人教版数学中考复习《一元二次方程》专题练习题含答案
- 格式:doc
- 大小:63.50 KB
- 文档页数:4
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
《一元二次方程》单元复习题1.下列是一元二次方程的是( )A .x 2+3=0B .xy +3x -4=0C .2x -3+y =0 D. 1x+2x -6=0 2.若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3.若关于x 的方程(a -1)x1+a 2=1是一元二次方程,则a 的值是________.4.若m 是方程2x 2-3x -1=0的一个根,则6m 2-9m +2017的值为________.5.用直接开平方法解下列方程:(1)(x +1)2-49=0; (2)4(x -2)2-36=0.(3)x 2+6x +9=25; (4)4(3x -1)2-9(3x +1)2=0.6.用配方法解下列方程:(1)x 2-32x -3=0; (2)2x 2-4x -5=0.(3)2x 2+7x -4=0; (4)x(x +4)=6x +12.7.用公式法解下列方程:(1)2x 2-3x +1=0; (3)12x 2-3x +1=0.8.用因式分解法解下列方程:(1)x 2-32x =0; (2)x 2-12x +36=0.(3)(2x +1)2-(x +2)2=0; (4)x 2-1=3x +3;(5)x 2-4x -5=0; (6)x 2-3x =(2-x)(x -3).(7)4(x -3)2-25(x -2)2=0; (8)5(x -3)2=x 2-9;9.已知实数a ,b 满足(a 2+b 2)2-2(a 2+b 2)=8,则a 2+b 2的值为( )A .-2B .4C .4或-2D .-4或210.若(a +b )(a +b -2)-8=0,则a +b 的值为( )A .-4或2B .3或-32C .-2或4D .3或-211.不解方程,求下列方程两个根x 1,x 2的和与积:(1)x 2+3x +1=0; (2)3x 2-2x -1=0; (3)-2x 2+3=0; (4)2x 2+5x =0.12.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1) x 1+x 2; (2) x 1x 2; (3) x 12+x 22; (4)1x 1+1x 2.13.已知关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.14.已知关于x 的方程x 2-(2k +1)x +4(k -12)=0. 求证:无论k 取何值,这个方程总有实数根.15.已知关于x 的一元二次方程12mx 2+mx +m -1=0有两个相等的实数根.求m 的值;16.已知关于x 的一元二次方程x 2-3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且关于x 的一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.17.已知关于x 的方程x 2+mx +m -2=0.求证:不论m 取何实数,此方程都有两个不相等的实数根.18.已知关于x 的方程x 2-(2m +1)x +m(m +1)=0.求证:方程总有两个不相等的实数根;19.已知关于x 的一元二次方程mx 2-(m +2)x +2=0.(1)证明:除0外,不论m 为何值,方程总有实数根;(2)当m 为何整数时,方程有两个不相等的正整数根?20. 已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.21. 已知关于的方程. (1)为何值时,此方程是一元一次方程?(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
人教版中考数学《一元二次方程》专项练习题一、单选题(每小题3分,共36分)1.一元二次方程x 2﹣4x +4=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根2.用公式法解方程20(0)ax bx c a -+-=≠,下列代入公式正确的是( )A .x =B .x =C .xD .x = 3.下列方程属于一元二次方程的是( )A .2223x x -= B .20ax bx c ++= C .()2130x -+=D .()222154x x +-= 4.若关于x 的方程220x x a ++=有一个根是1,则a 等于( )A .1-B .3-C .3D .15.汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2018年盈利1000万元,2020年盈利1440万元,且从2018年到2020年,每年盈利的年增长率相同.设每年盈利的年增长率为x ,则列方程得( )A .1000(1+2x )=1440B .1000(1+x )2=1440C .1000×2×(1+x )=1440D .1000+1000(1+x )+1000(1+x )2=1440 6.若方程x 2﹣2x +m =0没有实数根,则m 的值可以是( )A .3B .1C .0D .﹣27.方程2x 2﹣3x ﹣32=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.如果-2是方程20x m -=的一个根,则m 的值为( )A .4B .-4C .2D .-2 9.方程(1)(3)0x x -+=的解是( )A .1x =B .3x =-C .11x =,23x =D .13x =-,21x = 10.下列方程是关于x 的一元二次方程的是( )A .4x ²+320x +=B .2x ²﹣y ﹣1=0C .ax ²+2x +1=0D .x (4x ﹣2)=0 11.下列方程中是关于x 的一元二次方程的是( )A .20ax bx c ++=B .22321x x x -=+-C .20x =D .22250x xy y --=12.下列方程中,属于一元二次方程的是( )A .x +2y =1B .xy ﹣5=0C .ax 2+bx +c =0D .x 2﹣16=0二、填空题(每小题4分,共32分)13.如果关于x 的方程x 2+x +c =0有一个根为1,那么c 的值为 ___.14.某厂工业废气年排放量为2000万立方米,为了改善大气质量,决定分两期投入治理,使废气的年排放量减少到1280万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是_______.15.关于x 的一元二次方程22(2)0x x m +--=有两个相等的实数根,则m 的值为______. 16.已知3是关于x 的一元二次方程240x x c -+=的一个根,则方程的另一个根_______. 17.已知关于x 的一元二次方程(x ﹣3)(x ﹣2)﹣p 2=0,下列结论:①方程总有两个不等的实数根;②若两个根为x 1,x 2,且x 1>x 2,则x 1>3,x 2<3;③若两个根为x 1,x 2,则(x 1﹣2)(x 2﹣2)=(x 1﹣3)(x 2﹣3);④若x p 为常数),则代数式(x ﹣3)(x ﹣2)的值为一个完全平方数,其中正确的结论是 _____.18.若x =a 是方程x 2+x ﹣1=0的一个根,则代数式a 3+2a 2﹣7的值是____.19.已知在△ABC 中,∠B =45°,AB =AC =10,则BC =_________.20.若2x =是关于x 的一元二次方程2280x mx -+=的一个根,则m 的值为________.三、解答题(52分)21.(6分)解方程:(1)2241x x -=(2)222(3)9x x -=-.22.(8分)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根.(1)试确定m的取值范围;(2)当111αβ+=-时,求m的值.23.(8分)某单位开展了赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第二天该单位收到多少捐款?24.(10分)某农户计划利用现有的长为12m的一面墙再修四面墙,建造如图所示的长方体水池,来培育不同品种的鱼苗,他已备足可以修高为2m,长24m的墙材料并准备施工,设图中与现有一面墙垂直的三面墙的长度都为x m,即AD=EF=BC=x m.(不考虑墙的厚度)(1)则AB=;(用含x的代数式表示),长方体水池的容积V=;(用含x 的代数式表示);(2)若水池的总容积为72m3,x应等于多少?25.(10分)某单位组织员工前往九棵树艺术中心欣赏上海说唱《金铃塔》的表演.表演前,主办方工作人员准备利用26米长的墙为一边,用48米隔栏绳为另三边,设立一个面积为300平方米的长方形等候区,如图,为了方便群众进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳).假设这个长方形平行于墙的一边为长,垂直于墙的一边为宽,那么围成的这个长方形的长与宽分别是多少米呢?26.(10分)已知关于方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.参考答案1.B2.B3.C4.B5.B6.A7.A8.A9.D10.D11.C12.D 13.-214.20%15.116.1x=17.①③18.6-19.220.321.(1)x1x22)x1=3,x2=922.(1)34m>-;(2)323.(1)10%;(2)11000元24.(1)(24-3x)m,(-6x2+48x)m3;(2)x=6.25.长方形的长为20米,宽为15米26.(1)3m<;(2) m的值是-1,该方程的另一根为-3.。
