξ, 且有a n ≤ ξ, n = 1 ,2, . (3) 同理, 递减有界数列{b n } 也有极限, 并按区间套的条件( ii) 有limn →∞且b n = lim a n =ξ, (4)n →∞162第七章 实数的完备性b n ≥ ξ, n = 1 ,2, . (5)联合(3)、(5)即得(2)式.最后证明满足(2)的ξ是唯一的.设数ξ′也满足a n ≤ξ′≤b n , n = 1,2,,则由 (2 ) 式有 由区间套的条件(ii )得故有ξ′=ξ.|ξ- ξ′|≤b n -a n , n = 1,2,.|ξ- ξ′|≤lim (b n -a n ) = 0,n →∞由(4 ) 式容易推得如下很有用的区间套性质:推论 若 ξ∈ [ a n , b n ] ( n = 1 ,2, )是区间套{[a n ,b n ]}所确定的点,则对 任给的 ε>0 , 存在 N > 0 , 使得当 n >N 时有[ a n , b n ] Ì U (ξ;ε) .注 区间套定理中要求各个区间都是闭区间 , 才能保证定理的结论成立.对于开区间列, 如{ ( 0 , 1) } , 虽然其中各个开区间也是前一个包含后一个, 且nlim ( 1- 0) = 0 , 但不存在属于所有开区间的公共点. n →∞ n作为区间套定理的应用,我们来证明第二章中叙述而未证明的“数列的柯西 收敛准则”(定理2 .10),即数列{ a n } 收敛的充要条件是: 对任给的ε>0 , 存在 N > 0 , 使得对 m , n >N 有 | a m - a n | <ε.证 [ 必要性] 设lim n →∞a n = A.由数列极限定义, 对任给的 ε>0 , 存在N > 0 , 当 m , n >N 时有| a m - A |<ε ε2 , | a n - A|< 2, 因而 | a m - a n | ≤ | a m - A | + | a n - A | <ε ε2 + 2= ε. [ 充分性] 按假设, 对任给的ε>0 , 存在 N > 0 , 使得对一切n ≥ N 有|a n -a N |≤ε,即在区间[a N -ε,a N +ε]内含有{a n }中几乎所有的项(这里及以 下,为叙述简单起见,我们用“{a n }中几乎所有的项”表示“{a n }中除有限项外的 所有项”) .据此, 令ε= 1 , 则存在 N 1 , 在区间[ a N 21 所有的项.记这个区间为[α1 ,β1].- 12 , a N 1+ 1] 内含有{ a n } 中几乎 2§1 关于实数集完备性的基本定理163再令ε= 1 , 则存在 N 2 ( >N 1 ) , 在区间[ a N 22 2 几乎所有的项 .记- 1 , a N 222 + 1] 内含有{ a n } 中22[α2 ,β2]= [a N2 - 1 , a N 222 + 1 ]∩[α1 ,β1] , 22 它也含有{ a n } 中几乎所有的项, 且满足[α1 ,β1]É[α2 ,β2 ]及 β2 - α2 ≤1.2继续依次令 ε= 123,, 1 ,,照以上方法得一闭区间列{[αn ,βn ]},其中每2n个区间都含有{ a n } 中几乎所有的项, 且满足[αn ,βn ]É[αn+1 ,βn+1], n = 1,2, ,1βn - αn ≤ 2n - 1 → 0 ( n → ∞) ,即{[αn ,βn ]}是区间套.由区间套定理,存在唯一的一个数ξ∈[αn ,βn ]( n =1, 2,).现在证明数ξ就是数列{ a n } 的极限 .事实上, 由定理 7 .1的推论, 对任给的 ε>0 , 存在 N > 0 , 使得当 n >N 时有[αn ,βn ]ÌU(ξ;ε) .因此在 U(ξ;ε) 内含有{ a n } 中除有限项外的所有项, 这就证得lim n →∞a n = ξ.二 聚点定理与有限覆盖定理定义2 设 S 为数轴上的点集, ξ为定点( 它可以属于S , 也可以不属于 S).若ξ的任何邻域内都含有 S 中无穷多个点, 则称ξ为点集 S 的一个聚点 .例如, 点集 S = { (- 1 ) n + 1 } 有两个聚点ξ = - 1 和ξ = 1 ; 点集 S = { 1}n 1 2n只有一个聚点ξ= 0; 又若 S 为开区间( a , b) , 则( a , b) 内每一点以及端点 a 、b都是 S 的聚点; 而正整数集N + 没有聚点, 任何有限数集也没有聚点 .