数字图像处理实验
- 格式:doc
- 大小:7.73 MB
- 文档页数:30
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
哈工大数字图像处理实验报告(共10篇) 数字图像处理实验报告实验报告书实验类别数字图像处理学院信息工程学院专业通信工程班级通信1005班姓名叶伟超指导教师聂明新2013 年 6 月 3 日篇二:数字图像处理实验报告(全部)数字图像处理实验指导书125 200912512 班级:学号:姓名:田坤专业:电子信息科学与技术实验一数字图像的运算一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I)%输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。
(a)原始图像(b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I)%输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
数字图像处理实验实验报告要求:实验报告应包含实验名称、实验内容、思想及原理、算法设计、代码设计及实现、实验结果及分析、结论等内容。
实验结果必须包括原图像、结果图像和必要的数据图像。
实验1 直方图均衡化编码实现直方图均衡化算法(不能使用第三方直方图均衡化函数)。
代码如下:a=imread('e:\b.jpg');%读取图像b=rgb2gray(a); %转化为灰度图像imshow(b); %显示原图c=histeq(b); %直方图均衡化subplot(121),imshow(a);subplot(122),imshow(c); %显示处理后的图像图像如下:实验2 频率域滤波图像中含有周期性干扰,设计使用频率域分析方法检测和去除图像周期性干扰的算法(可以使用第三方傅里叶变换和反变换函数)。
代码如下:%频率域滤波clc;close all;f=imread('salt.bmp');f=im2double(f);F=fft2(double(f));%傅里叶变换F=fftshift(F);%将变换的原点移到频率矩形的中心[M,N]=size(f);%理想低通滤波D0=input('输入截止频率');h1=zeros(M,N);for i=1:Mfor j=i:Nif(sqrt(((i-M/2)^2+(j-N/2)^2))<D0)h1(i,j)=1;endendendG1=F.*hl;61=ifftshift(G1);g1=real(ifft2(G1));subplot(2,3,1);imshow(f);title('原图');subplot(2,3,2);imshow(g1);title('理想低通滤波’);%巴特沃斯低通滤波n=input('巴特沃斯滤波器的阶数 n=');n1=fix(M/2);n2=fix(N/2);h2=zeros(M,N);for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h2=1./(1+(d./D0).^(2*n));endendG2=F.*h2;G2=ifftshift(G2);g2=real(ifft(G2));subplot(2,3,1);imshow(f);title('原图'); subplot(2,3,4);imshow(g3);title('低通滤波'); 图像如下:原图巴特沃斯低通理想低通实验3彩色图像去噪对RGB彩色空间和HIS彩色空间去噪效果进行比较分析。
《数字图像处理》实验教案一、实验目的1. 使学生了解和掌握数字图像处理的基本概念和基本算法。
2. 培养学生运用数字图像处理技术解决实际问题的能力。
3. 提高学生使用相关软件工具进行数字图像处理操作的技能。
二、实验内容1. 图像读取与显示:学习如何使用相关软件工具读取和显示数字图像。
2. 图像基本操作:学习图像的旋转、缩放、翻转等基本操作。
3. 图像滤波:学习使用不同类型的滤波器进行图像去噪和增强。
4. 图像分割:学习利用阈值分割、区域增长等方法对图像进行分割。
5. 图像特征提取:学习提取图像的边缘、角点等特征信息。
三、实验环境1. 操作系统:Windows或Linux。
2. 编程语言:Python或MATLAB。
3. 图像处理软件:OpenCV、ImageJ或MATLAB。
四、实验步骤1. 打开相关软件工具,导入图像。
2. 学习并实践图像的基本操作,如旋转、缩放、翻转等。
3. 学习并实践图像滤波算法,如均值滤波、中值滤波等。
4. 学习并实践图像分割算法,如全局阈值分割、局部阈值分割等。
5. 学习并实践图像特征提取算法,如Canny边缘检测算法等。
五、实验要求1. 每位学生需独立完成实验,并在实验报告中详细描述实验过程和结果。
2. 实验报告需包括实验目的、实验内容、实验步骤、实验结果和实验总结。
3. 实验结果要求清晰显示每个步骤的操作和效果。
4. 实验总结部分需对本次实验的学习内容进行归纳和总结,并提出改进意见。
六、实验注意事项1. 实验前请确保掌握相关软件工具的基本使用方法。
3. 在进行图像操作时,请尽量使用向量或数组进行处理,避免使用低效的循环结构。
4. 实验过程中如需保存中间结果,请使用合适的文件格式,如PNG、JPG等。
5. 请合理安排实验时间,确保实验报告的质量和按时提交。
七、实验评价1. 实验报告的评价:评价学生的实验报告内容是否完整、实验结果是否清晰、实验总结是否到位。
2. 实验操作的评价:评价学生在实验过程中对图像处理算法的理解和运用能力。