九年级数学上册第二十一章《一元二次方程》测试题-人教版(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
. 人教版初中数学八年级《一元二次方程》专项训练题(附答案) 学校: 班级: 姓名: 一、选择题1、关于 x 的一元二次方程(a+1)x 2+x +a 2﹣1=0 的一个根是 0,则 a 的值为() A .1 B .﹣1 C .1 或﹣1 D .2、已知 y=kx+k 的图象与 y=x 的图象平行,则 y=kx-k 的大致图象为()3、若 k >1,关于 x 的方程 2x 2-(4k +1)x +2k 2﹣1=0 的根的情况是( )A .有一正根和一负根B .有两个正根C .有两个负根D .没有实数根4、用一张长为 80cm 、宽为 60cm 的薄钢片,在 4 个角上截去 4 个相同的边长为 xcm 的小正方形,然后做成底面积为 1500c m 2 的没有盖的长方体盒子,为求出 x ,根据题意列方程并整理后得 ( )A . x 2–70x+ 825=0B . x 2+70x –825 = 0C . x 2–70 x –825 = 0D . x 2 + 70x + 825 = 05、如图 1,已知动点 A ,B 分别在 x 轴,y 轴正半轴上,动点 P 在反比例函数 y=x6(x >0)图象上,PA ⊥ x 轴,△PAB 是以 PA 为底边的等腰三角形.当点 A 的横坐标逐渐增大时,△PAB 的面积将会( )A .越来越小B .越来越大C .不变D .先变大后变小6、如图2,在平面直角坐标系中,直线y=﹣x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC=OC=OA ,则点C 的坐标为( )A .(﹣,2)B .(﹣3,)C .(﹣2,2)D .(﹣3,2)7.如图3,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果23AE EC ,那么AB AC =( ) A. 13 B. 23 C. 25D. 35 8.如图4,在△ABC 中,AB =6 cm ,AC =12 cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1 cm/s ,点E 运动的速度为2 cm/s.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )A.3 s 或4.8 sB.3 sC.4.5 sD.4.5 s 或4.8 sA B C D. 、二、填空题(每题 4 分,共 24 分)9、函数121+=x y 中自变量 x 的取值范围是 . 10、若函数xm y 2-= 的图象在其所在的每一象限内,函数值 y 随自变量 x 的增大而减小,则 m的取值范围是 .11、如图 5,在△ABC 中,∠ ABC=90° ,BC=5.若 DE 是△ABC 的中位线,延长 DE 交△ABC 的外角∠ ACM 的平分线于点 F ,且 DF=9,则 CE 的长为 .12、如图 6,有一块直角三角形纸片,两直角边 AC=6cm ,BC=8cm ,现将直角边 AC 沿直线 AD折叠,使它落在斜边 AB 上,且与 AE 重合,则tan ∠CAD= .13、设 m 、n 是一元二次方程 x 2+3x ﹣7=0 的两个根,则=++n m m362 . 14.若关于x 的一元二次方程022)5(2=++-x x m 有实数根,则m 的最大整数值是 .15、如图7,在△ABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△PAB 为直角三角形时,则∠PAB 的正弦值为 .三、解答题 16、用适当的方法解下列一元二次方程:(1)22)12()2(+=-x x ; (2)01232=--x x17、已知关于 x 的一元二次方程 4x 2+(4b ﹣4)x+b 2=0 有两个不相等的实数根 x 1 和 x 2,且 x 1x 2≠ 0.(1)求 b 的取值范围;(2)否存在实数 b ,使得11121=+x x ?若存在,求出 b 的值;若不存在,请说明理由.E A B C D 图1 图2 图5 图6 图718、如图,小明同学用自制的直角三角形纸板 DEF 测量树的高度 AB ,他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上.已知纸板的两条边DF=50cm ,EF=30cm ,测得边 DF 离地面的高度 AC=1.5m ,CD=20m ,求树高 AB.19.已知关于 x 的一元二次方程 )1()2)(3(-=--p p x x (1)求证:无论p 取何值,次方程总有两个实数根,(2)若原方程的两根为1x ,2x ,满足21x +22x -13221+=px x ,求p 的值20.如图,在平面直角坐标系xOy 中,直线y=﹣x+m 分别交x 轴,y 轴于A ,B 两点,已知点C (2,0).(1)当直线AB 经过点C 时,求点O 到直线AB 的距离;(2)设点P 为线段OB 的中点,连结PA ,PC ,若∠CPA=∠ABO ,求m 的值.21.如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC 于点M.(1)证明:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.参考答案。
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1x2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1,x2=12.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用3.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+6,x 2=-1-6;(2)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=242b b c a a -±-=4246122-±=-±⨯ ∴x 1=-1+6,x 2=-1-6 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB ,BC 分别是20米、20米.【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.5.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90% 60.答:该店应按原售价的九折出售.7.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b >0时:∵(a b -)2=a ﹣2ab +b ≥0∴a +b ≥2ab ,当且仅当a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5≥2()411x x +⋅++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥13+236x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。
一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.4.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可. 【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.6.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。