聚点概念的另两个等价定义如下:定义2′ 对于点集 S , 若点ξ的任何ε邻域内都含有 S 中异于ξ的点, 即 U °(ξ;ε)∩S ≠¹?,则称ξ为S 的一个聚点.定义2″ 若存在各项互异的收敛数列{ x n } ÌS , 则其极限lim n →∞x n = ξ称为 S的一个聚点 .关于以上三个定义等价性的证明, 我们简述如下 .定义2ª定义2′是显然的,定义2″ª定义2也不难得到;现证定义2′ª定义164第七章 实数的完备性2″:设ξ为S(按定义2′)的聚点,则对任给的ε>0,存在x ∈U °(ξ;ε)∩S .令ε1 =1,则存在x 1∈U °(ξ;ε1 )∩S;令ε2 =min (1,|ξ- x 1 |),则存在x 2 ∈U °(ξ;ε2)∩S,且显然x 2 ≠x 1 ;2令 εn =min (1, |ξ- x n - 1 |),则存在x n ∈U °(ξ;εn )∩S,且x n 与x 1 ,,nx n - 1 互异 .无限地重复以上步骤,得到S 中各项互异的数列{x n },且由|ξ- x n |<εn ≤ 1, 易见lim n →∞x n = ξ.下面我们应用区间套定理来证明聚点定理 .定理7 .2 ( 魏尔斯特拉斯( Weierstrass) 聚点定理) 实轴上的任一有界无 限点集S 至少有一个聚点 . 证 因 S 为有界点 集 , 故存 在 M > 0 , 使 得 S Ì [ - M , M ] , 记[ a 1 , b 1 ] =[ - M , M] .现将[ a 1 , b 1 ] 等分为两个子区间 .因 S 为无限点集, 故两个子区间中至少有 一个含有 S 中无穷多个点, 记此子区间为[ a 2 , b 2 ] , 则[ a 1 , b 1 ] É[ a 2 , b 2 ] , 且 b 2 - a 2 = 12(b 1 - a 1 ) = M.再将[ a 2 , b 2 ] 等分为两个子区间, 则其中至少有一个子区间含有 S 中无穷 多个点, 取出这样的一个子区间, 记为[ a 3 , b 3 ] , 则[ a 2 , b 2 ]É[ a 3 , b 3 ] , 且b 3 - a 3 = 1 (b 2 - a 2 ) = M.2 2将此等分子区间的手续无限地进行下去, 得到一个区间列{ [ a n , b n ]} , 它满 足[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2,,b n - a n = M→ 0 ( n → ∞ ),2n - 1即{[ a n , b n ] } 是区间套, 且其中每一个闭区间都含有 S 中无穷多个点 .由区间套定理, 存在唯一的一点ξ∈[ a n , b n ] ,n = 1 , 2 ,.于是由定理 7 .1 的推论, 对任给的ε> 0 , 存在 N > 0 , 当 n >N 时有[ a n ,b n ] Ì U ( ξ; ε) .从而 U(ξ;ε) 内含有 S 中无穷多个点, 按定义2 , ξ为 S 的一个聚点 .推论( 致密性定理) 有界数列必含有收敛子列 .n§1 关于实数集完备性的基本定理165证 设{ x n } 为有界数列 .若{x n } 中有无限多个相等的项, 则由这些项组成 的子列是一个常数列, 而常数列总是收敛的 .若数列{ x n } 不含有无限多个相等的项, 则{ x n } 在数轴上对应的点集必为有 界无限点集,故由聚点定理,点集{x n }至少有一个聚点,记为ξ.于是按定义2″, 存在{ x n } 的一个收敛子列( 以ξ为其极限) .作为致密性定理的应用, 我们用它重证数列的柯西收敛准则中的充分性 . 证 设数列{ a n } 满足柯西条件 .先证明{ a n } 是有界的 .为此, 取ε= 1 , 则存 在正整数 N, 当 m = N + 1 及 n >N 时有| a n -a N + 1 | <1.由此得 | a n | = | a n - a N + 1 + a N + 1 | ≤ | a n - a N + 1 | + | a N + 1 | < | a N + 1 | + 1 .令M = max { | a 1 | , | a 2 |,, | a N | , | a N + 1 | + 1},则对一切正整数 n 均有 | a n | ≤ M .