数字图像处理实验报告(完整版)数字图像处理实验⼀ MATLAB数字图像处理初步⼀、显⽰图像1.利⽤imread( )函数读取⼀幅图像,假设其名为lily.tif,存⼊⼀个数组中;2.利⽤whos 命令提取该读⼊图像flower.tif的基本信息;3.利⽤imshow()函数来显⽰这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)⼆、压缩图像4.利⽤imfinfo函数来获取图像⽂件的压缩,颜⾊等等其他的详细信息;5.利⽤imwrite()函数来压缩这幅图象,将其保存为⼀幅压缩了像素的jpg⽂件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利⽤imwrite()函数将最初读⼊的tif图象另存为⼀幅bmp图像,设为flily.bmp。
7.⽤imread()读⼊图像Sunset.jpg和Winter.jpg;8.⽤imfinfo()获取图像Sunset.jpg和Winter.jpg的⼤⼩;9.⽤figure,imshow()分别将Sunset.jpg和Winter.jpg显⽰出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上⾯两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、⼆值化图像10.⽤im2bw将⼀幅灰度图像转化为⼆值图像,并且⽤imshow显⽰出来观察图像的特征。
数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。
通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。
实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。
(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。
这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。
(3) 图像的变换,以便于图像的频域处理。
实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。
该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。
要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。
2、灰度拉伸灰度拉伸和灰度线性变换相似。
不同之处在于它是分段线性变换。
表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。
要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。
3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。
要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。
4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。
实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。
数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。
a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。
s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。
一、实验目的与要求1. 目的通过本实验,使学生了解数字图像处理的基本概念、方法和算法,掌握MATLAB 软件在图像处理方面的应用,提高学生分析问题和解决问题的能力。
2. 要求(1)熟悉MATLAB软件的基本操作。
(2)了解数字图像处理的基本概念和常用算法。
(3)能够运用MATLAB实现图像处理的基本操作和算法。
二、实验内容与步骤1. 实验内容(1)图像读取与显示。
(2)图像的基本运算(如加、减、乘、除等)。
(3)图像的滤波处理。
(4)图像的边缘检测。
(5)图像的分割与标记。
2. 实验步骤(1)打开MATLAB软件,新建一个脚本文件。
(2)导入所需图像,使用imread()函数读取图像,使用imshow()函数显示图像。
(3)进行图像的基本运算,如加、减、乘、除等,使用imadd()、imsub()、imdiv()、imconcat()等函数。
(4)对图像进行滤波处理,如使用均值滤波、中值滤波等,使用imfilter()函数。
(5)进行图像的边缘检测,如使用Sobel算子、Canny算子等,使用edge()函数。
(6)对图像进行分割与标记,如使用区域生长、阈值分割等方法,使用watershed()函数。
(7)对实验结果进行分析和讨论,总结实验心得。
三、实验注意事项1. 严格遵循实验步骤,确保实验的正确进行。
2. 合理选择参数,如滤波器的尺寸、阈值等。
3. 注意图像数据类型的转换,如浮点型、整型等。
4. 保持实验环境的整洁,避免误操作。
四、实验评价1. 评价内容(1)实验步骤的完整性。
(2)实验结果的正确性。
2. 评价标准(1)实验步骤完整,得分20分。
(2)实验结果正确,得分30分。
总分100分。
五、实验拓展1. 研究不同滤波器对图像滤波效果的影响。
2. 尝试使用其他图像分割算法,如基于梯度的分割方法、聚类分割方法等。