中考数学《一元二次方程》专题训练(附带答案)一、单选题1.关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<-1D.k>-12.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k≥﹣4D.k≥43.关于x的一元二次方程方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A.B.C.D.4.方程x2﹣5x=0的解是()A.x1=0,x2=﹣5B.x=5C.x1=0,x2=5D.x=05.用配方法解一元二次方程x2+6x−10=0,此方程可变形为()A.(x+3)2=1B.(x−3)2=1C.(x−3)2=19D.(x+3)2=19 6.已知b2﹣4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.ab≥18B.ab≤18C.ab≥14D.ab≤147.已知A=x2+3,B=2x+1,则A,B的大小关系正确的是()A.A>B B.A<BC.A=B D.与x的大小有关8.已知关于x的一元二次方程2x²+4x·sinα+1=0有两个相等的实数根,则锐角α的度数为()A.30°B.45°C.60°D.75°9.用配方法解方程x2﹣x﹣1=0时,配方结果正确的是()A.(x﹣1)2=2B.(x −12)2=54C.(x −12)2=1D.(x −12)2=3410.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1−x)2=3200C.3200(1−x2)=2500D.3200(1−x)2=250011.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=1912.下列关于x的方程中,没有实数解的是()A.x2﹣4x+4=0B.x2﹣2x﹣3=0C.x2﹣2x=0D.x2﹣2x+5=0二、填空题13.某企业2018年底缴税80万元,2020 年底缴税96.8万元,设这两年该企业交税的年平均增长率为x根据题意,可得方程为。
中考数学复习 一元二次方程一、选择题1.下列函数中,当x>0时,y 随x 的增大而减小的是( A ) A .y =2x B .y =-4xC .y =3x +2D .y =x 2-32.如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( A )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2),第2题图) ,第4题图)3.已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx(x <0)的图象经过顶点B ,则k 的值为( C )A .-12B .-27C .-32D .-36 【解析】OA =32+42=5,∵四边形OABC 是菱形,∴AO =CB =OC =AB =5,则点B的横坐标为-8,故B 的坐标为(-8,4),将点B 的坐标代入y =k x 得,4=k-8,解得k =-32.故选C.5.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于( A )A.32B .3C .2D .1,第5题图) ,第6题图)6.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan ∠AOC =43,反比例函数y =kx的图象经过点C ,与AB 交于点D ,若△COD 的面积为20,则k 的值等于( A )A .-24B .32C .-32D .-12【解析】作DE ∥AO 交CO 于E ,CF ⊥AO 于F ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO =S △DEO ,同理S △BCD =S △CDE ,∴S 菱形ABCO =S △ADO +S △DEO +S △BCD +S △CDE =2(S △DEO +S △CDE )=2S △CDO =40,∵tan ∠AOC =43,设CF =4x ,∴OF =3x ,∴OC =OF 2+CF 2=5x ,∴OA =OC =5x ,∵S 菱形ABCO =AO ·CF =20x 2,解得x =2,∴OF =32,CF =42,∴点C 坐标为(-32,42),∵反比例函数y =kx 的图象经过点C ,∴代入点C 得,k =-24二、填空题7.如图,直线y =ax 与双曲线y =k x (x >0)交于点A (1,2),则不等式ax >kx的解集是__x>1__.,第7题图) ,第9题图)8.对于函数y =2x ,当函数值y <-1时,自变量x 的取值范围是__-2<x <0__.9.如图,直线y =-33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx的图象在第二象限交于点C .过点A 作x 轴的垂线交该反比例函数图象于点D .若AD =AC ,则点D 的坐标为__(-3,23)__.【解析】过C 作CE ⊥x 轴于E ,求得A(-3,0),B(0,-3),解直角三角形得到∠OAB=30°,求得∠CAE =30°,设D(-3,k -3),得到AD =k -3,AC =k -3,于是得到C(-3+3k6,-k 6),列方程即可得(-3+3k 6)·(-k6)=k ,解得k =-63,因此可求D(-3,23).10.如图,已知点A(1,2)是反比例函数y =kx 图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是__(-3,0)或(5,0)或(3,0)或(-5,0)__.【解析】∵反比例函数y =kx 图象关于原点对称,∴A ,B 两点关于O 对称,∴O 为AB的中点,且B(-1,-2),∴当△PAB 为等腰三角形时,有PA =AB 或PB =AB ,设P 点坐标为(x ,0),∵A (1,2),B(-1,-2),∴AB =[1-(-1)]2+[2-(-2)]2=25,PA=(x -1)2+(-2)2,PB =(x +1)2+22,当PA =AB时,则有(x -1)2+(-2)2=25,解得x =-3或5,此时P 点坐标为(-3,0)或(5,0);当PB =AB 时,则有(x +1)2+22=25,解得x =3或-5,此时P 点坐标为(3,0)或(-5,0);综上可知P 点的坐标为(-3,0)或(5,0)或(3,0)或(-5,0).三、解答题11.如图,直线y 1=ax +b 与双曲线y 2=kx 交于A ,B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(-3,-2).(1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出y 1<0时x 的取值范围. 解:(1)y 1=2x +4,y 2=6x(2)由直线y 1=0得,x =-2,∴点C 的坐标为(-2,0),当y 1<0时x 的取值范围是x <-212.如图,已知反比例函数y =kx 的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2.(1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数y =kx 的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.解:(1)∵△AOB 的面积为2,∴k =4,∴反比例函数解析式为y =4x ,∵A (4,m ),∴m=44=1 (2)∵当x =-3时,y =-43;当x =-1时,y =-4,又∵反比例函数y =4x 在x <0时,y 随x 的增大而减小,∴当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-4313.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天 第2天 第3天 第4天 售价x (元/双)150200 250 300 销售量y (双)40302420(1)(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?解:(1)由表中数据得:xy =6000,∴y =6000x ,∴y 是x 的反比例函数,故所求函数关系式为y =6000x (2)由题意得(x -120)y =3000,把y =6000x 代入得(x -120)·6000x =3000,解得x =240,经检验,x =240是原方程的根,则单价应定为240元14.如图,直线l 过点A (a ,0)和点B (0,b )(其中a >0,b >0).反比例函数y =kx(k >0)的图象与直线l 交于C ,D 两点,连结OC ,OD .(1)若a +b =10,△AOB 的面积为S ,问:当b 为何值时,S 取最大值?并求出这个最大值;(2)当S 取最大值时,若C ,D 恰好是线段AB 的三等分点,求k 的值.解:(1)根据题意得OA =a ,OB =b ,∴S =12ab ,又由a +b =10,得a =10-b ,得S =12b (10-b )=-12b 2+5b =-12(b -5)2+252.∵-12<0,∴S 有最大值,当b =5时,S 取得最大值252(2)设直线l 的解析式为y =mx +n ,因为直线l 过点A (5,0),B (0,5),∴⎩⎨⎧5m +n =0,n =5,解得⎩⎨⎧m =-1,n =5,∴直线l 的函数关系式为y =-x +5.过点C 作x 轴的垂线,垂足为F ,当C ,D 是线段AB 的三等分点时,△AOC ,△COD ,△BOD 的面积都相等,有S △AOC =13S △AOB ,即12OA ×CF =13×12OA ×OB ,∴CF =53,即C 点的纵坐标为53.将y =53代入y =-x +5,得x =103,即点C 的坐标为(103,53).∵点C 在反比例函数y =k x 的图象上,∴k =103×53=509。
