三角形的边与角试题与答案
- 格式:doc
- 大小:293.00 KB
- 文档页数:13
三角形的的边试题及答案三角形的边试题及答案1. 已知一个三角形的两边长分别为3和4,第三边长为5,判断这个三角形是否为直角三角形。
答案:是直角三角形。
根据勾股定理,如果一个三角形的三边长分别为a、b和c,且满足a² + b² = c²,则该三角形为直角三角形。
在这个例子中,3² + 4² = 9 + 16 = 25,等于第三边长的平方5²,所以这是一个直角三角形。
2. 一个三角形的两边长分别为6和8,第三边长x满足三角形的三边关系定理,求x的取值范围。
答案:根据三角形的三边关系定理,任意两边之和大于第三边,任意两边之差小于第三边。
所以,x的取值范围为:2 < x < 14。
3. 一个等腰三角形的底边长为10,两腰长为5,判断这个三角形是否能够存在。
答案:不能存在。
在等腰三角形中,两腰的长度必须大于底边长度的一半。
在这个例子中,底边长度为10,所以两腰的长度至少为5。
但是,两腰的长度为5,与底边长度相等,这违反了三角形的三边关系定理,所以这样的三角形不能存在。
4. 已知一个三角形的三边长分别为a、b和c,且满足a > b > c,a+ b = 10,a - c = 4,求b的值。
答案:首先,由a - c = 4,我们可以得到a = c + 4。
然后,将a的表达式代入a + b = 10,得到c + 4 + b = 10,解得b = 6。
所以,b 的值为6。
5. 一个三角形的周长为24,其中两边长分别为8和10,求第三边长。
答案:设第三边长为x,则根据三角形的周长公式,8 + 10 + x = 24。
解得x = 24 - 8 - 10 = 6。
所以,第三边长为6。
中考数学直角三角形的边角关系综合题及答案解析一、直角三角形的边角关系1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB =90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点P作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当 t 为何值时,点 E 在BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻 t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB ,易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC , ∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG ,∴tan ∠EOC=tan ∠QOG , ∴EC GQ OC OG =, ∴358544345t t t -=-, 整理得:5t 2-66t+160=0, 解得165t =或10(舍弃) ∴当165t =秒时,OE ⊥OQ . 【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.3.如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则x-33x=6,解得:3则BE=(3)米.在直角△BEQ中,QE=33BE=33(3+3)=(3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ 的高度约9米.考点:解直角三角形的应用-仰角俯角问题.4.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG 3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3. 又∵CG ﹣FG =24m ,33=24m , ∴AG 3,∴AB 3+1.6≈22.4m .5.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD=. (1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 10.【解析】【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =HM n =,则有22LK KG n ==,2222FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HF FK HM=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10.【详解】 解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+, ∴»»AB CD =,∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =,∴AOJ DOQ ∆≅∆,∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥,∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =, 在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒,∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =,在Rt FHL ∆中,222FL FH HL =+,22FL =设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==,在Rt LGK ∆中,222LG LK KG =+,22LK KG ==,222FK FL LK =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠,∴tan tan KFG HMF ∠=∠, ∴KG HF FK HM =,∴2222222nn =+,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,210FG =10FO =即O e 10【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.6.如图,直线y=1 2x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣12x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)根据图象,直接写出满足12x+2≥﹣12x2+bx+c的x的取值范围;(3)设点D为该抛物线上的一点、连结AD,若∠DAC=∠CBO,求点D的坐标.【答案】(1)213222y x x=--+;(2)当x≥0或x≤﹣4;(3)D点坐标为(0,2)或(2,﹣3).【解析】【分析】(1)由直线y=12x+2求得A、B的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)观察图象,找出直线在抛物线上方的x的取值范围;(3)如图,过D点作x轴的垂线,交x轴于点E,先求出CO=1,AO=4,再由∠DAC=∠CBO,得出tan∠DAC=tan∠CBO,从而有,DE COAE BO=,最后分类讨论确定点D的坐标.【详解】解:(1)由y=12x+2可得:当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c得:322bc⎧=-⎪⎨⎪=⎩,,∴抛物线的解析式为:213222y x x=--+(2)当x≥0或x≤﹣4时,12x+2≥﹣12x2+bx+c(3)如图,过D 点作x 轴的垂线,交x 轴于点E , 由213222y x x =-+令y =0, 解得:x 1=1,x 2=﹣4,∴CO =1,AO =4,设点D 的坐标为(m ,213222m m --+), ∵∠DAC =∠CBO ,∴tan ∠DAC =tan ∠CBO ,∴在Rt △ADE 和Rt △BOC 中有DE CO AE BO =, 当D 在x 轴上方时,213212242--+=+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(0,2).当D 在x 轴下方时,213(2)12242---+=+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(2,﹣3),故满足条件的D 点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.7.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接GD ,求证:△ADG ≌△ABE ;(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN=43.理由见解析. 【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中, ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC =90°,∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,∴EH =AD =BC =8,∴CH =BE , ∴EH FH FH AB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.8.如图,在▱ABCD 中,AC 与BD 交于点O ,AC ⊥BC 于点C ,将△ABC 沿AC 翻折得到△AEC ,连接DE .(1)求证:四边形ACED 是矩形;(2)若AC =4,BC =3,求sin ∠ABD 的值.【答案】(1)证明见解析(2)613 【解析】【分析】 (1)根据▱ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值.【详解】(1)证明:∵将△ABC 沿AC 翻折得到△AEC ,∴BC =CE ,AC ⊥CE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD =CE ,AD ∥CE , ∴四边形ACED 是平行四边形,∵AC ⊥CE ,∴四边形ACED 是矩形.