于是, 由致密性定理, 有界数列{ a n } 必有收敛子列{ a n k 给的ε>0 , 存在 K > 0 , 当 m , n ,k >K 时, 同时有ε } , 设limk →∞ a n = A.对任k | a n - a m |<2( 由柯西条件) , | a n - A |< ε( 由lim a n = A ) .k 2因而当取 m = n k ( ≥k >K)时, 得到k →∞ k ε ε | a n - A | ≤ |a n - a n k | + | a n k - A |<2 + 2 = ε. 这就证明了lim n →∞a n = A .定义3设S 为数轴上的点集,H 为开区间的集合(即H 的每一个元素都 是形如(α,β)的开区间).若S 中任何一点都含在H 中至少一个开区间内,则称 H 为S 的一个开覆盖,或称H 覆盖S.若H 中开区间的个数是无限(有限)的, 则称H 为S 的一个无限开覆盖(有限开覆盖).在具体问题中,一个点集的开覆盖常由该问题的某些条件所确定.例如,若 函数f 在(a,b)内连续,则给定ε>0,对每一点x ∈(a, b),都可确定正数δx (它 依赖于ε与x),使得当x ′∈U ( x ;δx )时有|f( x ′) - f( x)|<ε.这样就得到一 个开区间集H = {( x - δx , x +δx )x ∈(a,b)},它是区间( a , b) 的一个无限开覆盖 .定理7 .3(海涅—博雷尔(H eine 6B .orel)有限覆盖定理) 设H 为闭区间 [ a , b] 的一个( 无限) 开覆盖, 则从 H 中可选出有限个开区间来覆盖[ a , b].166第七章 实数的完备性证 用反证法 假设定理的结论不成立 , 即不能用 H 中有限个开区间来 覆 盖 [ a , b] .将[a,b]等分为两个子区间,则其中至少有一个子区间不能用H 中有限个 开区间来覆盖.记这个子区间为[a 1,b 1],则[a 1,b 1]Ì[a,b] ,且b 1 - a 1 =12( b - a) . 再将[ a 1 , b 1 ] 等分为两个子区间, 同样, 其中至少有一个子区间不能用 H 中 有限个开区间来覆盖 .记这个子区间为[ a 2 , b 2 ] , 则[ a 2 , b 2 ]Ì[ a 1 , b 1 ] , 且 b 2 - a 2 = 1( b - a) .22重复上述步骤并不断地进行下去, 则得到一个闭区间列{ [ a n , b n ]} , 它满足[ a n , b n ] É [ a n + 1 , b n + 1 ] , n = 1 ,2, ,b n - a n = 1(b- a) → 0 ( n → ∞) ,2n即{[ a n , b n ] } 是区间套, 且其中每一个闭区间都不能用 H 中有限个开区间来覆 盖 .由区间套定理 , 存在唯一的一点 ξ∈ [ a n , b n ] , n = 1 , 2 , .由于 H 是 [ a , b] 的一个开覆盖, 故存在开区间(α, β) ∈H , 使ξ∈( α, β) .于是, 由定理 7 .1 推论, 当 n 充分大时有[ a n , b n ] Ì (α, β) .这表明[ a n , b n ] 只须用 H 中的一个开区间(α, β) 就能覆盖, 与挑选[ a n , b n ] 时的 假设“不能用 H 中有限个开区间来覆盖”相矛盾 .从而证得必存在属于 H 的有 限个开区间能覆盖[ a , b] .注 定理7 .3 的结论只对闭区间[ a , b]成立, 而对开区间则不一定成立 .例如,开区间集合( 1,1) (n =1,2, )构成了开区间(0,1)的一个开覆盖,但n + 1不能从中选出有限个开区间盖住(0 , 1 ) .*三 实数完备性基本定理的等价性至此, 我们已经介绍了有关实数完备性的六个基本定理, 即 1 . 确界原理( 定理1 .1 ) ;2 . 单调有界定理( 定理2 .9 ) ;3 . 区间套定理( 定理7 .1 ) ;4 . 有限覆盖定理( 定理7 .3 ) ;5 . 聚点定理( 定理7 .2 ) ;§1 关于实数集完备性的基本定理1676 . 柯西收敛准则 ( 定理2 .10) .在本书中,我们首先证明了确界原理,由它证明单调有界定理,再用单调有 界定理导出区间套定理,最后用区间套定理分别证明余下的三个定理.事实上, 在实数系中这六个命题是相互等价的,即从其中任何一个命题都可推出其余的 五个命题.