机械能守恒定律习题课
- 格式:ppt
- 大小:647.00 KB
- 文档页数:22
7.8 习题课:机械能守恒定律的应用一夯实基础1.如图所示,一轻绳的一端系在固定粗糙斜面上的O点,另一端系一小球.给小球一足够大的初速度,使小球在斜面上做圆周运动.在此过程中()A.小球的机械能守恒B.重力对小球不做功C.轻绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少量2.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度,如图2所示,从子弹开始入射到共同上摆到最大高度的过程中,下面说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对3.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A 能够下降的最大高度为h,若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B 下降h时的速度大小为(重力加速度为g,不计空气阻力)()A.2ghB.ghC. gh2 D.04.如图所示的滑轮光滑轻质,阻力不计,M1=2 kg,M2=1 kg,M1离地高度为H=0.5 m,g=10 m/s2.M1与M2从静止开始释放,M1由静止下落0.3 m时的速度为()A. 2 m/sB.3 m/sC.2 m/sD.1 m/s5.如图所示,小物体A和B通过轻质弹簧和轻绳跨过光滑定滑轮连接,初状态在外力控制下系统保持静止,轻弹簧处于原长,且轻弹簧上端离滑轮足够远,A离地面足够高,物体A和B同时从静止释放,释放后短时间内B能保持静止,A下落h高度时,B开始沿斜面上滑,则下列说法中正确的是()A.B滑动之前,A机械能守恒B.B滑动之前,A机械能减小C.B滑动之前,A、B组成的系统机械能守恒D.B滑动之后,A、B组成的系统机械能守恒6.竖直放置的轻弹簧下连接一个小球,用手托起小球,使弹簧处于压缩状态,如图6所示.则迅速放手后(不计空气阻力)()A.放手瞬间小球的加速度等于重力加速度B.小球、弹簧与地球组成的系统机械能守恒C.小球的机械能守恒D.小球向下运动过程中,小球动能与弹簧弹性势能之和不断增大7.内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为2R的轻杆,一端固定有质量为m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点,如图所示,由静止释放后()A.下滑过程中甲球减少的机械能总是等于乙球增加的机械能B.下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能C.甲球可沿凹槽下滑到槽的最低点D.杆从右向左滑回时,乙球一定能回到凹槽的最低点8.如图所示,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动。
机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。
这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。
习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。
求小球的初始速度。
解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。
自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。
在自由落体过程中,小球的动能为mgh,势能为0。
在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。
根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。
习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。
求物体的初始动能和弹簧的势能。
解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。
在撞击后,物体的动能为0,弹簧的势能为kx^2/2。