《一元二次方程》姓名 得分一、填空题(每空2分,共32分) 1.把一元二次方程(x -2)(x +3)=1化为一般形式是 . 2.用配方法解方程2250x x --=时,配方后得到的方程是 ;当x = 时,分式2926x x --的值为零;一元二次方程2x (x -1)=x -1的解是 ;3.方程(x-1)2=4的解是 ;方程2x =x 的解是 .4.足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场。
共举行比赛210场,则参加比赛的球队共有 支。
5.一个菱形的两条对角线的和是14cm ,面积是24 cm 2,则这个菱形的周长是___ _______。
6.当m 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根,此时这两个实数根是 .7.请你写出一个有一根为1的一元二次方程: .8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设 平均每月降价的百分率为x ,根据题意列出的方程是 . 9.在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则, 方程(2)50*x +=的解为.10.李娜在一幅长90cm 、宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制 成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm ,根据题 意,所列方程为: 。
11.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为 . 12.设a b ,是方程220110x x +-=的两个实数根,则22a a b ++的值为 . 二、选择题(每小题3分,共24分)1.下列方程中,是一元二次方程的是( ) A .221x x y ++=B .2110x x+-= C .20x = D .2(1)(3)1x x x ++=- 2.一元二次方程x 2-3x +4=0的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .74.直角三角形两条直角边的和为7,面积为6,则斜边为( )AB .5 C.75.若a+b+c=0,则关于x 的一元二次方程ax 2+bx+c=0(a≠0)有一根是( ).A .1B .-1C .0D .无法判断6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色 纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=7.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( ) A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=8.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .25三、解答题(共64分) 1.解下列方程(10分)(1)解方程:2420x x ++= (2) 解方程2220x x --=2.(8分)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由。
一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④ D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形 B.平行四边形C.梯形 D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值X围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值X围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④ D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形 B.平行四边形C.梯形 D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的X围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值X围是m≠±2 .【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值X围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值X围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值X围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值X围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16 .【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是 2 .【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0 ;若关于x的方程﹣1=0无实根,则a的值为±1 .【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形P中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一.选择题(共10小题,每题3分,共30分) 1.下列式子是一元二次方程的是( )A .3x 2-6x +2B .x 2-y +1=0 C .x 2=0D.1x 2+x =22.若方程2x 2+mx =4x +2不含x 的一次项,则m =( )A .1B .2C .3D .43.一元二次方程x 2-2x =0的根是( )A .x 1=0,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=-2D .x 1=0,x 2=24.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=1 5.若方程x 2﹣5x ﹣1=0的两根为x 1、x 2,则+的值为( )A .5B .C .﹣5D .6. 已知(m 2+n 2)(m 2+n 2+2)-8=0,则m 2+n 2的值为( )A. -4或2 B .-2或4 C. 4 D. 2 7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .10%B .15%C .20%D .25%8、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或39、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810、《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353 C.352 D.3 352二、填空题(每题3分,共24分)11.关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,则m的值为.12.把方程x2+x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k =.13.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m =.15.