对此,我们可按下列顺序给予证明:1ª2 ª3ª4 ª5ª6 ª1 .其中 1ª2 , 2ª 3 与 3ª4 分别见定理 2 .9 , 7 .1 与 7 .3; 4 ª5 和 5 ª 6 请读 者作 为 练习自证( 见本节习题8 和9 ) ; 而6 ª1 见下例 .例 1 用数列的柯西收敛准则证明确界原理.证设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整 数K α,使得λα= k αα为S 的上界,而λα- α= (k α- 1)α不是S 的上界,即存在 α′∈S,使得α′>( k α-1)α.分别取 α= 1, n = 1 ,2,,则对每一个正整数n,存在相应的λ,使得λn nn为S 的上界,而λn - 1不是S 的上界,故存在a ′∈S,使得na ′>λn - 1 n.(6)又对正整数m ,λm 是S 的上界,故有λm ≥a ′.结合(6)式得 λn -λm <1;同理有nλm -λn < 1m .从而得 | λm - λn | <max1 1m , n. 于是, 对任给的ε>0 , 存在 N > 0 , 使得当 m , n >N 时有|λm - λn | <ε.由柯西收敛准则,数列{λn }收敛.记lim λn = λ.(7)n →∞现在证明λ就是S 的上确界.首先,对任何a ∈S 和正整数n 有a ≤λn ,由(7 ) 式得 a ≤λ, 即λ是 S 的一个上界 .其次, 对任何δ> 0 , 由1→0 ( n →∞) 及n(7 ) 式, 对充分大的 n 同时有1 n < δ δ2 , λn >λ- 2. 又因λn - 1不是S 的上界,故存在a ′∈S,使得a ′>λn - 1.结合上式得n n168 第七章实数的完备性这说明λ为S的上确界. a′>λ-δ2-δ= λ- δ.2同理可证: 若S 为非空有下界数集, 则必存在下确界.习题1 . 验证数集{ ( - 1) n + 1}有且只有两个聚点ξ= - 1 和ξ= 1 . n 1 22 . 证明: 任何有限数集都没有聚点.3 . 设{ ( a n , b n ) }是一个严格开区间套, 即满足a1<a2 < <a n <b n < <b2 <b1,且lim ( b n - a n ) = 0 .证明:存在唯一的一点ξ, 使得n →∞a n <ξ<b n , n = 1 ,2, .4 . 试举例说明:在有理数集内, 确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.5 . 设H = {( 1,1) | n = 1 ,2, } .问n+2 n( 1) H 能否覆盖( 0 , 1 ) ?( 2) 能否从H 中选出有限个开区间覆盖( i) (0 , 1) , ( ii) (1, 1) ?2 1006 . 证明: 闭区间[ a , b] 的全体聚点的集合是[ a , b]本身.7. 设{ x n }为单调数列.证明:若{ x n } 存在聚点, 则必是唯一的, 且为{ x n }的确界。
第七章实数的完备性教学目的:1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。
教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。
教学时数:14学时§ 1 关于实数集完备性的基本定理(4学时)教学目的:1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义;2.明确基本定理是数学分析的理论基础。
教学重点难点:实数完备性的基本定理的证明。
一.确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 .二.单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛 .三.Cantor闭区间套定理 :1.区间套: 设是一闭区间序列. 若满足条件ⅰ>对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中 ;ⅱ>. 即当时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套,简称为区间套 .