(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F ,∵BE =2BC =2×3=6,DE =AC =4,∴在Rt △BDE 中,2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD =12AF•BD , ∴AF 61313213=, ∵Rt △ABC 中,AB 2234+5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =6136135AF AB ==方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD = ∵S △AOB =11OF AB OA BC 22⋅=⋅,∴OF =23655⨯=, ∵在Rt △BOF 中, sin ∠FBO =0613513F OB ==, ∴sin ∠ABD =613.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .9.如图1,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,动点P 在线段BC 上,点Q 在线段AB 上,且PQ =BQ ,延长QP 交射线AC 于点D .(1)求证:QA =QD ;(2)设∠BAP =α,当2tanα是正整数时,求PC 的长;(3)作点Q 关于AC 的对称点Q′,连结QQ′,AQ′,DQ′,延长BC 交线段DQ′于点E ,连结AE ,QQ′分别与AP ,AE 交于点M ,N (如图2所示).若存在常数k ,满足k•MN =PE•QQ′,求k 的值.【答案】(1)证明见解析(2)PC的长为37或32(3)8【解析】【分析】(1)由等腰三角形的性质得出∠B=∠BPQ=∠CPD,由直角三角形的性质得出∠BAC=∠D,即可得出结论;(2)过点P作PH⊥AB于H,设PH=3x,BH=4x,BP=5x,由题意知tanα=1或12,当tanα=1时,HA=PH=3x,与勾股定理得出3x+4x=5,解得x=57,即可求出PC长;当tanα=12时,HA=2PH﹣6x,得出6x+4x=5,解得x=12,即可求出PC长;(3)设QQ′与AD交于点O,由轴对称的性质得出AQ′=AQ=DQ=DQ′,得出四边形AQDQ′是菱形,由菱形的性质得出QQ′⊥AD,AO=12AD,证出四边形BEQ'Q是平行四边形,得出QQ′=BE,设CD=3m,则PC=4m,AD=3+3m,即QQ′﹣BE=4m+4,PE=8m,由三角函数得出MOAO=tan∠PAC=PCAC,即可得出结果.【详解】(1)证明:∵PQ=BQ,∴∠B=∠BPQ=∠CPD,∵∠ACB=∠PCD=90°,∴∠A+∠BAC=90°,∠D+∠CPD=90°,∴∠BAC=∠D,∴QA=QD;(2)解:过点P作PH⊥AB于H,如图1所示:设PH=3x,BH=4x,BP=5x,由题意得:tan∠BAC=43,∠BAP<∠BAC,∴2tanα是正整数时,tanα=1或12,当tanα=1时,HA=PH=3x,∴3x+4x5,∴x =57, 即PC =4﹣5x =37; 当tanα=12时,HA =2PH ﹣6x , ∴6x+4x =5,∴x =12, 即PC =4﹣5x =32; 综上所述,PC 的长为37或32; (3)解:设QQ′与AD 交于点O ,如图2所示:由轴对称的性质得:AQ′=AQ =DQ =DQ′,∴四边形AQDQ′是菱形,∴QQ′⊥AD ,AO =12AD , ∵BC ⊥AC ,∴QQ′∥BE ,∵BQ ∥EQ′,∴四边形BEQ'Q 是平行四边形,∴QQ′=BE ,设CD =3m ,则PC =4m ,AD =3+3m ,即QQ′﹣BE =4m+4,PE =8m , ∵MO AO =tan ∠PAC =PC AC, ∴332MO m +=43m , 即MN =2MO =4m (1+m ),∴k =PE QQ MNg ′=8(44)4(1)m m m m ++=8.【点睛】本题是三角形综合题目,考查了等腰三角形的性质与判定、三角函数、勾股定理、菱形的判定与性质、平行线的性质以及分类讨论等知识;本题综合性强,熟练掌握等腰三角形的判定与性质,灵活运用三角函数是解题关键.10.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2GF2最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=213,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+2GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴AC=26,BC=52,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠ACB=213,tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=213=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.11.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.12.如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD为x,则3x,在RT△ODA中应用勾股定理即可求解;(2)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为2,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA2+OD2=DA2.∴9+OD2=(33﹣OD)2.∴3∴D(03)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴BD BC BO AB =且BD=AC , ∴6633BD -= ∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan ∠ABO=3OB AO =, ∴∠ABC=30°,即∠BAO=60°∵tan ∠ABO=3BD 3CD =, ∴CD=12﹣63∴D (12﹣63,123﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE ⊥AO∴OE=2,且AO=3∴AE=1,∵CE ⊥AO ,∠CAE=60°∴∠ACE=30°且CE ⊥AO∴AC=2,3∵BC=AB ﹣AC∴BC=6﹣2=4若点B'落在A 点右边,∵折叠∴BC=B'C=4,3CE ⊥OA∴22'13B C CE -=∴13∴B'(130)若点B'落在A 点左边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴2∴B'(20)综上所述:B'(0),(20)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。
直角三角形三边的关系1、已知在Rt △ABC 中,∠C=90°。
①若a=3,b=4,则c=________;②若c=25,b=15,则a=________。
2、斜边为13cm ,一条直角边长为12cm ,则另一条直角边为_______cm.3、如图,以数轴的单位长度线段做正方形。
以数轴的原点为圆心,正方形对角线为半径画弧,交数轴正半轴于点A ,则A 表示的数是( )A 、211B 、1.4C 、21- D1①直角三角形中,两边的平方和等于第三边的平方()②Rt △ABC 中,3=a ,4=b ,则5=c ( )5、在Rt △ABC 中,C ∠=90°,c AB =,AC=b ,BC=a若a=10,b=24,求c若a=16,c=20,求b.6、如图,∠OAB=∠OBC=∠OCD=90°, AB=BC=CD=1,OA=2,求OD◆典例分析如图,将长为10米的梯子AC 斜靠在墙上,BC 长为6米,求梯子上端A 到墙的底端B 的距离AB 。
O A B C D●拓展提高1.在Rt △ABC 中,︒=∠90A ,c AB =,a BC =,b AC =(提醒学生注意边的位置) ①若8=c ,10=a ,则=b ( ).②若4:3:=c b ,15=a ,则=b ( ). ,=c ( )..2、若一个直角三角形的斜边是25cm ,两条直角边的比是3∶4,则较短的直角边是( ). cm.3、若直角三角形的两条直角边各扩大一倍,则斜边扩大( ).(A) 不变(B) 一倍(C) 两倍(D) 无法确定4、已知等腰三角形ABC 的腰长为13 cm ,另一边长是10cm ,由顶点作高AD 。
求:(1)高AD 的长; (2)△ABC 的面积。
5、如图,已知等边三角形ABC 的边长是6cm 。
求:(1)高AD 的长;(2)△ABC 的面积ABC S ∆ 。
D C BA D CB●体验中考1、下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .47D .942(2013年长春)如图,已知△ABC 中,AB =17,AC =10,BC 边上的高,AD =8, 则边BC 的长为( )A .21B .15C .6D .以上答案都不对ACDB参考答案◆随堂检测1、依据勾股定理可得:①5;② 20.2、15.3、D 由勾股定理可得:点A 到—1的距离为2,所以点A 1,故选D 。
中考数学复习三角形的边与角中考真题专项练习一.选择题(共16小题)1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.5,7,2D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.2.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是( )A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.3.(2019•毕节市)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.4.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.5.(2019•台州)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.6.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A.7B.8C.9D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(2019•百色)三角形的内角和等于( )A.90°B.180°C.270°D.360°【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.10.(2019•赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.11.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.12.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是( )A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.13.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.14.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.15.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.16.(2019•枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共2小题)17.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 4<BC≤ .【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.18.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;。