根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。
习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。
求M与m的比值。
解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。
在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。
第七章 习题课1.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),a 站在地面上,b 从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态,当演员b 摆至最低点时,a 刚好对地面无压力,则演员a 的质量与演员b 的质量之比为( )A .1∶1B .2∶1C .3∶1D .4∶1解析:设b 下摆至悬点正下方时的速度为v b ,由动能定理得:m b gl (1-cos 60°)=12m b v 2b ,设绳的拉力为F ,由牛顿第二定律得:F -m b g =m b v 2b l,此时a 刚好对地面无压力,则有F =m a g ,以上三式联立可得m a ∶m b =2∶1,故B 正确.答案:B2.如图所示,在两个质量分别为m 和2m 的小球a 和b 之间,用一根轻质细杆连接,两小球可绕过轻杆中心的水平轴无摩擦转动,现让轻杆处于水平放置,静止释放小球后,重球b 向下转动,轻球a 向上转动,在转过90°的过程中,以下说法正确的是( )A .b 球的重力势能减少,动能增加B .a 球的重力势能增大,动能减少C .a 球和b 球的机械能总和保持不变D .a 球和b 球的机械能总和不断减小解析:在b 球向下、a 球向上摆动过程中,两球均在加速转动,使两球动能增加,同时b 球重力势能减小,a 球重力势能增大,a 、b 两球的总机械能守恒.答案:AC3.如图所示,竖直平面内的3/4圆弧形光滑管道半径略大于小球半径,管道中心线到圆心的距离为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正下方,小球自A 点正上方由静止释放,自由下落至A 点时进入管道,从上端口飞出后落在C 点,当小球到达B 点时,管壁对小球的弹力大小是小球重力大小的9倍.求:(1)释放点距A 点的竖直高度;(2)落点C 与A 点的水平距离.解析:(1)设小球到达B 点的速度为v 1,因为到达B 点时管壁对小球的弹力大小是小球重力大小的9倍,所以有9mg -mg =m v 21R设B 点为重力势能零点,又由动能定理得mg (h +R )=12m v 21解得h =3R . (2)设小球到达最高点的速度为v 2,落点C 与A 点的水平距离为x由机械能守恒定律得12m v 21=12m v 22+mg 2R (或由动能定理得-mg 2R =12m v 22-12m v 21) 由平抛运动的规律得R =12gt 2 R +x =v 2t 解得x =(22-1)R .答案:(1)3R (2)(22-1)R4.如图所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过桌边的定滑轮与质量为M 的砝码相连.已知M =2m ,让绳拉直后使砝码从静止开始下降h (小于桌高)的距离,木块仍没离开桌面,则砝码的速度为多少?解析:M 、m 及绳组成的系统在相互作用的过程中,除M 的重力做功外,绳的拉力对M 做负功,对m 做正功,且二功之和为零,故系统的机械能守恒.选桌面所在平面为零势面,在砝码下降h 的过程中,系统增加的动能为ΔE k 增=12(M +m )v 2 系统减少的重力势能为ΔE p 减=Mgh由ΔE k 增=ΔE p 减得12(M +m )v 2=Mgh 解得v =2Mgh M +m =233gh . 答案:233gh5.如图所示,跨过同一高度处的光滑滑轮的细线连接着质量相同的物体A 和B .A 套在光滑水平杆上,细线与水平杆的夹角θ=53°.定滑轮离水平杆的高度为h =0.2 m .当B 由静止释放后,A 所能获得的最大速度为多少?(cos 53°=0.6,sin 53°=0.8)解析:物体A 在绳的拉力作用下向右做加速运动,B 向下加速运动,v B =v A cos θ,当A 运动到滑轮的正下方时,速度达最大值,此时A 沿绳方向速度为零,故B 的速度为零,对A 、B 组成的系统,由机械能守恒定律有:mg ⎝⎛⎭⎫h sin θ-h =12m v 2A ,v A =1 m/s.