菱形的两条对角线的长分别是方程x2﹣mx+56=0的两个根,则菱形的面积是.16.长汀县体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请支球队参加比赛.17.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.18.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为﹣2和6,那么=.三.解答题(共46分,19题6分,20 ---24题8分)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.如图,要利用一面墙(墙长为55m),用100m的围栏建羊圈,基本结构为三个大小相同的矩形.(1)如果围成的总面积为400m2,求羊圈的边AB,BC的长各为多少;(2) 保持羊圈的基本结构,羊圈总面积是否可以达到800m2?请说明理由.24.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市投入基础教育经费的年平均增长率.(2) 如果按(1) 中投入基础教育经费的年平均增长率计算,该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D A C B B C D A二.填空题(共8小题)11.解:∵关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,∴m﹣3=2,解得:m=5,故答案为:5.12.解;移项,得x2+x=﹣3,配方,得x2+x+=﹣3+,∴(x+)2=﹣.∴h=,k=﹣.故答案为:﹣.13.解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且Δ=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.14.解:∵mx+x2+2=0,∴x2+mx+2=0,a=1,b=m,c=2,∵方程有两个相等的实数根,∴b2﹣4ac=0,∴m2﹣4×1×2=0,即m2=8,∴m=.故答案为:.15.解:设菱形的两条对角线的长为m、n,根据题意得mn=56,所以菱形的面积=mn=×56=28.故答案为28.16.解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.故答案为:8.17.解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.18.解:利用新方程有两个根为12和4构造1个一元二次方程为:x2﹣(12+4)x+12×4=0 即x2﹣16x+48=0,与ax2+bx+c=0对应.于是得到:b=﹣16k,c=48k.(其中k是不为0的整数.)从而原方程为:kx2﹣16kx+48k=0(方程从无根变有根,只能是改变系数a或c).同样再由另一个新方程的两个根﹣2和6,构造一个方程:x2﹣(﹣2+6)x+(﹣2)×6=0,即x2﹣4x﹣12=0.此方程两边同乘以4k,得 4kx2﹣16kx﹣48k=0,它与ax2﹣16kx+48k=0对应,得a=4k,从而原方程就是:4kx2﹣16kx+48k =0,所以==8.故答案为8.三.解答题(共7小题)19.解:(1)分解因式得:(x+3)(x﹣1)=0,可得x+3=0或x﹣1=0,解得:x1=﹣3,x2=1;(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,可得5x﹣1=0或10x﹣7=0,解得:x1=0.2,x2=0.7;(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,可得3x=0或﹣x+6=0,解得:x1=0,x2=6;(4)这里a=3,b=﹣4,c=﹣1,∵△=16+12=28>0,∴x==,解得:x1=,x2=.20.解:设方程另一个根为x1,根据题意得2x1=﹣6,解得x1=﹣3,即方程的另一个根是﹣3.21.解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.解得k=4(不合题意,舍去)或k=﹣6,∴k=﹣6.22.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4≠0,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34.23.【答案】(1)设AB=xm,则BC=(100-4x)m,100-4x55,x11.25.由题意知,x(100-4x)=400,即x2-25x+100=0,解得x1=20,x2=5(舍),AB=20m,BC=100-420=20m.答:羊圈的边AB长为20m,BC长为20m.(2)不能.理由:设AB=ym时,羊圈总面积可以达到800m2,由题意,得y(100-4y)=800,即y2-25y+200=0,a=1,b=-25,c=200,-4ac=(−25)2-41200=-175<0,方程无实数根,羊圈总面积不可能达到800m2.24.解:(1)设该市投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市投入基础教育经费的年平均增长率为20%.(2)2021年投入基础教育经费为7200(1+20%)=8640(万元), 设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意,得3500m+2000(1500-m)864000005%,解得m880. 答:最多可购买电脑880台.。
人教版九年级数学上册《一元二次方程相关概念》专项练习题-附带答案满分100分 时间:45分钟 姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共24分)1.(本题4分)(2022·河南驻马店·九年级期末)已知x =1是一元二次方程(m ﹣2)x 2+4x ﹣m 2=0的一个根 则m 的值为( )A .﹣1或2B .﹣1C .﹣2或1D .1【答案】B【解析】【分析】把1x =代入一元二次方程22240m x x m -+-=()中即可得到关于m 的方程 解此方程即可求出m 的值.由20,m -≠即2,m ≠得到11,m =-从而得到答案.【详解】解:1x =是一元二次方程22240m x x m -+-=()的一个根 ()2240m m ∴-+-=121,2,m m ∴=-=20,m -≠2,m ∴≠1 1.m ∴=-故选:B .【点睛】本题考查的是一元二次方程解的定义及一元二次方程的解法.掌握能使方程成立的未知数的值 就是方程的解是解题的关键.2.(本题4分)(2022·江苏·九年级)下列说法正确的是( )A .方程8x 2﹣7=0的一次项系数为﹣7B .一元二次方程的一般形式是ax 2+bx +c =0C .只有当k =0时 方程kx 2+3x ﹣1=x 2为一元二次方程D .当m 取所有实数时 关于x 的方程(m 2+1)x 2﹣mx ﹣3=0为一元二次方程【答案】D【解析】【分析】根据一元二次方程的定义及一般形式可进行求解.【详解】解:A 、方程8x 2﹣7=0的一次项系数为0 故选项错误;B 、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0) 故选项错误;C 、当k ﹣1≠0 即k ≠1时 方程kx 2+3x ﹣1=x 2为一元二次方程 故选项错误;D 、当m 取所有实数时 关于x 的方程(m 2+1)x 2﹣mx ﹣3=0为一元二次方程是正确的.故选:D .【点睛】本题主要考查一元二次方程的定义及一般形式 熟练掌握一元二次方程的定义及一般形式是解题的关键. 3.(本题4分)(2021·广西南宁·九年级期中)把一元二次方程(x -3)2 =5化为一般形式后 二次项系数为( )A .1B .2C .3D .5【答案】A【解析】【分析】利用完全平方公式将一元二次方程化简为ax 2+bx +c =0 再找出二次项的系数即可.【详解】解:∵(x -3)2=5化为一般形式为x 2-6x +4=0∵二次项系数为1 故A 正确.故选:A .【点睛】本题主要考查了一元二次方程的一般形式 解题的关键是将方程(x -3)2=5化为一般形式.4.(本题4分)(2022·全国·九年级课时练习)把一元二次方程(1)(1)3x x x +-=化成一般形式 正确的是( )A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=【答案】A【解析】【分析】 先把方程的左边按照平方差公式进行整理 再移项把方程化为2310,x x 从而可得答案.【详解】解:∵(1)(1)3x x x +-=∵213,x x2310,x x∵方程的一般形式为:2310,x x故选A【点睛】本题考查的是一元二次方程的一般形式 掌握“一元二次方程的一般形式:()200++=≠ax bx c a ”是解本题的关键.5.