一、选择题 家长签名: 如图1所示,以AB 为一边的三角形有( )个 个 个 个2.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm3.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ),2,3,5,8 ,4,5 ,5,104.已知三角形的三边长分别为4、5、x ,则x 不可能是( )A .3 B .5 C .7 D .95.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm6.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )7.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) ∶2∶4∶3∶4∶4∶7∶3∶48.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm或18cm D.不能确定9.下列各组给出的三条线段中不能组成三角形的是( ) ,4,5B.3a ,4a ,5a +a ,4+a ,5+aD.三条线段之比为3∶5∶810.如图2,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( ) 是△ABC 的高 是△BCD 的高 是△ABD 的高是△BEF 的高11.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不能确定12.三角形的三条高的交点一定在( ) A.三角形内部B.三角形的外部C.三角形的内部或外部D.以上答案都不对13.下列把四边形的不稳定性合理地应用到生产实际中的例子有( )(1)活动挂架 (2)放缩尺 (3)屋顶钢架 (4)能够推拢和拉开的铁拉门(5)自行车的车架(6)大桥钢架图1图214. 以下列各组线段为边,能组成三角形的是( ),2cm ,4cm B. 2cm ,3cm ,5cm ,6cm ,12cm D. 4cm ,6cm ,8cm 15.已知三角形的三边长分别为4,5,x ,则x 不可能是( ) 16.已知等腰三角形的两边分别为2和5,则它的周长为( )或 917. 任选长为13cm 、10cm 、7cm 、5cm 的四条线段中的三条线段为边,可以组成三角形的个数是( ) 个 个 个 个 18.三角形的角平分线、高和中线均为( )A.直线B.射线C.线段D.以上说法都不正确19.如果三角形三条高的交点是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 以上说法都不正确 20.下列判断中,正确的个数为( )(1)D 是△ABC 中BC 边上的一个点,且BD =CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC =90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD =21∠BAC ,则AD 是△ABC 的角平分线 (4)三角形的中线、高、角平分线都是线段二、填空题1.三角形是具有________的图形,而四边形没有________.2.自行车用脚架撑放比较稳定的原因是________.3.如图3的三角形记作__________,它的三条边是__________,三个顶点分别是_________三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示__________.4.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.5. 已知三角形的三边长分别为3,8,x; 若x 的值为奇数,则x 的值有______个;6.如图4,在△ABC 中,BC 边上的高是_______;在△AFC 中, CF 边上的高是________;在△ABE 中,AB 边上的高是_________. 7.如图5,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是图3图4图5_______,这三条高交于是△_____、△_____、△____的高.8.如图6所示:(1)AD ⊥BC ,垂足为D ,则AD 是______的高,∠_____=∠_____=90°. (2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的_____,∠_____=∠_____=21∠______. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________. (4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.图6 图7 图8 8.如图7,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =______度. 9.如图8,BD =DC ,∠ABN =21∠ABC ,则AD 是△ABC 的______线,BN 是△ABC 的________,ND 是△BNC 的________线. 三、解答题1. 一个三角形中有两边相等,其周长为10,其中一边为3,求其他两边长。
边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。
5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。
三、简答题6. 解释什么是补角,并给出一个补角的例子。
7. 解释什么是邻补角,并给出一个邻补角的例子。
四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。
9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。
五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。
答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。
7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。
四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。
中考数学三角形的边与角真题归类(附答案)以下是查字典数学网为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。
中考数学三角形的边与角真题归类(附答案)一.选择题1. (2019荆门)已知:直线l1∥l2,一块含30角的直角三角板如图所示放置,1=25,则2等于()A. 30B. 35C. 40D. 45解析:∵3是△ADG的外角,A+1=30+25=55,∵l1∥l2,4=55,∵EFC=90,EFC=90﹣55=35,2=35.故选B.2.(2019中考)如图,在△ABC中,C=70,沿图中虚线截去C,则2=【 B 】A.360B.250C.180D.1403.(2019连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,1=50,2=60,则3的度数为()A. 50B. 60C. 70D. 80考点:平行线的性质;三角形内角和定理。
分析:先根据三角形内角和定理求出4的度数,由对顶角的性质可得出5的度数,再由平行线的性质得出结论即可. 解答:解:∵△BCD中,1=50,2=60,4=1801-2=180-50-60=70,4.(2019深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到一个四边形,则么的度数为【】A. 120OB. 180O.C. 240OD. 3000【答案】C。
【考点】三角形内角和定理,平角定义。
【分析】如图,根据三角形内角和定理,得4+600=1800,又根据平角定义,3=1800,4=1800,1800-1+1800-2+600=1800。
2=240O。
故选C。
5.(2019聊城)将一副三角板按如图所示摆放,图中的度数是()A.75B.90C.105D.120考点:三角形的外角性质;三角形内角和定理。
专题:探究型。
分析:先根据直角三角形的性质得出BAE及E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,BAE=45,E=30,6.(2019毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若1=120,2=80,则3的度数是( )A.40B.60C.80D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出1-ABC,代入即可得出答案.7.(2019十堰)如图,直线BD∥EF,AE与BD交于点C,若ABC=30,BAC=75,则CEF的大小为( D )A.60B.75C.90D.105【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出1的度数,再由平行线的性质即可得出结论.【解答】解:∵1是△ABC的外角,ABC=30,BAC=75,ABC+BAC=30+75=105,∵直线BD∥EF,CEF=1=105.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.8.(2019梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A重合,若A=75,则2=()A.150B.210C.105D.75考点:三角形内角和定理;翻折变换(折叠问题)。