答案:1 m/s6.如图所示是一个横截面为半圆、半径为R 的光滑柱面,一根不可伸长的细线两端分别系物体A 、B ,且m A =2m B ,由图示位置由静止开始释放物体A ,在物体B 达到半圆顶点的过程中,求绳的张力对物体B 所做的功.解析:本题要求绳的张力对物体B 所做的功,关键是求出物体B 到达圆柱顶点时的动能.由于柱面是光滑的,故系统的机械能守恒,系统势能的减少量为ΔE p 减=m A g πR 2-m B gR 系统动能的增加量为ΔE k 增=12(m A +m B )v 2 由ΔE p 减=ΔE k 增得v 2=23(π-1)gR 对B 应用动能定理W -m B gR =12m v 2,所以 绳的张力对B 球做的功W =12m B v 2+m B gR =(π+2)3m B gR . 答案:(π+2)3m B gR。
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
高一物理下册《机械能守恒定律》课后习题及答案高一物理下册《机械能守恒定律》课后习题及答案要对知识真正的精通就必须对知识进行活学活用,下面是物理网为大家带来的机械能守恒定律课后习题答案,希望大家通过这个能真正的对知识灵活运用。
一、选择题(本题包括12个小题,每小题4分,共48分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,选错或不选的不得分)1.物体做自由落体运动,Ek代表动能,Ep代表势能,h代表下落的距离,以水平地面为零势能面。
下列所示图像中,能正确反映各物理量之间关系的是(? )2.下面摩擦力做功的叙述,正确的是( )A.静摩擦力对物体一定不做功B.动摩擦力对物体一定做负功C.一对静摩擦力中,一个静摩擦力做正功,另一静摩擦力一定做负功D.一对动摩擦力中,一个动摩擦力做负功,另一动摩擦力一定做正功3.如图所示,长为L的小车置于光滑的水平面上,小车前端放一小物块,用大小为F的水平力将小车向右拉动一段距离s ,物块刚好滑到小车的左端。
物块与小车间的摩擦力为 f ,在此过程中(? )A.摩擦力对小物块做的功为f sB.摩擦力对系统做的总功为0C.力F对小车做的功为f LD.小车克服摩擦力所做的功为f s?4.下列说法中,正确的是(?? )A.机械能守恒时,物体一定不受阻力B.机械能守恒时,物体一定只受重力和弹力作用C.物体处于平衡状态时,机械能必守恒D.物体所受的外力不等于零,其机械能也可以守恒5.如图所示,DO是水平的,AB是斜面,初速度为的物体从D点出发沿DBA滑动到顶点A时速度刚好为零,如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点且速度刚好为零。
则物体具有的初速度(已知物体与路面之间的动摩擦因数处处相同且不为零) ( )A.大于B.等于C.小于D.取决于斜面的倾角6.如图所示,水平地面附近,小球B以初速度v斜向上瞄准另一小球A射出,恰巧在B球射出的同时,A球由静止开始下落,不计空气阻力。
《机械能守恒定律》习题集基础训练1.下列实例中的物体,哪些机械能发生了变化( ) A .跳伞运动员在空中匀速下降B .滑雪运动员自高坡顶上自由下滑(不计空气阻力和摩擦)C .汽车在水平路面上匀速行驶D .集装箱被吊车匀速地吊起2.下列物体中,机械能守恒的是( ) A .做平抛运动的物体 B .匀速下落的降落伞C .光滑曲面上自由运动的物体D .被吊车匀速吊起的集装箱3.从离地面h 高度以初速度v 0竖直上抛一个质量为m 的小球,如图所示,取地面为零势能面,忽略空气阻力,则物体着地时具有的机械能是( )A .mghB .mgh +C .D .-mgh4.一个人站在距地面高为h 的阳台上,以相同的速率v 0分别把三个球竖直向下,竖直向上,水平抛出,不计空气阻力,则三球落地时的速率( )A .上抛球最大B .下抛球最大C .平抛球最大D .三球一样大5.两物体质量之比为1︰3,它们距离地面高度之比也为1︰3,让它们自由下落,它们落地时的动能之比为( )A .1︰3B .1︰9C .3︰1D .9︰1 6.小球自高为h 的斜槽轨道的顶端A 开始下滑,如图所示,设小球在下滑过程中机械能守恒,小球到达轨道底端B 时的速度大小是( )ABCD .7.以10m/s 的初速度从10m 高的塔上抛出一颗石子,石子落地时速度大小为 m/s 。