简而言之, 所谓区间套是指一个“闭、缩、套”区间列.区间套还可表达为:.我们要提请大家注意的是, 这里涉及两个数列和, 其中递增, 递减.例如和都是区间套. 但、和都不是.2.Cantor区间套定理:Th 3 设是一闭区间套. 则存在唯一的点,使对有.简言之, 区间套必有唯一公共点.四. Cauchy收敛准则——数列收敛的充要条件 :1.基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy列.例1验证以下两数列为Cauchy列 :⑴ .⑵ .解⑴;对,为使,易见只要 .于是取.⑵.当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有,又.当为奇数时 ,,.综上 , 对任何自然数, 有. ……Cauchy列的否定:例2 . 验证数列不是Cauchy列.证对, 取, 有.因此, 取,……2.Cauchy收敛原理:Th 4 数列收敛是Cauchy列.( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原则给出证明 )五. 致密性定理:数集的聚点定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的一个聚点.数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间.1.列紧性: 亦称为Weierstrass收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass聚点原理.Th 6 每一个有界无穷点集必有聚点.六.Heine–Borel有限复盖定理:1.复盖: 先介绍区间族.定义( 复盖 ) 设是一个数集 , 是区间族 . 若对,则称区间族复盖了, 或称区间族是数集的一个复盖. 记为若每个都是开区间, 则称区间族是开区间族 . 开区间族常记为.定义( 开复盖 ) 数集的一个开区间族复盖称为的一个开复盖, 简称为的一个复盖.子复盖、有限复盖、有限子复盖.例3复盖了区间, 但不能复盖;复盖, 但不能复盖.2.Heine–Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.§ 2 实数基本定理等价性的证明(4学时)证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行: Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则确界原理 ;Ⅱ: 区间套定理致密性定理 Cauchy收敛准则 ;Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 .一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ).1.用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设是一闭区间套. 则存在唯一的点,使对有.证系1 若是区间套确定的公共点, 则对, 当时, 总有.系2 若是区间套确定的公共点, 则有↗, ↘, .3. 用“区间套定理”证明“Cauchy收敛准则”:Th 4 数列收敛是Cauchy列.引理Cauchy列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅读 . 现采用[3]P70—71例2的证明, 即三等分的方法, 该证法比较直观.4.用“Cauchy收敛准则”证明“确界原理”:Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 .证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是的上界, 为的上界. 依此得闭区间列. 验证为Cauchy列, 由Cauchy收敛准则,收敛; 同理收敛. 易见↘. 设↘.有↗.下证.用反证法验证的上界性和最小性.二.“Ⅱ”的证明:1.用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证(突出子列抽取技巧)Th 6 每一个有界无穷点集必有聚点.证(用对分法)2.用“致密性定理”证明“Cauchy收敛准则”:Th 4 数列收敛是Cauchy列.证(只证充分性)证明思路:Cauchy列有界有收敛子列验证收敛子列的极限即为的极限.三.“Ⅲ”的证明:1.用“区间套定理”证明“Heine–Borel 有限复盖定理”:证2.用“Heine–Borel 有限复盖定理”证明“区间套定理”:证采用[3]P72例4的证明.§ 3 闭区间上连续函数性质的证明(4学时)教学目的:能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。