3. 探索图像处理在其他领域的应用,如计算机视觉、医学影像处理等。
六、实验一:图像读取与显示1. 实验目的掌握MATLAB中图像的读取和显示方法,熟悉图像处理的基本界面。
数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。
图像处理是信号处理在图像域上的一个应用。
目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。
此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。
然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。
《数字图像处理》实验教案一、实验目的与要求1. 实验目的(1)理解数字图像处理的基本概念和原理;(2)掌握常用的数字图像处理方法和技术;(3)提高实际操作能力和解决问题的能力。
2. 实验要求(1)熟悉实验环境和相关软件;(2)认真阅读实验教材和参考资料;二、实验内容与步骤1. 实验内容(1)图像读取与显示;(2)图像基本运算;(3)图像滤波;(4)图像增强;(5)图像边缘检测。
2. 实验步骤(1)打开实验软件,导入图像;(2)进行图像基本运算,如加、减、乘、除等;(3)应用图像滤波算法,如低通滤波、高通滤波等;(4)采用图像增强技术,如直方图均衡化、对比度增强等;(5)利用图像边缘检测算法,如Sobel算子、Canny算子等。
三、实验注意事项1. 实验环境要求:确保实验环境稳定,网络畅通,软件安装正确;2. 实验数据要求:使用规定的图像数据进行实验,确保数据质量;3. 实验操作要求:严格按照实验步骤进行操作,注意调整参数;四、实验评价与评分标准1. 实验结果评价:根据实验要求,评估实验结果的正确性和效果;2. 实验报告评价:评估实验报告的完整性、逻辑性和表达能力;3. 实验操作评价:评估实验操作的规范性和熟练程度。
五、实验拓展与建议1. 实验拓展:尝试研究其他数字图像处理技术和算法;2. 学习建议:深入学习数字图像处理的基本理论和应用领域;3. 实践建议:多进行实际操作,参加相关竞赛或项目,提高综合能力。
六、实验一:图像读取与显示1. 实验目的(1)掌握图像读取和显示的基本方法;(2)熟悉实验软件的操作界面。
2. 实验内容(1)打开实验软件,导入图像;(2)显示原图像;(3)进行图像的放大、缩小、旋转等操作;(4)保存实验结果。
3. 实验步骤(1)打开实验软件,选择图像文件;(2)导入图像,观察原图像;(3)利用软件工具对图像进行放大、缩小、旋转等操作;(4)保存实验结果,关闭软件。
七、实验二:图像基本运算1. 实验目的(1)掌握图像加、减、乘、除等基本运算方法;(2)了解图像运算的原理和应用。
数字图像处理实验报告数字图像处理实验报告1一.实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1. 编程实现图像平移,要求平移后的图像大小不变;2. 编程实现图像的镜像;3. 编程实现图像的转置;4. 编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5. 编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架3.1实验所用编程环境Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Wet应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2实验处理的对象:256色的BMP(BIT MAP格式图像BMP(BIT MAP位图的文件结构:具体组成图:BITMAPFILEHEADER位图文件头(只用于BMP文件)bfType="BM" bfSize bfReserved1bfReserved2bfOffBitsbiSize biWidthbiHeight biPla nesbiBitCou ntbiCompressi onbiSizeimagebiXPelsPerMeterbiY PelsPerMeterbiClrUsedbiCirimporta nt单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEAD位图信息头Palette 调色板DIBPixels DIB 图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位,水平和垂直分辨率以每米像素数为单位),目标设备的级别,每个像素所需的位数,位图压缩类型(必须是0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图,用函数创建兼容DC用函数选择显示删除位图但以上方法的缺点是:1)显示速度慢;2)内存占用大;3)位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决);4)在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示:用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数,一般放在在析构函数中以上方法的优点是:1)显示速度快;2)内存占用少;3)缩放显示时图形失真小,4)在低颜色位数的设备上显示高颜色位数的图形图形时失真小;5)通过直接处理位图数据,可以制作简单动画3.4程序中用到的访问函数Win dows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice 函数:该函数可以直接在显示器或打印机上显示DIB.