(不计空气阻力,g 取10m/s 2)8.如图所示,桌面距地面0.8m ,一物体质量为2kg ,放在距桌面0.4m 的支架上。
(1)以地面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?(2)以桌面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?202mv 202mv 22mv9.如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时其一端下落,则铁链刚脱离滑轮的瞬间的速度为多大?10.在轻杆的中点A 和一个端点B 各固定一个质量相同的小球,将杆的另一端点O 用绞链(光滑)固定。
人民教育出版社、物理(高一年级)必须2《机械能守恒定律的应用》(习题课)教学设计教学目标:1、进一步理解机械能守恒定律的内容和守恒条件。
2、能准确判断具体问题中机械能是否守恒。
3、熟练运用机械能守恒定律分析生活中实际问题。
4、体会探究中抽象物理模型的科学方法,体验解决实际问题的快乐。
教学重点:1、准确判断具体的物理过程中机械能是否守恒。
2、熟练应用机械能守恒定律解决实际问题。
教学难点:1、科学探究过程中抽象物理模型,应用物理规律解决实际问题的能力。
2、两个或多个物体组成的系统机械能守恒的运用。
教学思路:在学生已初步形成对机械能守恒定律内容和守恒条件的知识基础上,通过习题的编排设计由浅入深,一步步引导学生积极探究物理过程,形成分析解决物理问题的能力,全方位巩固机械能守恒定律。
教学方法:例题解答→归纳知识,总结规律,形成能力→拓展探究,深化知识,提高能力。
教学手段:实物模型、多媒体辅助教学、分组竞赛教学步骤:单个物体机械能守恒→两个或多个物体机械能守恒→生活中遵循机械能守恒定律的物理现象教学内容:一.复习引入新课复习机械能守恒定律的内容和守恒条件。
导入新课——机械能守恒定律的应用(习题课)例1、在离地面高h 的地方,以0v 的速度水平抛出一石块,若空气阻力不计,求石块刚落至地面时速度的大小。
分析:结合运动过程分析。
对石块,——①从被抛出到刚落至地面,只有重力做功,机械能守恒。
——②选地面为参考平面。
由机械能守恒定律建立方程:2201122mv mgh mv =+——③,可解得:v =归纳小结:应用机械能守恒定律解题的一般步骤:①找对象;②分析判断是否满足机械能守恒条件;③选择恰当的参考平面,确定初状态和末状态的机械能,建立方程进行求解。
拓展练习:将例1中“水平”二字删除,结果如何? 学生求解后进一步认识体会机械能守恒定律的条件:只有重力做功。
巩固练习:如图所示,质量为m 的物体以某一初速度0v 从A 点向下沿光滑的轨道运动,轨道半径为R ,不计空气阻力,若物体在A(1)物体在B 点时的速度;(2)物体离开C 点后还能上升多高.学生分析后利用机械能守恒定律可解得:3.5B v h R ==。
习题课机械能守恒定律[目标定位] 1.进一步理解机械能守恒的条件及其判定.2.能机敏应用机械能守恒定律的三种表达方式列方程.3.在多个物体组成的系统中,会应用机械能守恒定律解决相关问题.4.明确机械能守恒定律和动能定理的区分.1.机械能守恒定律的内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.机械能守恒的条件:只有重力或系统内弹力做功.3.对机械能守恒条件的理解(1)只受重力(或弹力)作用,例如在不考虑空气阻力的状况下的各种抛体运动,物体的机械能守恒.(2)存在其他力,但其他力不做功,只有重力或系统内的弹力做功.(3)除重力、弹力外其他力做功,但做功的代数和为零.4.机械能守恒定律的表达式(1)守恒观点:E k1+E p1=E k2+E p2(2)转化观点:ΔE k增=ΔE p减(3)转移观点:ΔE A增=ΔE B减5.动能定理:在一个过程中合力对物体做的功,等于物体在这个过程中动能的变化.一、机械能是否守恒的推断1.利用机械能的定义推断:分析动能和势能的和是否变化.2.用做功推断:分析物体受力状况(包括内力和外力),明确各力做功的状况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒.3.