第20章 三角形的边与角一、选择题1. 如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2B .3C .4D . 52. 若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是( ) A. 1 B. 5 C. 7 D.93. 一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A .30°B .45°C .60°D .75°4. 若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形5. 如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm6. 如图,三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA ∆的面积均相等。
判断下列作法何者正确?A . 作中线AD ,再取AD 的中点OAB30°45°αE A BCDB . 分别作中线AD 、BE ,再取此两中线的交点OC . 分别作AB 、BC 的中垂线,再取此两中垂线的交点OD . 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O7. 如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分?A . 11B . 12C . 13D . 148. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )9. △ABC 的内角和为A.180°B.360°C.540°D.720°10.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 A .32°B .58°C .68°D .60°11. 如图所示,∠A 、∠1、∠2的大小关系是 A. ∠A>∠1>∠2 B. ∠2>∠1>∠A C. ∠A>∠2>∠1 D. ∠2>∠A>∠11212. 下列长度的三条线段,不能组成三角形的是A.3,8,4B. 4,9,6C. 15,20,8D. 9,15,813. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为OBAA.75°B.95°C.105°D.120°14. 王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少要再钉上几根木条?A.0根 B.1根 C.2根 D.3根15. 如图,在△ABC中,D、E分别是AB、AC的中点,若DE=5,则BC=A.6 B.8 C.10 D.1216. 一副三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75B.60C.65D.5517. 已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( )A .2B .3C .5D .1318. 如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O,点F 、G 分别是BO 、CO 的中点,连结AO.若AO=6cm ,BC=8cm ,则四边形DEFG 的周长是( )A.14cmB.18cmC.24cmD.28cm 二、填空题1. 已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).2. 如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = 度.3. 如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.4. 如图,在∆ABC 中,AB =AC ,D 、E 是∆ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = cmABCDAP5. 已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).6. 如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠P AB = 度.7. 如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点18AD BC PEF =∠=,,则PFE ∠的度数是 .8. 如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,若DE =4, 则AB = .DABE9. 如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O 。
中考数学直角三角形的边角关系综合练习题附详细答案一、直角三角形的边角关系1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.4.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.62492 1.4142.【答案】塔高AB 约为32.99米. 【解析】 【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论. 【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标; (Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H . ①求证BDE DBA ∆≅∆; ②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒. 【解析】 【分析】(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.在Rt OAB ∆中,225OB OA AB +=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5=∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===︒==. ∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒ ∴ABD BDE ∠∠=.又∵BD BD =, ∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==, 又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅. ∴DH=BH ,设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()222x 34x =+-,得25x 8=, ∴25AH 8=.∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,同理解得:∠BAF′=60°, ∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒. 【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.6.已知:如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,连接BC 交圆于点D ,过点D 作⊙O 的切线交AC 于E . (1)求证:AE =CE(2)如图,在弧BD 上任取一点F 连接AF ,弦GF 与AB 交于H ,与BC 交于M ,求证:∠FAB +∠FBM =∠EDC .(3)如图,在(2)的条件下,当GH =FH ,HM =MF 时,tan ∠ABC =34,DE =394时,N为圆上一点,连接FN 交AB 于L ,满足∠NFH +∠CAF =∠AHG ,求LN 的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=22=413,FH HL∵LN•LF=AL•BL,∴413•LN=10•16,∴LN=4013.13【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 秒、95- . 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x+185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频9.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.10.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C 处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km3,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.11.如图,在平面直角坐标系xOy 中,已知点A (3,0),点B (0,33),点O 为原点.动点C 、D 分别在直线AB 、OB 上,将△BCD 沿着CD 折叠,得△B'CD .(Ⅰ)如图1,若CD ⊥AB ,点B'恰好落在点A 处,求此时点D 的坐标;(Ⅱ)如图2,若BD=AC ,点B'恰好落在y 轴上,求此时点C 的坐标;(Ⅲ)若点C 的横坐标为2,点B'落在x 轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D (02)C (12﹣﹣18);(3)B'(0),(20).