在显示时不进行缩放处理.2. StretchDIBits 函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits 函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection 函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw 函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW弋码连接到进程中.3.5图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割实验五形态学运算3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
实验一常用MATLAB图像处理命令一、实验目得1、熟悉并掌握MATLAB工具得使用;2、实现图像得读取、显示、代数运算与简单变换。
二、实验环境MATLAB 6。
5以上版本、WIN XP或WIN2000计算机三、常用函数●读写图像文件1 imreadimread函数用于读入各种图像文件,如:a=imread('e:\w01。
tif')2 imwriteimwrite函数用于写入图像文件,如:imwrite(a,’e:\w02。
tif’,’tif')3imfinfoimfinfo函数用于读取图像文件得有关信息,如:imfinfo('e:\w01、tif’)●图像得显示1imageimage函数就是MATLAB提供得最原始得图像显示函数,如:a=[1,2,3,4;4,5,6,7;8,9,10,11,12];image(a);2 imshowimshow函数用于图像文件得显示,如:i=imread('e:\w01、tif');imshow(i);title(‘原图像’)%加上图像标题3 colorbarcolorbar函数用显示图像得颜色条,如:i=imread(’e:\w01。
tif');imshow(i);colorbar;4 figurefigure函数用于设定图像显示窗口,如:figure(1); /figure(2);5 subplot把图形窗口分成多个矩形部分,每个部分可以分别用来进行显示、Subplot(m,n,p)分成m*n个小窗口,在第p个窗口中创建坐标轴为当前坐标轴,用于显示图形、6 plot绘制二维图形plot(y)Plot(x,y)xy可以就是向量、矩阵。
图像类型转换1rgb2gray把真彩图像转换为灰度图像i=rgb2gray(j)2 im2bw通过阈值化方法把图像转换为二值图像I=im2bw(j,level)Level表示灰度阈值,取值范围0~1(即0.n),表示阈值取自原图像灰度范围得n%3 imresize改变图像得大小I=imresize(j,[m n])将图像j大小调整为m行n列图像运算1imadd两幅图像相加,要求同样大小,同种数据类型Z=imadd(x,y)表示图像x+y2 imsubstract两幅图像相减,要求同样大小,同种数据类型Z=imsubtract(x,y) 表示图像x-y3 immultiplyZ=immultiply(x,y) 表示图像x*y4 imdivideZ=imdivide(x,y) 表示图像x/y四、实验内容(请将实验程序填写在下方合适得位置,实验图像结果拷屏粘贴)1、读入一幅RGB图像,变换为灰度图像与二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像与灰度图像,注上文字标题。
数字图像处理实验报告数字图像处理实验报告实验⼀数字图像基本操作及灰度调整⼀、实验⽬的1)掌握读、写图像的基本⽅法。
2)掌握MATLAB语⾔中图像数据与信息的读取⽅法。
3)理解图像灰度变换处理在图像增强的作⽤。
4)掌握绘制灰度直⽅图的⽅法,理解灰度直⽅图的灰度变换及均衡化的⽅法。
⼆、实验内容与要求1.熟悉MATLAB语⾔中对图像数据读取,显⽰等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。
1)将MATLAB⽬录下work⽂件夹中的forest.tif图像⽂件读出.⽤到imread,imfinfo等⽂件,观察⼀下图像数据,了解⼀下数字图像在MATLAB中的处理就是处理⼀个矩阵。
将这个图像显⽰出来(⽤imshow)。
尝试修改map颜⾊矩阵的值,再将图像显⽰出来,观察图像颜⾊的变化。
2)将MATLAB⽬录下work⽂件夹中的b747.jpg图像⽂件读出,⽤rgb2gray()将其转化为灰度图像,记为变量B。
2.图像灰度变换处理在图像增强的作⽤读⼊不同情况的图像,请⾃⼰编程和调⽤Matlab函数⽤常⽤灰度变换函数对输⼊图像进⾏灰度变换,⽐较相应的处理效果。
3.绘制图像灰度直⽅图的⽅法,对图像进⾏均衡化处理请⾃⼰编程和调⽤Matlab函数完成如下实验。
1)显⽰B的图像及灰度直⽅图,可以发现其灰度值集中在⼀段区域,⽤imadjust函数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰度直⽅图与原灰度直⽅图的区别。
2) 对B 进⾏直⽅图均衡化处理,试⽐较与源图的异同。
3) 对B 进⾏如图所⽰的分段线形变换处理,试⽐较与直⽅图均衡化处理的异同。
图1.1 分段线性变换函数三、实验原理与算法分析1. 灰度变换灰度变换是图像增强的⼀种重要⼿段,它常⽤于改变图象的灰度范围及分布,是图象数字化及图象显⽰的重要⼯具。