(本题4分)(2022·四川乐山·九年级期末)m 是方程220x x +-=的根 则代数式2222022m m +-的值是( )A .-2018B .2018C .-2026D .2026【答案】A【解析】【分析】把x m =代入220x x +-=得到22m m += 进而得到2224m m += 代入2222022m m +-进行计算即可求解.【详解】解:∵m 是方程220x x +-=的根∵220m m +-=∵22m m +=∵2224m m +=∵2222022m m +-42022=-2018=-.故选:A .【点睛】本题考查了一元二次方程的解的定义.本题采用了“整体代入”数学思想解题.6.(本题4分)(2022·重庆实验外国语学校八年级期末)若x =﹣1是关于x 的一元二次方程ax 2+bx =1的一个根 则2a ﹣2b +2021的值为( )A .2023B .2022C .2020D .2019【答案】A【解析】【分析】根据一元二次方程根的定义可得1a b -= 代入代数式即可求解.【详解】解:∵x =﹣1是关于x 的一元二次方程ax 2+bx =1的一个根∵1a b -=∵2a ﹣2b +2021=()22021220212023a b -+=+=.故选A .【点睛】本题考查了一元二次方程根的定义 代数式求值 掌握一元二次方程根的定义是解题的关键.第II 卷(非选择题)二、填空题(共20分)7.(本题5分)(2022·江苏·九年级专题练习)若关于x 的方程||1(1)450k k x x +--+=是一元二次方程则k =________.【答案】-1【解析】【分析】根据一元二次方程的定义得出k −1≠0且|k|+1=2 再求出k 即可.【详解】解:∵关于x 的方程||1(1)450k k x x +--+=是一元二次方程∵k −1≠0且|k |+1=2解得:k =−1故答案为:−1.【点睛】本题考查了一元二次方程的定义 能熟记一元一次方程的定义是解此题的关键 只含有一个未知数 并且所含未知数的项的最高次数是2的整式方程 叫一元二次方程.8.(本题5分)(2022·江苏·九年级专题练习)已知1x =是关于x 的一元二次方程22(2)320m m x x a -+--=的解 则1m a -+的值为________.【答案】1【解析】【分析】根据22(2)320m m x x a -+--=是关于x 的一元二次方程 可求出m 将1x =及m 的值代入可求出a 值 即可求出结果.【详解】解:∵22(2)320m m x x a -+--=是关于x 的一元二次方程∵22022m m +≠⎧⎨-=⎩ 解得:22m m ≠-⎧⎨=±⎩即m =2将1x =代入22(2)320m m x x a -+--= 得:m -2a =1 即12a = ∵111==122m a -++. 故答案为:1.【点睛】本题主要考查的是一元二次方程的定义 利用方程的解求参数 利用定义求出m 值是解题的关键.9.(本题5分)(2022·全国·九年级专题练习)若m 2x 3﹣(2x +1)2+(n ﹣3)x +5=0是关于x 的一元二次方程 且不含x 的一次项 则m =___ n =___.【答案】 0 7【解析】【分析】首先把方程变为一元二次方程的一般形式2324(7)40m x x n x -+-+= 再根据题意可得20,70m n =-= 进而可得答案.【详解】解:m 2x 3﹣(2x +1)2+(n ﹣3)x +5=0整理得 2324(7)40m x x n x -+-+=∵为一元二次方程且不含x 的一次项∵20,70m n =-=解得0,7m n ==故答案为:0 7.【点睛】此题主要考查了一元二次方程的一般形式 关键是掌握任何一个关于x 的一元二次方程经过整理 都能化成如下形式ax 2+bx +c =0(a ≠0).10.(本题5分)(2022·广西梧州·八年级期末)关于x 的一元二次方程2250x kx --=的一个根是1 则这个方程的另一个根是______.【答案】5-【解析】【分析】根据方程的一个根1代入方程求出k 得到一元二次方程 解方程即可求解.【详解】解:∵关于x 的一元二次方程2250x kx --=的一个根是1∵1250k --=∵2k =-∵2450x x -=+解得11x = 25x =-∵方程的另一个根是-5.故答案为:-5.【点睛】本题主要考查了一元二次方程的解法 理解一元二次方程的解法是解答关键.三、解答题(共56分)11.(本题10分)(2021·陕西·商南县富水镇初级中学九年级期中)若关于x 的一元二次方程()2226320m x x m m --+-+=的常数项为0 求m 的值.【答案】1m =【解析】【分析】根据题意 得到2320m m -+= 然后解关于m 的一元二次方程 结合一元二次方程的定义 即可求出答案.【详解】解:由题意得2320m m -+= 解得:11m =22m =.20m -≠ 即2m ≠ 1m ∴=.【点睛】本题考查了一元二次方程的定义 解一元二次方程 解题的关键是熟练掌握解一元二次方程的方法. 12.(本题10分)(2022·全国·九年级)已知关于x 的方程(m21m x -﹣x =3 试问: (1)m 为何值时 该方程是关于x 的一元一次方程?(2)m 为何值时 该方程是关于x 的一元二次方程?【答案】(1)m =±1(2)m【解析】【分析】(1)根据方程中只含有一个未知数且未知数的最高次数是1次的整式方程是一元一次方程可得答案;(2)根据一元二次方程的定义求解一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式再求解即可.(1)解:由题意得m2﹣1=1解得m=当m=该方程是一元一次方程;m0 解得m当m该方程是一元一次方程;m2﹣1=0 解得m=±1m=±1时该方程是一元一次方程综上当m=±1时该方程是关于x的一元一次方程;(2)解:由题意得m2﹣1=2且m解得m当m该方程是关于x的一元二次方程.【点睛】本题考查了一元一次方程和一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件这是在做题过程中容易忽视的知识点.13.(本题12分)(2022·全国·九年级专题练习)已知关于x的方程(2k+1)x2+4kx+k-1=0 问:(1)k为何值时此方程是一元一次方程?(2)k为何值时此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数及常数项.【答案】(1)12k=-;(2)12k≠-二次项系数为21k+一次项系数为4k常数项为1k-【解析】【分析】(1)根据一元一次方程的定义只含有一个未知数且未知数的最高次为1的整式方程进行求解即可;(2)根据一元二次方程的定义只含有一个未知数且未知数的最高次为2的整式方程进行求解即可;【详解】解:(1)∵()221410k x kx k +++-=是关于x 的一元一次方程∵21040k k +=⎧⎨≠⎩ 解得12k =- (2)∵()221410k x kx k +++-=是关于x 的一元二次方程∵210k +≠即12k ≠- ∵这个一元二次方程的二次项系数为21k + 一次项系数为4k 常数项为1k -.【点睛】本题主要考查了一元一次方程和一元二次方程的定义 一元二次方程的一般形式 解题的关键在于能够熟练掌握一元一次方程和一元二次方程的定义.14.(本题12分)(2022·新疆昌吉·一模)先化简 再求值:22111121x x x x x x -⎛⎫-÷ ⎪+--+⎝⎭ 其中x 是方程x 2+x -4=0的根.【答案】()21x x -+ 12- 【解析】【分析】直接利用已知得出x (x +1)=4 再利用分式的混合运算法则进而计算得出答案.【详解】解:∵240x x +-=∵24x x +=∵()14x x += ∵22111121x x x x x x -⎛⎫-÷ ⎪+--+⎝⎭ =()()211x x -÷+-()()211x x x --=()()2·11x x -+-()()211x x x --=()21x x -+=12-. 【点睛】此题主要考查了分式的化简求值 正确掌握相关运算法则是解题关键.15.(本题12分)(2022·湖北·鄂州市第八中学(吴都中学)九年级阶段练习)化简求值:已知a 是方程 x 2+3x -2=0的一个根 求代数式2352632a a a a a -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】16- 【解析】【分析】将代数式化简成()2133a a -+ 从已知求得2a 3a +的值 代入求解即可. 【详解】 解:代数式()()222235391126326323333a a a a a a a a a a a a a a ---⎛⎫÷+-=÷=-=- ⎪----++⎝⎭∵a 是方程2320x x +-=的一个根∵232a a +=∵()211336a a -=-+. 【点睛】本题考查分式化简求值以及一元二次方程 结合已知条件化简代数式是解题的关键.第11页共11页。