用能量转化来推断:若系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则系统机械能守恒.4.对多个物体组成的系统,除考虑外力是否只有重力做功外,还要考虑系统内力做功,如有滑动摩擦力做功时,因有摩擦热产生,系统机械能将有损失.【例1】图1如图1所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开头运动的过程中()A.M、m各自的机械能分别守恒B.M削减的机械能等于m增加的机械能C.M削减的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒答案BD解析M下落过程,绳的拉力对M做负功,M的机械能削减;m上升过程,绳的拉力对m 做正功,m的机械能增加,A错误;对M、m组成的系统,机械能守恒,易得B、D正确;M削减的重力势能并没有全部用于m重力势能的增加,还有一部分转变成M、m的动能,所以C错误.二、多物体组成的系统的机械能守恒问题1.多个物体组成的系统,就单个物体而言,机械能一般不守恒,但就系统而言机械能往往是守恒的.2.对系统列守恒方程时常有两种表达形式:E k1+E p1=E k2+E p2①或ΔE k增=ΔE p减②,运用①式需要选取合适的参考平面,运用②式无需选取参考平面,只要推断系统内能的增加量和削减量即可.所以处理多物体组成系统问题用第②式较为便利.3.留意查找用绳或杆相连接的物体间的速度关系和位移关系.【例2】图2如图2所示,质量为m的木块放在光滑的水平桌面上,用轻绳绕过桌边的光滑定滑轮与质量为M的砝码相连.已知M=2m,让绳拉直后使砝码从静止开头下降h的距离(未落地)时,木块仍没离开桌面,则砝码的速度为多少?答案233gh解析解法一:用E初=E末求解.设砝码开头离桌面的距离为x,取桌面所在的水平面为参考面,则系统的初始机械能E初=-Mgx,系统的末机械能E末=-Mg(x+h)+12(M+m)v2.由E初=E末得:-Mgx=-Mg(x+h)+12(M+m)v2,解得v=233gh.解法二:用ΔE k增=ΔE p减求解.在砝码下降h的过程中,系统增加的动能为ΔE k增=12(M+m)v2,系统削减的重力势能ΔE p减=Mgh,由ΔE k增=ΔE p减得:12(M+m)v2=Mgh,解得v=2MghM+m =233gh.借题发挥利用E k1+E p1=E k2+E p2解题必需选择参考平面,而用ΔE k增=ΔE p减解题无需选参考平面,故多物体组成系统问题用ΔE k增=ΔE p减列式较为便利.针对训练图3如图3所示,在一长为2L不行伸长的轻杆两端各固定一质量为2m与m的小球A、B,系统可绕过轻杆的中点且垂直纸面的固定转轴O转动.初始时轻杆处于水平状态,无初速度释放后轻杆转动,当轻杆转至竖直位置时,求小球A的速率.答案2gL3解析A球和B球组成的系统机械能守恒由机械能守恒定律,得:2mgL-mgL=12m v2B+12(2m)v2A①又v A=v B②由①②解得v A=2gL3.三、机械能守恒定律和动能定理的应用比较1.机械能守恒定律反映的是物体初、末状态的机械能间的关系,且守恒是有条件的,而动能定理揭示的是物体动能的变化跟引起这种变化的合外力功之间的关系,既关怀初末状态的动能,也必需认真分析对应这两个状态间经受的过程中力做功的状况.2.动能定理与机械能守恒的选用思路(1)从争辩对象看出,动能定理主要用于单个质点,而机械能守恒定律运用于系统.(2)从做功角度看,除重力和系统内的弹力做功外,有其它力参与做功选用动能定理.没有其它力参与做功对系统可以选用机械能守恒定律,也可以选用动能定理.【例3】图4如图4所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O 转动,使杆从水平位置无初速度释放.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?答案-0.2mgL0.2mgL解析设当杆转到竖直位置时,A球和B球的速度分别为v A和v B.假如把轻杆、两球组成的系统作为争辩对象,由于机械能没有转化为其它形式的能,故系统机械能守恒,可得:mgL+12mgL=12m v2A+12m v2B因A球与B球在各个时刻对应的角速度相同,故v B=2v A由以上二式得:v A=3gL5,v B=12gL5.依据动能定理,可解出杆对A、B做的功.对A有:W A+mg L2=12m v2A-0,所以W A=-0.2mgL.