《数字图像处理》实验教案一、实验目的1. 理解数字图像处理的基本概念和原理;2. 掌握常用的数字图像处理方法和技术;3. 培养实际操作数字图像处理工具的能力;4. 提高对数字图像处理问题的分析和解决能力。
二、实验内容1. 图像读取与显示:使用图像处理软件,读取、显示和保存不同格式的图像文件;2. 图像基本运算:进行图像的加、减、乘、除等基本运算;3. 图像滤波:使用低通滤波器、高通滤波器、带通滤波器等对图像进行滤波处理;4. 图像增强:采用直方图均衡化、对比度增强等方法改善图像质量;5. 边缘检测:使用Sobel算子、Canny算子等方法检测图像边缘。
三、实验原理1. 图像读取与显示:介绍图像处理软件的基本操作,掌握图像文件格式的转换;2. 图像基本运算:介绍图像像素的运算规则,理解图像基本运算的原理;3. 图像滤波:介绍滤波器的原理和应用,掌握滤波器的设计和实现方法;4. 图像增强:介绍图像增强的目的和方法,理解直方图均衡化和对比度增强的原理;5. 边缘检测:介绍边缘检测的原理和算法,掌握不同边缘检测方法的特点和应用。
四、实验步骤1. 图像读取与显示:打开图像处理软件,选择合适的图像文件,进行读取、显示和保存操作;2. 图像基本运算:打开一幅图像,进行加、减、乘、除等基本运算,观察结果;3. 图像滤波:打开一幅图像,选择合适的滤波器,进行滤波处理,观察效果;4. 图像增强:打开一幅图像,选择合适的增强方法,进行增强处理,观察质量改善;5. 边缘检测:打开一幅图像,选择合适的边缘检测方法,进行边缘检测,观察边缘效果。
五、实验要求1. 熟练掌握图像处理软件的基本操作;2. 能够正确进行图像的基本运算;3. 能够合理选择和应用不同类型的滤波器;5. 能够根据图像特点选择合适的边缘检测方法。
六、实验环境1. 操作系统:Windows 10或更高版本;2. 图像处理软件:MATLAB或OpenCV;3. 编程环境:MATLAB或C++;4. 硬件要求:普通计算机或服务器。
学院计算机与通信工程学院专业生物医学工程专业班级51111学号5111133姓名杨静指导教师贾朔2014年04月21日实验一图像的基本运算一、实验目的:1、掌握图像处理中的点运算、代数运算、逻辑运算和几何运算及应用。
2、掌握各种运算对于图像处理中的效果。
二、实验内容:1、(1)选择一幅图像lena8.jpg,设置输入/输出变换的灰度级范围,a=0.2,b=0.6,c=0.1,d=0.9.(2)设置非线性扩展函数的参数c=2.(3)采用灰度级倒置变换函数s=255-r进行图像变换(4)设置二值化图像的阈值,分别为level=0.4,level=0.7解:参考程序如下:I=imread('C:\lena8.jpg');figure;subplot(2,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); %设置灰度变换的范围subplot(2,3,2);imshow(J);title('线性扩展');I1=double(I); %将图像转换为double类型I2=I1/255; %归一化此图像C=2;K=C*log(1+I2); %求图像的对数变换subplot(2,3,3);imshow(K);title('非线性扩展');M=im2bw(I,0.5);M=~M;%M=255-I; %将此图像取反%Figuresubplot(2,3,4);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); %将此图像二值化,阈值为0.4N2=im2bw(I,0.7); %将此图像二值化,阈值为0.7subplot(2,3,5);imshow(N1);title('二值化阈值0.4');subplot(2,3,6);imshow(N2);title('二值化阈值0.7');2、选取两幅大小一样的灰度图像hough.bmp和rice.bmp,将两幅图像进行加法运算。
解:程序如下:I=imread('C:\hough.bmp');%I=rgb2gray(I);J=imread('C:\rice.bmp');I=im2double(I); %将图像转换成double型J=im2double(J);K=I+0.3*J; %两幅图像相加subplot(1,3,1);imshow(I);title('物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'C:\lena1.jpg');3、选取一幅混合图像,如相加得到的图像lenal.jpg,将混合图像与背景图像做减法运算。
解:程序如下:A=imread('C:\lena1.jpg');B=imread('C:\rice.bmp');A=im2double(A); %将图像转换成double型B=im2double(B);C=A-0.3*B;subplot(1,3,1);imshow(A);title('混合图');subplot(1,3,2);imshow(B);title('背景图');subplot(1,3,3);imshow(C);title('分离后的图');4、选取一幅尺寸为256*256像素的灰度图,如rice.bmp。
设置掩模模板,对于需要保留下来的区域,掩模图像的值置为1,而需要被抑制掉的区域,掩模图像的值置为0.解:程序如下:A=imread('C:\rice.bmp');A=rgb2gray(A);A=im2double(A);subplot(1,2,1);imshow(A);title('原图');B=zeros(256,256);B(40:200,40:200)=1;K=A.*B;subplot(1,2,2);imshow(K);title('局部图');5、选取一幅大小为256*256像素的图像,如lena8.jpg.分别将图比例放大1.5倍,比例缩小0.7倍,非比例放大到420*384像素,费比例缩小到15*180像素。