人教版 九年级数学 第21章 一元二次方程 综合复习一、选择题(本大题共10道小题)1. 一元二次方程x 2-2x =0的根是( )A .0B .0,2C .2D .2,-22. 若方程ax 2+2x =bx 2-1是关于x 的一元二次方程,则a ,b 的值可以是( )A .1,1B.12,12 C .-3,3D .-3,-33. 一元二次方程2x 2-3x +1=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根4. 一元二次方程x(x -2)=2-x 的根是( )A .x =-1B .x =0C .x 1=1,x 2=2D .x 1=-1,x 2=25. 方程3x (2x +1)=2(2x +1)的两个根为( )A .x 1=23,x 2=0B .x 1=23,x 2=12C .x 1=32,x 2=-12D .x 1=23,x 2=-126. 2018·福建 已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根7. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-28. 对于二次三项式-x2+4x-5的值,下列叙述正确的是()A.一定为正数B.一定为负数C.正、负都有可能D.一定小于-19. 当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10. 如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程中正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=570二、填空题(本大题共7道小题)11. 若关于x的方程kx2-4x-4=0有两个不相等的实数根,则k的最小整数值为________.12. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.13. 已知关于x的一元二次方程ax2+2x+2-c=0有两个相等的实数根,则+c的值等于.14. 一个三角形其中两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则此三角形的周长是________.15. 根据下表中的数据写出方程x2+3x-4=0的一个根为________.x 0123 4x2+3x-4-406142416. 设a,b是方程x2+x-2020=0的两个实数根,则(a-1)(b-1)的值为________.17. 一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.三、解答题(本大题共4道小题)18. 某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都将被感染?19. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.20. 《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”题意为已知长方形门的高比宽多6尺8寸,门的对角线长一丈,那么门的宽和高各是多少?(1丈=10尺,1尺=10寸)21. 已知关于x 的一元二次方程(x -1)(x -4)=p 2,p 为实数.(1)求证:不论p 为何实数,方程总有两个不相等的实数根;(2)当p 为何值时,方程有整数解?(直接写出三个,不需要说明理由)人教版 九年级数学 第21章 一元二次方程 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B2. 【答案】C3. 【答案】B【解析】代入数据求出根的判别式Δ=b 2-4ac 的值,根据Δ的正负即可得出结论.∵Δ=b 2-4ac =(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.4. 【答案】D [解析] x(x -2)+(x -2)=0, (x +1)(x -2)=0,x +1=0或x -2=0,所以x 1=-1,x 2=2.故选D.5. 【答案】D [解析] 3x(2x +1)-2(2x +1)=0,(3x -2)(2x +1)=0,3x -2=0或2x +1=0,所以x 1=23,x 2=-12.6. 【答案】D [解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0,∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.7. 【答案】C8. 【答案】B[解析] ∵-x 2+4x -5=-(x 2-4x +4)-1=-(x -2)2-1<0,∴原式的值一定为负数.9. 【答案】A [解析] 因为b +c =5,所以c =5-b.因为Δ=b 2-4×3×(-c)=b 2-4×3×(b -5)=(b -6)2+24>0,所以该一元二次方程有两个不相等的实数根.10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根, ∴k≠0且Δ=b 2-4ac >0,即⎩⎨⎧k≠0,16+16k>0, 解得k >-1且k≠0,∴k 的最小整数值为1.12. 【答案】-3或4 [解析] 根据题意,得[(m +2)+(m -3)]2-[(m +2)-(m -3)]2=24.整理,得(2m -1)2=49,即2m -1=±7,所以m 1=-3,m 2=4.13. 【答案】2[解析]根据题意得:Δ=4-4a(2-c)=0,整理得4ac-8a=-4,4a(c-2)=-4.∵方程ax2+2x+2-c=0是一元二次方程,∴a≠0,等式4a(c-2)=-4两边同时除以4a,得c-2=-,则+c=2.14. 【答案】13[解析] 解方程x2-6x+8=0,得x1=2,x2=4.∵2,3,6不能构成三角形,∴舍去x=2.当x=4时,三角形的周长=3+4+6=13.15. 【答案】x=116. 【答案】-2018[解析] 根据题意,得a+b=-1,ab=-2020,∴(a-1)(b -1)=ab-(a+b)+1=-2020+1+1=-2018.故答案为:-2018.17. 【答案】32[解析] 设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.三、解答题(本大题共4道小题)18. 【答案】解:(1)设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=-5(舍去).答:每轮感染中平均一台电脑会感染3台电脑.(2)三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:若病毒得不到有效控制,四轮感染后机房内所有电脑都将被感染.19. 【答案】解:设这三个连续的正奇数分别为2n-1,2n+1,2n+3(n为正整数).根据题意,得(2n +3)(2n -1)-6(2n +1)=3,解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9.即这三个奇数分别为5,7,9.20. 【答案】解:设门的宽为x 尺,则高为(x +6.8)尺.根据题意,得x 2+(x +6.8)2=102,整理,得2x 2+13.6x -53.76=0,解得x 1=2.8,x 2=-9.6(舍去),所以x +6.8=9.6.所以门的宽为2尺8寸,高为9尺6寸.21. 【答案】解:(1)证明:原方程可化为x 2-5x +4-p 2=0.∵Δ=b 2-4ac =(-5)2-4(4-p 2)=4p 2+9>0,∴不论p 为何实数,方程总有两个不相等的实数根.(2)原方程可化为x 2-5x +4-p 2=0.由求根公式得方程的根为x =5±4p 2+92. ∵方程有整数解,∴找到p 的值,使5±4p 2+92为整数即可, ∴p 可取0,2,-2,10,-10等,此时方程有整数解(答案不唯一,写出三个即可).。
第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。
人教版数学 初三中考复习 一元二次方程 专题练习题
1.下列方程中,一定是一元二次方程的是( )
A .3x 2+2x -1=0
B .5x 2-6y -3=0
C .ax 2-x +2=0
D .3x 2-2x -1=0
2.若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )
A .2
B .-2
C .0
D .不等于2的任意实数
3.将一元二次方程3x 2=-2x +5化为一般形式,其一次项系数与常数项的和为____.