对B有:W B+mgL=12m v2B-0,所以W B=0.2mgL.机械能是否守恒的推断1.关于机械能守恒定律的适用条件,以下说法中正确的是()A.只有重力和弹力作用时,机械能才守恒B.当有其他外力作用时,只要合外力为零,机械能就守恒C.当有其他外力作用时,只要除重力以外的其他外力做功为零,机械能就守恒D.炮弹在空中飞行时,不计空气阻力,仅受重力作用,所以炮弹爆炸前后机械能守恒答案C解析机械能守恒的条件是“物体系统内只有重力或弹力做功”,不是“只有重力和弹力作用”,应当知道作用和做功是两个完全不同的概念,有力不愿定做功,故A项错误;合外力为零,物体的加速度为零,是物体处于静止或做匀速直线运动的另一种表达,不是机械能守恒的条件,故B项错误;有其他外力作用,且重力、弹力外的其他力做功为零时,机械能守恒,故C项正确;炮弹爆炸时,化学能转化为炮弹的内能和动能,机械能是不守恒的,故D项错误.故选C.多物体组成的系统的机械能守恒问题2. 如图5所示,一根很长的、不行伸长的松软轻绳跨过光滑定滑轮,轻绳两端各系一小球a和b,a球质量为m,静置于地面;b球质量为3m,用手托住,离地面高度为h,此时轻绳刚好拉紧,从静止开头释放b后,a可能达到的最大高度为()A.h B.1.5hC.2h D.2.5h答案B解析释放b后,在b到达地面之前,a向上加速运动,b向下加速运动,a、b系统的机械能守恒,若b落地瞬间速度为v,取地面所在平面为参考平面,则3mgh=mgh+12m v2+12(3m)v2,可得v=gh.b落地后,a向上以速度v做竖直上抛运动,能够连续上升的高度h′=v22g=h2.所以a能达到的最大高度为1.5h,B正确.机械能守恒定律和动能定理的比较应用3. 如图6所示,某人以v0=4 m/s的速度斜向上(与水平方向成25°角)抛出一个小球,小球落地时速度为v=8 m/s,不计空气阻力,求小球“mgh=12m v2抛出时的高度h.甲、乙两位同学看了本题的参考解法-12m v2”后争辩了起来.甲说此解法依据的是动能定理,乙说此解法依据的是机械能守恒定律,你对甲、乙两位同学的争辩持什么观点,请图5图6简洁分析,并求出抛出时的高度h.(g取10 m/s2)答案见解析解析甲、乙两位同学的说法均正确.从抛出到落地,重力做功mgh,动能增加12m v2-12m v20,由动能定理可知mgh=12m v2-12m v20,所以甲说法对.从抛出到落地,重力势能削减mgh,动能增加12m v2-12m v20,由机械能守恒定律mgh=12m v2-12m v20,乙说法也对.h=v2-v202g=482×10m=2.4 m.4. 如图7所示是一个横截面为半圆、半径为R的光滑柱面,一根不行伸长的细线两端分别系着物体A、B,且m A=2m B,由图示位置从静止开头释放A物体,当物体B达到圆柱顶点时,求绳的张力对物体B所做的功.答案π+23m B gR解析本题要求出绳的张力对物体B做的功,关键求出物体B到达圆柱顶点的动能.由于柱面是光滑的,故系统的机械能守恒,系统重力势能的削减量等于系统动能的增加量.系统重力势能的削减量为:ΔE p=m A g πR2-m B gR,系统动能的增加量为ΔE k=12(m A+m B)v2由ΔE p=ΔE k得v2=23(π-1)gR绳的张力对B做的功:W=12m B v 2+m B gR=π+23m B gR.(时间:60分钟)题组一机械能是否守恒的推断1.下列物体中,机械能守恒的是()A.做平抛运动的物体B.被匀速吊起的集装箱C.光滑曲面上自由运动的物体D.物体以45g的加速度竖直向上做匀减速运动答案AC解析物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒;匀速吊起的集装箱,动能不变,势能增加,机械能不守恒;物体以45g的加速度向上做匀减速运动时,由牛顿其次定律mg-F=m×45g,有F=15mg,则物体受到竖直向上的大小为15mg的外力作用,该力对物体做了正功,机械能不守恒,故选A、C.2.在下面列举的各例中,若不考虑阻力作用,则物体的机械能发生变化的是()A.用细杆拴着一个物体,以杆的另一端为固定轴,使物体在光滑水平面上做匀速圆周运动B.细杆拴着一个物体,以杆的另一端为固定轴,使物体在竖直平面内做匀速圆周运动C.物体沿光滑的曲面自由下滑D.