【解析】【分析】(1)设OD 为x ,则x ,在RT △ODA 中应用勾股定理即可求解;(2)由题意易证△BDC ∽△BOA ,再利用A 、B 坐标及BD=AC 可求解出BD 长度,再由特殊角的三角函数即可求解;(3)过点C 作CE ⊥AO 于E ,由A 、B 坐标及C 的横坐标为2,利用相似可求解出BC 、CE 、OC 等长度;分点B’在A 点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C ,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD 为x ,∵点A (3,0),点B (0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(﹣OD )2.∴∴D(0)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA ∴BD BC BO AB =且BD=AC , ∴66BD -= ∴BD=18∴OD=﹣(18)=18﹣∵tan ∠ABO=OB 3AO = ∴∠ABC=30°,即∠BAO=60°∵tan ∠ABO=BD CD = ∴CD=12﹣∴D(12﹣63,123﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=2,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=2,3∵BC=AB﹣AC∴BC=6﹣2=4若点B'落在A点右边,∵折叠∴BC=B'C=4,3CE⊥OA∴22B C CE-='13∴13∴B'(130)若点B'落在A点左边,∵折叠∴BC=B'C=4,3CE⊥OA∴22-=B C CE'13∴132∴B'(2130)综上所述:B'(130),(2130)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.12.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。
三角形的边与角一.选择题1.(2015•江苏徐州,第7题3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7D.14考点:菱形的性质..分析:根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.点评:本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.2.(2015•江苏徐州,第4题3分)如图,将三角形纸板的直角顶点放在直尺的一边上,,则等于()A.B.C.D.【答案】C【解析】试题分析:由图可知∠2=∠1+∠3,∵∠1=20°,∠2=40°,∴∠3=20°;故选C.考点:1.平行线的性质;2.三角形外角的性质.3. (2015•绵阳第5题,3分)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°考点:三角形内角和定理..分析:由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解答:解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.点评:本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.4. (2015•四川凉山州,第4题4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【答案】A.5 (2015•四川眉山,第5题3分)一个多边形的外角和是内角和的,这个多边形的边数为()A. 5 B. 6 C. 7 D. 8考点:多边形内角与外角..专题:计算题.分析:根据多边形的外角和为360°及题意,求出这个多边形的内角和,即可确定出多边形的边数.解答:解:∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C点评:此题考查了多边形的内角和与外角和,熟练掌握内角和公式及外角和公式是解本题的关键.6.(2015•江苏徐州,第7题3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7D.14考点:菱形的性质..分析:根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选A.点评:本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.7.(2015•江苏徐州,第4题3分)如图,将三角形纸板的直角顶点放在直尺的一边上,,则等于()A .B.C.D.【答案】C【解析】试题分析:由图可知∠2=∠1+∠3,∵∠1=20°,∠2=40°,∴∠3=20°;故选C.考点:1.平行线的性质;2.三角形外角的性质.8. (2015•四川广安,第5题3分)下列四个图形中,线段BE是△ABC的高的是()A.B.C. D.考点:三角形的角平分线、中线和高..分析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高,再结合图形进行判断.解答:解:线段BE是△ABC的高的图是选项D.故选D.点评:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.(2015·四川甘孜、阿坝,第5题4分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA 至点D,则∠CAD的大小为()A.110°B.80° C.70°D. 60°考点:三角形的外角性质..分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.10.(2015•四川广安,第8题3分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B. 9 C. 13 D. 12或9考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质..分析:求出方程的解,即可得出三角形的边长,再求出即可.解答:解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.点评:本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.11.(2015•北京市,第6题,3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C 被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为A.0.5km B.0.6kmC.0.9km D.1.2km【考点】三角形【难度】容易【答案】D【点评】本题考查三角形的相关计算。
人教版八年级上册第十一章三角形三角形的边和角单元过关一、选择题(每题3分共72分)满分120分1、已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10B.8C.10D.6或122、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个角形,那么可以组成的三角形的个数是( )A 1 B.2 C.3 D.43、下列长度的三根小木棒能构成三角形的是( )A. 2 cm, 3 cm. 5 cmB. 7 cm, 4 cm,2 cm C 3 cm. 4 cm.8cm D. 3 cm 3 cm.4cm4、一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A.108 ° B90° C72° D.60 °5、一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是A.27 B.35C.44D.546、设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A a>bB a=b C. a<b D.b=a+180°7 、若一个正n边形的每个内角都为144°,则这个正m 边形的所有对角线的条数是A.7B.10C.35D.708 、能够铺满地面的正多边形组合是( )A正八边形和正五边形B正方形和正六边形C正五边形和正十边形D正四边形和正十边形9、下面说法正确的个数有( )①如果三角形三个内角的比是1:2:3,那么这个三角形是直角角形;②如果三角形的一个外角等于与它相邻的一个内角,则这三角形是直角三角形;③如果一个三角形的三条高的交点恰好个顶点,那么这个三角形是直角三角形:(4)如果2∠A=2∠B= ∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,A+∠B=∠C,则此三角形是直角三角形。
解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。
所以 tanB =。
3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。
4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。
所以 cosB =。
5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。
6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。
7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。