教学重点难点:基本定理的应用。
一. 有界性:命题1 , 在上.证法一( 用区间套定理 ). 反证法.证法二( 用列紧性 ). 反证法.证法三( 用有限复盖定理 ).二.最值性:命题2 , 在上取得最大值和最小值. ( 只证取得最大值 )证( 用确界原理 ) 参阅[1]P226[ 证法二 ]后半段.三.介值性: 证明与其等价的“零点定理”.命题3 ( 零点定理 )证法一( 用区间套定理 ) .证法二 ( 用确界原理 ). 不妨设.令, 则非空有界,有上确界. 设,有. 现证, ( 为此证明且). 取>且. 由在点连续和,,.于是.由在点连续和,. 因此只能有.证法三( 用有限复盖定理 ).四.一致连续性:命题4 ( Cantor定理 )证法一( 用区间套定理 ) . 参阅[1]P229—230 [ 证法一 ]证法二( 用列紧性 ). 参阅[1]P229—230 [ 证法二 ]习题课(2学时)一.实数基本定理互证举例:例1用“区间套定理”证明“单调有界原理”.证设数列递增有上界. 取闭区间, 使不是的上界, 是的上界. 易见在闭区间内含有数列的无穷多项, 而在外仅含有的有限项. 对分, 取使有的性质.…….于是得区间套,有公共点. 易见在点的任何邻域内有数列的无穷多项而在其外仅含有的有限项, .例2用“确界原理”证明“区间套定理”.证为区间套. 先证每个为数列的下界, 而每个为数列的上界. 由确界原理 , 数列有上确界, 数列有下确界 . 设, .易见有和. 由,.例3用“有限复盖定理”证明“聚点原理”.证 ( 用反证法 ) 设为有界无限点集, . 反设的每一点都不是的聚点, 则对, 存在开区间, 使在内仅有的有限个点.…… .例4用“确界原理”证明“聚点原理”.证设为有界无限点集. 构造数集中大于的点有无穷多个. 易见数集非空有上界, 由确界原理, 有上确界. 设. 则对,由不是的上界,中大于的点有无穷多个;由是的上界,中大于的点仅有有限个. 于是, 在内有的无穷多个点,即是的一个聚点 .二.实数基本定理应用举例:例5设是闭区间上的递增函数, 但不必连续 . 如果,,则,使.(山东大学研究生入学试题) 证法一 ( 用确界技术 . 参阅[3] P76例10 证法1 )设集合. 则, 不空 ;,有界 .由确界原理 ,有上确界. 设, 则.下证.ⅰ> 若, 有; 又, 得. 由递增和, 有, 可见. 由,. 于是 , 只能有.ⅱ> 若, 则存在内的数列, 使↗, ;也存在数列, ↘,. 由递增, 以及, 就有式对任何成立 . 令, 得于是有.证法二 ( 用区间套技术, 参阅[3] P77例10 证法2 ) 当或时,或就是方程在上的实根 . 以下总设. 对分区间, 设分点为. 倘有, 就是方程在上的实根.(为行文简练计, 以下总设不会出现这种情况 ) . 若, 取; 若, 取, 如此得一级区间. 依此构造区间套, 对,有. 由区间套定理, , 使对任何,有. 现证. 事实上, 注意到时↗和↘以及递增, 就有.令, 得于是有.例6设在闭区间上函数连续, 递增 , 且有,. 试证明: 方程在区间内有实根.(西北师大2001年硕士研究生入学试题)证构造区间套,使.由区间套定理, , 使对, 有. 现证. 事实上, 由在上的递增性和的构造以及↗和↘,, 有.注意到在点连续,由Heine归并原则, 有,, . 为方程在区间内的实根.例7试证明: 区间上的全体实数是不可列的 .证 ( 用区间套技术, 具体用反证法 ) 反设区间上的全体实数是可列的,即可排成一列:把区间三等分,所得三个区间中至少有一个区间不含,记该区间为一级区间. 把区间三等分,所得三个区间中至少有一个区间不含,记该区间为二级区间. …… .依此得区间套, 其中区间不含. 由区间套定理, , 使对,有. 当然有.但对有而, . 矛盾 .。