4.将一元二次方程y(2y -3)=(y +2)(y -2)化为一般形式,并写出它的二次项系数、一次项系数和常数项.
2x 2+x =2的解是( )
=-1和x =0
6.已知关于x 的方程x 2+x +2a -1=0的一个根是0,则a =______. 7.若关于x 的一元二次方程ax 2-bx -2018=0有一根为x =-1,则a +b =______.
8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600 m 2,设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( )
A .x(x -60)=1600
B .x(x +60)=1600
C .60(x +60)=1600
D .60(x -60)=1600
9. 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
A .12x(x -1)=45 B. 12x(x +1)=45 C .x(x -1)=45 D .x(x +1)=45
10.如图所示的图形的面积为24,根据图中的条件,可列出方程:_______________________.
11.下列方程中是关于x 的一元二次方程的是( )
A .x 2+1x 2=0
B .ax 2+bx +c =0
C .(x -1)(x +2)=1
D .x(x -1)=x 2+2x
12.若关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )
A .-1
B .0
C .1
D .-1或1
13.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =______.
14.若方程(m -2)x 2+m x =1是关于x 的一元二次方程,则m 的取值范围是
______________________.
15.小明用30厘米的铁丝围成一个斜边长等于13厘米的直角三角形,设该直角三角形的一条直角边长为x 厘米,则另一条直角边长为__________厘米,可列出方程:___________________________.
16.根据下列问题列出一元二次方程,并将其化成一般形式.
(1)某市2015年平均房价为每平方米8000元,2017年平均房价降到每平方米7000元,求这两年平均房价年平均降低率;
(2)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一边平行),剩余部分种上草坪,使草坪面积为300平方米,求道路的宽;
(3)某种服装平均每天可销售20件,每件盈利30元,若单价每件降价1元,则每天可多销售
5件,如果每天要盈利1445元,求每件服装应降价多少元.
17.一元二次方程ax 2+bx +c =0的一个根是1,且a ,b 满足等式b =a -1+1-a +2,求这个一元二次方程.
18.已知关于x 的方程(k 2-9)x 2+(k +3)x =0.
(1)当k 为何值时,此方程是一元一次方程?
(2)当k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.
19.若x 2a +b -3x a -b +1=0是关于x 的一元二次方程,求a ,b 的值.下面是两位同学的解法.
甲:根据题意,得⎩
⎨⎧2a +b =2,a -b =1,解得⎩⎨⎧a =1,b =0.
乙:根据题意,得⎩⎨⎧2a +b =2,a -b =1或⎩⎨⎧2a +b =1,a -b =2,
解得⎩⎨⎧a =1,b =0或⎩⎨⎧a =1,b =-1.
你认为上述两位同学的解法是否正确?为什么?如果都不正确,请给出正确的解法.
答案:
1. D
2. D
3. -3
4. 解:一般形式为y 2-3y +4=0,二次项系数是1,一次项系数是-3,常数项是4
5. C
6. 12
7. 2018
8. A
9. A
10. (x +1)2-1=24
11. C
12. A
13. 6
14. m≥0且m≠2
15. (17-x) x 2+(17-x)2=132
16. 解:(1)设这两年平均房价年平均降低率为x ,根据题意得8000(1-x)2=7000,化成一般形式为8x 2-16x +1=0
(2)设道路的宽为x 米,则(22-x)(17-x)=300,化成一般形式为x 2-39x +74=0
(3)设每件应降价x 元,则(20+5x)(30-x)=1445,化成一般形式为x 2-26x +169=0
17. 解:a =1,b =2,c =-3,此方程为x 2+2x -3=0
18. (1) 解:由题意得⎩⎨⎧k 2-9=0,k +3≠0,
解得k =3,∴k =3时,此方程是一元一次方程 (2) 解:由题意得k 2-9≠0,则k≠±3,∴k≠±3时,此方程是一元二次方程,二次项系数、
一次项系数和常数项分别为k 2-9,k +3,0
19. 解:都不正确,均考虑不全面.正确解法如下:要使x 2a +b -3x a -b +1=0是关于x 的一
元二次方程,则⎩⎨⎧2a +b =2,a -b =2或⎩⎨⎧2a +b =2,a -b =1或⎩⎨⎧2a +b =2,a -b =0或⎩⎨⎧2a +b =1,a -b =2或⎩⎨⎧2a +b =0,a -b =2,解得⎩⎪⎨⎪⎧a =43,b =-23
或⎩⎨⎧a =1,b =0或⎩⎪⎨⎪⎧a =23,b =23或⎩⎨⎧a =1,b =-1或⎩⎪⎨⎪⎧a =23,
b =-43。