学生做题前请先回答以下问题问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________.问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______.问题3:默写特殊角的三角函数值:问题4:三角函数值的大小只与角度的_______有关,跟所在的三角形放缩(大小)没有关系.问题5:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理.问题6:30°,45°,60°,120°,135°,150°都属于我们常用的特殊角,在解直角三角形中经常用到.120°,135°,150°经常使用它们的________构造直角三角形,如图1.直角三角形的边角关系一、单选题(共12道,每道8分)1.在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:锐角三角函数的定义2.计算的结果为( )A. B.C. D.1答案:B解题思路:试题难度:三颗星知识点:特殊角的三角函数值3.为锐角,当无意义时,的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:特殊角的三角函数值4.在△ABC中,若,则下列最确切的结论是( )A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形答案:C解题思路:试题难度:三颗星知识点:特殊角的三角函数值5.已知为锐角,且,那么的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:锐角三角函数的增减性6.如图,在边长为1的正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:锐角三角函数的定义7.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作,小颖画的三角形面积记作,那么你认为( )A. B.C. D.不能确定答案:C解题思路:试题难度:三颗星知识点:解直角三角形8.如图,P是的边OA上一点,点P的坐标为,则的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:锐角三角函数的定义9.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:解直角三角形10.如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:解直角三角形11.直角三角形纸片的两直角边长分别为6,8,现将该纸片(△ABC)按如图所示那样折叠,使点A与点B重合,折痕为DE,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:翻折变换(折叠问题)12.如图所示,已知AD是等腰三角形ABC底边上的高,且.AC上有一点E,若AE:CE=2:3,则的值为( )A. B.C. D.答案:B试题难度:三颗星知识点:翻折变换(折叠问题)。
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
21B A C M 与三角形有关的角1.三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.2、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
.3.三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.(2)三角形的一个角大于与它不相邻的任何一个内角.注意:(1)它不相邻的内角不容忽视;(2)作CM ∥AB 由于B 、C 、D 共线∴∠A=∠1,∠B=∠2.即∠ACD=∠1+∠2=∠A+∠B.那么∠ACD>∠A.∠ACD>∠B 。
例1.如图,已知∠1=20o ,∠2=25o ,∠A=35o ,则∠BDC 的度数为________例2.在△ABC 中,∠A=∠B=∠C ,则此三角形是(??)A .锐角三角形?????B .直角三角形???C .钝角三角形???D .等腰三角形例3、探索发现:.如图,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P ,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.⑴.β=180°-(∠B+∠C)/2=90°+α/2.⑵.∠B/2+∠C+(180°-∠C)/2+β=180°.α=180°-∠B -∠C.算得β=α/2.⑶β=180°-[(180°-∠B)/2+(180°-∠C)/2]=90°-α/2.例4.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC(∠C>∠B),试说明∠EAD=(∠C ?∠B).解:(1)∵∠1=∠2,∴∠1=∠BAC ,又∵∠BAC=180°-(∠B+∠C ),∴∠1=[180°-(∠B+∠C )]=90°-(∠B+∠C ),∴∠EDF=∠B+∠1=∠B+90°-(∠B+∠C )=90°+(∠B-∠C ),又∵EF ⊥BC ,∴∠EFD=90°, ∴∠DEF=90°-∠EDF=90°-[90°+(∠B-∠C )]=(∠C-∠B );(2)当点E 在AD 的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立。
13章三角形中的边角关系、命题与证明姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分100分,考试时间80分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52.下列命题正确的是()A.直线外一点到该直线的垂线段,是这个点到直线的距离B.纵坐标相同的两点所在的直线平行于x轴C.一组对边平行,另一组对边相等的四边形是平行四边形D.顺次连接菱形四边的中点构成的四边形是矩形3.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°4.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的结论是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC5.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1 B.2 C.3 D.46.如图,△ABC中,三条中线AD,BE,CF相交于点O,若△ABC的面积是10,则△OCD的面积是()A.2 B.1.5 C.D.5二、填空题(本大题共12小题,每小题3分,共36分.不需写出解答过程,请把答案直接填写在横线上)7.已知三角形的三边长分别为2,a﹣1,4,则化简|a﹣3|﹣|a﹣7|的结果为﹣.8.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为.9.如图,在平面直角坐标系中,A(4,4),点D在y轴上,若△ABC的面积等于△BCD的面积,则点D的坐标可能是(只写一个即可).10.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC的周长是20,则AD的长为.11.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.12.用举反例的方法,说明命题“关于x的方程x2﹣6x+m=0一定有实数根”是假命题,则m的值可以是.13.如图,△ABC的两条高AD,BE交于点F,∠DBF=28°,则∠CAD的度数为.14.如图,在△ABC中,∠B与∠C的平分线交于点P.若∠BPC=108°,则∠A的度数为.15.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团均示队获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.16.如图,在△ABC中,∠B=40°,∠A=30°,CD平分∠ACB.CE⊥AB于点E,则∠DCE的度数是.17.如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为.18.已知,矩形ABCD中,AB:BC=1:2,点E在AD上,将△ABE沿BE翻折,点A的对称点F恰好落在AC上,AC、BE相交于点G,设△ABG的面积为S1,四边形CDEF的面积为S2,则S1:S2=.三、解答题(本大题共7小题,共44分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,BD平分∠ABC,若∠C=∠CDB=70°,求∠A的度数.20.已知:等腰△ABC的三边长为整数a,b,c,且满足a2+b2﹣6a﹣4b+13=0,求等腰△ABC的周长.21.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.22.如图所示:(1)若DE∥BC,∠1=∠3,∠CDF=90°,求证:FG⊥AB.(2)若把(1)中的题设“DE∥BC”与结论“FG⊥AB”对调,所得命题是否是真命题?说明理由.23.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,求∠CDE的度数.24.如图①,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于点D.(1)当∠B=45°,∠C=75°时,求∠EFD的度数;(2)若∠B=a,∠C=β,请结合(1)的计算猜想∠EFD、∠B、∠C之间的数量关系,直接写出答案,不说明理由;(用含有a、β的式子表示∠EFD)(3)如图②,当点F在AE的延长线上时,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.25.如图,直线x与直线y垂直于点O,点B,C在直线x上,点A在直线x外,连接AC,AB得到△ABC.(1)将△ABC沿直线x折叠,使点A落在点D处,延长DC交AB于点E,EF平分∠AED交直线x于点F,①若∠EFB=25°,∠DEF=10°,则∠DCF=②若∠ACF﹣∠AEF=18°,求∠EFB的度数;(2)过点C作MN平行于AB交直线y于点N,CP平分∠BCM,HP平分∠AHY,当点C从点O沿直线x向左运动时,∠CPH的度数是否发生变化?若不变求其度数;若变化,求其变化范围.单元B卷三角形中的边角关系、命题与证明姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间80分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题3分,共18分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,能够判定△ABC为直角三角形;B、32+42=52,符合勾股定理的逆定理,能够判定△ABC为直角三角形;C、∠A+∠B=∠C,此时∠C是直角,能判定△ABC是直角三角形;D、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,不能判定△ABC是直角三角形.故选:D.【知识点】勾股定理的逆定理、三角形内角和定理2.下列命题正确的是()A.直线外一点到该直线的垂线段,是这个点到直线的距离B.纵坐标相同的两点所在的直线平行于x轴C.一组对边平行,另一组对边相等的四边形是平行四边形D.