解:程序如下:A=imread('C:\lena8.jpg');Bl=imresize(A,1.5); %比例放大1.5倍,默认采用的是最近邻法进行线性插值B2=imresize (A, [420 384]); %非比例放大至420:384 Cl=imresize (A, 0 . 7) ; %比例缩小0.7 倍C1=imresize(A, 0.7) ;C2=imresize(A, [150 180]) ; %非比例缩小到150:180 figure;imshow(Bl);title('比例放大图');figure;imshow(B2);title('非比例放大图');figure;imshow(C1);title('比例缩小图');figure;imshow(C2);title('非比例缩小图');实验二图像的变换一、实验目的:1、掌握图像变换的目的就是简化图像的分析与处理。
2、图像变换在图像增强、图像恢复、图像压缩和图像特征提取等方面有着十分重要的作用。
二、实验内容:1、选取一幅图像,进行离散傅立叶变换,在对其分别进行X轴与Y轴上的平移,得其傅立叶变换,观察结果图。
解:实验程序如下:I=imread('C:\1.bmp');%I=imread('C:\lena8.jpg');%imshow(I);imshow(real(I));figure(1)I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real(sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2);imshow(real(a));I=imread('C:\2.bmp');figure(3);imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift (fftI) ; %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real(sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(4);imshow(real (a));I=imread('C:\3.bmp');figure (5);imshow(real (I));I=I(:,:,3);fftI=fft2 (I);sfftI = fftshift (fftI) ; %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real (sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(6);imshow(real(a));2、选取一幅图像,进行离散傅立叶变换,在对其进行一定角度的旋转,进行离散傅立叶变换。
解:程序如下:%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前一值是纵向比,后一值是横向比imshow(I);%求原始图像的傅里叶变换J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[5 50]);%对原始图像进行旋转figureimshow(J)%求旋转后图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figureImshow(J2,[5 50])3、选取一幅图像,进行离散傅立叶变换,并对其进行离散余弦反变换,观察其结果。
解:程序如下:%对lena24.ipg文件计算二维DCT变换RGB = imread('C:\lena24.jpg');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩色图像转换成灰度图像J = dct2(I);%计算二维DCT变换figure (2)imshow(log(abs(J)),[])%图像大部分能量集中在上左角处figure (3);J(abs(J) < 10) = 0;%把变换矩阵中小于10的值置换为0,然后用idct2重构图像K = idct2(J)/255;imshow(K)4、选取一幅图像,进行离散余弦变换,并对其进行压缩解压,观察其结果。
解:程序如下:RGB = imread('C:\lena24.jpg');I=rgb2gray(RGB);I = im2double(I); %转换图像矩阵为双精度型T = dctmtx(8); %产生二维00?变换矩阵,%矩阵T及其转置T‘是DCT函数P1*X*P2的参数B = blkproc(I, [8 8],'P1*x*P2',T,T');maskl= [ 1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];%二值掩模,用来压缩DCT系数B2=blkproc(B,[8 8],'P1.*x',maskl);%只保留DCT变换的10个系数I2=blkproc(B2,[8 8],'P1*x*P2',T',T);%重构图像figure,imshow(I);figure,imshow(B2);figure,imshow(I2);实验三图像的增强一、实验目的:1、掌握根据图像的特点采用一定的方法增强图像的视觉感知效果;2、熟练图像增强的技术。