顺次连接菱形四边的中点构成的四边形是矩形【解答】解:A、直线外一点到该直线的垂线段的长度,是这个点到直线的距离,故原命题错误,不符合题意;B、纵坐标相同的两点所在的直线可能平行于x轴也可能是x轴,故错误,不符合题意;C、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故错误,不符合题意;D、顺次连接菱形四边的中点构成的四边形是矩形,正确,符合题意,故选:D.【知识点】命题与定理3.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°【解答】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【知识点】三角形的外角性质、三角形内角和定理4.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的结论是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC【解答】解:由题意可知OA=AC=AB=BC,∴△ABC是等边三角形,∴∠CAB=60°,∴∠MON=∠OCA=30°,∴∠OCB=30°+60°=90°.∴S△AOC=S△ABC,∴A,B,C,正确.故选:D.【知识点】三角形的面积5.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1 B.2 C.3 D.4【解答】解:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大,是真命题;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大,是真命题;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形,是真命题;命题4:直角三角形中斜边最长,是真命题;故选:D.【知识点】命题与定理6.如图,△ABC中,三条中线AD,BE,CF相交于点O,若△ABC的面积是10,则△OCD的面积是()A.2 B.1.5 C.D.5【解答】解:∵△ABC中,三条中线AD,BE,CF相交于点O,∴=,CD=BD,∴S△ACD=S△ABD=S△ABC==5,∴S△OCD=S△ACD==,故选:C.【知识点】三角形的重心、三角形的面积二、填空题(本大题共12小题,每小题3分,共36分.不需写出解答过程,请把答案直接填写在横线上)7.已知三角形的三边长分别为2,a﹣1,4,则化简|a﹣3|﹣|a﹣7|的结果为﹣.【解答】解:由三角形三边关系定理得4﹣2<a﹣1<4+2,即3<a<7.∴|a﹣3|﹣|a﹣7|=a﹣3﹣7+a=2a﹣10.故答案为:2a﹣10.【知识点】绝对值、三角形三边关系8.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为.【解答】解:由(a﹣4)2+|b﹣9|=0,得a﹣4=0,b﹣9=0.则以a、b为边长的等腰三角形的腰长为9,底边长为4.∴周长为9+9+4=22,故答案为:22.【知识点】等腰三角形的性质、三角形三边关系、非负数的性质:偶次方、非负数的性质:绝对值9.如图,在平面直角坐标系中,A(4,4),点D在y轴上,若△ABC的面积等于△BCD的面积,则点D的坐标可能是(只写一个即可).【解答】解:∵BC∥x轴,过A作AD∥x轴交y轴于D,∵A(4,4),△ABC的面积等于△BCD的面积,∴则点D的坐标可能是(0,4),故答案为:(0,4).【知识点】三角形的面积、坐标与图形性质10.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC的周长是20,则AD的长为.【解答】解:∵△ABD与△ACD的周长分别是14和12,∴AB+BC+AC+2AD=14+12=26,∵△ABC的周长是20,∴AB+BC+AC=20,∴2AD=26﹣20=6,∴AD=3.故答案为3.【知识点】三角形的角平分线、中线和高11.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.【知识点】三角形的外角性质、三角形内角和定理12.用举反例的方法,说明命题“关于x的方程x2﹣6x+m=0一定有实数根”是假命题,则m的值可以是.【解答】解:当m=10时,△=(﹣6)2﹣4×10=﹣4<0,方程没有实数根,∴当m=10可以说明命题“关于x的方程x2﹣6x+m=0一定有实数根”是假命题,故答案为:10.【知识点】命题与定理13.如图,△ABC的两条高AD,BE交于点F,∠DBF=28°,则∠CAD的度数为.【解答】解:∵△ABC的两条高AD,BE交于点F,∴∠AEF=∠BDF=90°,∵∠DBF=28°,∴∠AFE=∠BFD=90°﹣28°=62°,∴∠CAD=90°﹣∠AFE=90°﹣62°=28°,故答案为:28°.【知识点】三角形内角和定理14.如图,在△ABC中,∠B与∠C的平分线交于点P.若∠BPC=108°,则∠A的度数为.【解答】解:在△PBC中,∵∠BPC=108°,∴∠PBC+∠PCB=180°﹣108°=72°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×72°=144°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣144°=36°.故答案为:36°.【知识点】三角形内角和定理15.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团均示队获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.【解答】解:①若获得一等奖的团队是甲团队,则小张、小王、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小王预测结果是对的,与题设矛盾,即假设错误,③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误,④若获得一等奖的团队是丁团队,则小李、小赵预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁.故答案为:丁.【知识点】推理与论证16.如图,在△ABC中,∠B=40°,∠A=30°,CD平分∠ACB.CE⊥AB于点E,则∠DCE的度数是.【解答】解:∵∠B=40°,CE⊥AB,∴∠BCE=50°,又∵∠A=30°,CD平分∠ACB,∴∠BCD=∠BCA=×(180°﹣40°﹣30°)=55°,∴∠DCE=∠BCD﹣∠BCE=55°﹣50°=5°,故答案为5°.【知识点】三角形内角和定理17.如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为.【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=70°,∠B=50°,∴∠C=180°﹣70°﹣50°=60°,当∠CB′M=90°,∴∠CMB′=90°﹣60°=30°,由折叠的性质可知:∠NMB′=∠BMB′=75°,∴∠MNB′=180°﹣75°﹣50°=55°,当∠CMB′=90°时,∠NMB=∠NMB′=45°,∠MNB′=180°﹣50°﹣45°=85°,故答案为55°或85°.【知识点】三角形内角和定理18.已知,矩形ABCD中,AB:BC=1:2,点E在AD上,将△ABE沿BE翻折,点A的对称点F恰好落在AC上,AC、BE相交于点G,设△ABG的面积为S1,四边形CDEF的面积为S2,则S1:S2=.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠BAD=∠D=90°,AB∥CD,∴∠DAC=∠ACB,∵AB:BC=1:2,∴设CD=AB=2a,则AD=BC=4a,由折叠的性质得:AF⊥BE,FG=AG,∴∠ABE=∠DAC=∠ACB,∴tan∠ABE==tan∠ACB==,∴AE=AB=a,∴BE==a,∴AG===a,∴BG=2AG=a,AF=2AG=a,EG=BE﹣BG=a,∴△ABG的面积为S1=BG×AG=×a×a=a2,四边形CDEF的面积为S2=△ACD的面积﹣△AEF的面积=×4a×2a﹣×a×a=a2,∴S1:S2==;故答案为:.【知识点】三角形的面积、矩形的性质、翻折变换(折叠问题)三、解答题(本大题共7小题,共44分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC中,BD平分∠ABC,若∠C=∠CDB=70°,求∠A的度数.【解答】解:∵∠C=∠CDB=70°,∴∠DBC=180°﹣70°﹣70°=40°,∵BD平分∠ABC∴∠ABC=2∠DBC=80°,∴∠A=180°﹣80°﹣70°=30°.【知识点】三角形内角和定理20.已知:等腰△ABC的三边长为整数a,b,c,且满足a2+b2﹣6a﹣4b+13=0,求等腰△ABC的周长.【解答】解∵a2+b2﹣6a﹣4b+13=0,∴(a﹣3)2+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,∵△ABC是等腰三角形∴c=2或3故△ABC的周长为:7或8.【知识点】配方法的应用、非负数的性质:偶次方、等腰三角形的性质、三角形三边关系21.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=50°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=40°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠CEB=90°﹣∠CBE=65°.【知识点】三角形内角和定理22.如图所示:(1)若DE∥BC,∠1=∠3,∠CDF=90°,求证:FG⊥AB.(2)若把(1)中的题设“DE∥BC”与结论“FG⊥AB”对调,所得命题是否是真命题?说明理由.【解答】(1)证明:∵DE∥BC(已知),∴∠1=∠2(两直线平行,内错角相等),∵∠1=∠3(已知),∴DC∥FG(同位角相等,两直线平行),∴∠BFG=∠FDC=90°(两直线平行,同位角相等)∴PG⊥AB(垂直定义);(2)解:是真命题.理由:∵FG⊥AB(已知),∴∠BFG=90°=∠FDC,∴DC∥FG(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴DE∥BC(内错角相等,两直线平行).【知识点】命题与定理23.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,求∠CDE的度数.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=30°,∴∠BDC=∠A+∠ACD=30°+45°=75°,∴∠CDE=75°.【知识点】三角形内角和定理24.如图①,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于点D.(1)当∠B=45°,∠C=75°时,求∠EFD的度数;(2)若∠B=a,∠C=β,请结合(1)的计算猜想∠EFD、∠B、∠C之间的数量关系,直接写出答案,不说明理由;(用含有a、β的式子表示∠EFD)(3)如图②,当点F在AE的延长线上时,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.【解答】解:(1)∵∠C=75°,∠B=45°,∴∠BAC=180°﹣∠C﹣∠B=180°﹣75°﹣45°=60°,∵AE平分∠BAC,∴∠BAE=∠BAC=×60°=30°,由三角形的外角性质得,∠AEC=∠B+∠BAE=45°+30°=75°,∴∠EFD=90°﹣75°=15°;(2)∠EFD=(a﹣β),理由如下:由三角形的内角和定理得,∠BAC=180°﹣∠C﹣∠B,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠C﹣∠B),由三角形的外角性质得,∠AEC=∠B+∠BAE=∠B+(180°﹣∠C﹣∠B)=90°+(∠B﹣∠C),∵FD⊥BC,∴∠EFD=90°﹣∠AEC=90°﹣90°﹣(∠B﹣∠C)=(∠C﹣∠B),即∠EFD=(∠C﹣∠B)∵∠B=a,∠C=β,∴∠EFD=(a﹣β);(3)结论∠EFD=(a﹣β)仍然成立.同(2)可证:∠AEC=90°+(∠B﹣∠C),∴∠DEF=∠AEC=90°+(∠B﹣∠C),∴∠EFD=90°﹣[90°+(∠B﹣∠C)]=(∠C﹣∠B)∴∠EFD=(a﹣β).【知识点】三角形内角和定理25.如图,直线x与直线y垂直于点O,点B,C在直线x上,点A在直线x外,连接AC,AB得到△ABC.(1)将△ABC沿直线x折叠,使点A落在点D处,延长DC交AB于点E,EF平分∠AED交直线x于点F,①若∠EFB=25°,∠DEF=10°,则∠DCF=②若∠ACF﹣∠AEF=18°,求∠EFB的度数;(2)过点C作MN平行于AB交直线y于点N,CP平分∠BCM,HP平分∠AHY,当点C从点O沿直线x向左运动时,∠CPH的度数是否发生变化?若不变求其度数;若变化,求其变化范围.【解答】解:(1)①∵∠DCF=∠EFB+∠DEF=25°+10°∴∠DCF=35°故答案为35°②∵将△ABC沿直线x折叠,使点A落在点D处,∴∠A=∠D,∠ABC=∠DBC∵∠AED=∠D+∠EBD∴∠AED=∠A+2∠ABC∵EF平分∠AED∴∠AEF=∠FED=∠AED=∠A+∠ABC∵∠AEF=∠EFB+∠ABC∴∠EFB=∠A∵∠ACF=∠A+∠ABC,且∠ACF﹣∠AEF=18°,∴∠A+∠ABC﹣(∠A+∠ABC)=18°∴∠A=36°∴∠EFB=∠A=18°(2)不变如图,∵AB∥MN∴∠PGA=∠PCM,∠AHY=∠CNO∵CP平分∠BCM,HP平分∠AHY∴∠PCM=∠BCM=∠PGA,∠PHG=∠AHY=∠CNO∵∠BCM=∠CNO+∠CON∴∠BCM=∠CNO+45°∴∠PGA=∠PHG+45°∵∠PGA=∠GPH+∠PHG∴∠GPH=45°【知识点】翻折变换(折叠问题)、三角形内角和定理。
三角形的边与角一、选择题1. (2016·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①BC DE =21; ②S S COBDOE △△=21; ③AB AD =OB OE; ④S S ADE ODE △△=31.其中正确的个数有( )A. 1个B. 2个C.3个D. 4个(第1题)【考点】三角形中位线定理,相似三角形的判定和性质.【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线,∴DE=21BC ,即BC DE=21; 故①正确;②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB∴S S COBDOE△△=(BC DE )2=(21)2=41,故②错误;③∵DE ∥BC∴△ADE ∽△ABC ∴AB AD =BC DE△DOE ∽△COB ∴OB OE =BC DE∴AB AD =OB OE,故③正确;④∵△ABC 的中线BE 与CD 交于点O 。
∴点O 是△ABC 的重心,根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知,S △ODE =41S △COB ,S △ADE =41S △BOC ,∴S S ADE ODE △△=31.故④正确.综上,①③④正确. 故选C.【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形. 正确的只有③, 故选A .3. (2016·四川乐山·3分)如图2,CE 是ABC ∆的外角ACD ∠的平分线,若35B ∠=,60ACE ∠=,则A ∠=()A 35 ()B 95()C 85()D 75答案:C解析:考查三角形的外角和定理,角平分线的性质。
依题意,得:∠ACD =120°,又∠ACD =∠B +∠A ,所以,∠A =120°-35°=85 4.(2016山东省聊城市,3分)如图,AB ∥CD ,∠B=68°,∠E=20°,则∠D 的度数为( )A .28°B .38°C .48°D .88° 【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论. 【解答】解:如图,∵AB ∥CD , ∴∠1=∠B=68°, ∵∠E=20°,∴∠D=∠1﹣∠E=48°, 故选C .【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.5.(2016江苏淮安,8,3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.6.(2016·广东梅州)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于A.55°B.45°C.35°D.25°答案:C考点:三角形内角和定理,两直线平行的性质定理。
解析:∠A=90°-55°=35°,因为CD∥AB,所以,∠1=∠A=35°。
7.(2016·广西贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.二、填空题1.(2016·黑龙江大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=110°.【考点】三角形内角和定理.【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴有∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180﹣40=140,∴∠OBC+∠OCB=70,∴∠BOC=180﹣70=110°,故答案为:110°.【点评】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题,熟记三角形内角和定理是解决问题的关键.2. (2016·湖北鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A. 50°B. 40°C. 45°D. 25°【考点】平行线的性质,垂直的性质,三角形的内角和定理.【分析】根据平行线的性质:两直线平行同位角相等,得出∠2=∠D;再根据垂线的性质和三角形的内角和定理,得出∠D=40°,从而得出∠2的度数.【解答】解:如图,∵AB∥CD,∴∠2=∠D;又∵EF⊥BD∴∠DEF=90°;∴在△DEF中,∠D=180°―∠DEF―∠1=180°―90°―50°=40°∴∠2=∠D=40°.故选B.【点评】本题解题的关键是弄清性质和定理。
平行线的性质之一:两直线平行同位角相等;垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;三角形的内角和定理:三角形三个内角的和等于180°.3. (2016·云南)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】(1)只要证明AE∥BD,得=,列出方程即可解决问题.(2)分别求出六边形的对角线并且比较大小,即可解决问题.【解答】解:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.4. (2016·四川广安·3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为21.【考点】三角形的面积.【分析】根据正方形的性质来判定△ABE∽△ADG,再根据相似三角形的对应线段成比例求得BE的值;同理,求得△ACF∽△ADG,AC:AD=CF:DG,即CF=5;然后再来求梯形的面积即可.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.5. (2016·四川凉山州·4分)如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC 和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.6.(2016江苏淮安,16,3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:10【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可.7.(2016·四川巴中)如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是1<a <7.【考点】平行四边形的性质;三角形三边关系.【分析】由平行四边形的性质得出OA=4,OD=3,再由三角形的三边关系即可得出结果.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.三.解答题1. (2016·四川凉山州·8分)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【考点】三角形的内切圆与内心.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.3、(2016广东,19,6分)如图,已知△ABC中,D为AB的中点. (1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)条件下,若DE=4,求BC的长.考点:尺规作图,三角形的中位线定理。