用一沿固定斜面对上、大小等于物体所受摩擦力的拉力作用在物体上,使物体以确定的初速度沿斜面对上运动答案B解析物体若在水平面内做匀速圆周运动,动能、势能均不变,物体的机械能不变;物体在竖直平面内做匀速圆周运动,动能不变,势能转变,故物体的机械能发生变化;物体沿光滑的曲面自由下滑,只有重力做功,机械能守恒;用一沿固定斜面对上、大小等于物体所受摩擦力的拉力作用在物体上,使物体以确定的初速度沿斜面对上运动时,除重力以外的力做功之和为零,物体的机械能守恒,故选B.3. 木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到确定高度,如图8所示,从子弹开头入射到共同上摆到最大高度的过程中,下面说法正确的是图7图8()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对答案D解析子弹打入木块的过程中,子弹克服摩擦力做功产生热能,故系统机械能不守恒.题组二多物体组成的系统的机械能守恒问题4. 如图9,物体从某一高度自由下落到竖直立于地面的轻质弹簧上.在a点时物体开头与弹簧接触,到b点时物体速度为零.则从a到b的过程中,物体()A.动能始终减小B.重力势能始终减小C.所受合外力先增大后减小D.动能和重力势能之和始终减小答案BD解析物体刚接触弹簧一段时间内,物体受到竖直向下的重力和竖直向上的弹力,且弹力小于重力,所以物体的合外力向下,物体做加速运动,在向下运动的过程中弹簧的弹力越来越大,所以合力越来越小,即物体做加速度减小的加速运动,当弹力等于重力时,物体的速度最大,之后弹力大于重力,合力向上,物体做减速运动,由于物体速度照旧向下,所以弹簧的弹力照旧增大,所以合力在增大,故物体做加速度增大的减速运动,到b点时物体的速度减小为零,所以过程中物体的速度先增大再减小,即动能先增大后减小,A错误;从a点到b点物体始终在下落,重力做正功,所以物体的重力势能在减小,B正确;所受合外力先减小后增大,C错误;过程中物体的机械能转化为弹簧的弹性势能,所以D正确.长度为2R 5. 内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根的轻杆,一端固定有质量m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点如图10所示,由静止释放后() A.下滑过程中甲球削减的机械能总是等于乙球增加的机械能B.下滑过程中甲球削减的重力势能总是等于乙球增加的重力势能C.甲球可沿凹槽下滑到槽的最低点D.杆从右向左滑回时,乙球确定不能回到凹槽的最低点答案A解析环形槽光滑,甲、乙组成的系统在运动过程中只有重力做功,故系统机械能守恒,下滑过程中甲削减的机械能总是等于乙增加的机械能,甲、乙系统削减的重力势能等于系统增加的动能;甲削减的重力势能等于乙增加的势能与甲、乙增加的动能之和;由于乙的质量较大,系统的重心偏向乙一端,由机械能守恒,知甲不行能滑到槽的最低点,杆从右向左滑回时乙确定会回到槽的最低点.6. 如图11所示,m A=2m B,不计摩擦阻力,物体A自H高处由静止开头下落,且B物体始终在水平台面上.若以地面为零势能面,则当物体A的动能与其势能相等时,物体A距地面的高度是()A.H5 B.2H5C.4H5 D.H3答案B解析A、B组成的系统机械能守恒.设物体A的动能与其势能相等时,物体A距地面的高度是h,A的速度为v.则有m A gh=12m A v2,即v2=2gh.从开头到A距地面的高度为h的过程中,A削减的重力势能为ΔE p=m A g(H-h)=2m B g(H-h).系统增加的动能为ΔE k=12(m A+m B)v2=12×3m B×2gh=3m B gh.由ΔE p=ΔE k,得h=25H.7. 有一竖直放置的“T”形架,表面光滑,滑块A、B分别套在水平杆与竖直杆上,A、B用一不行伸长的轻细绳相连,A、B质量相等,图9图10图11图12且可看做质点,如图12所示,开头时细绳水平伸直,A、B静止.由静止释放B后,已知当细绳与竖直方向的夹角为60°时,滑块B沿着竖直杆下滑的速度为v,则连接A、B的绳长为()A.4v2g B.3v2gC.2v23g D.4v23g答案D解析由运动的合成与分解可知滑块A和B在绳长方向的速度大小相等,有v A sin 60°=v B cos60°,解得v A=33v,将滑块AB看成一系统,系统的机械能守恒,设滑块B下滑的高度为h,有mgh=12m v 2A+12m v2B,解得h=2v23g,由几何关系可知绳子的长度为L=2h=4v23g,故选项D正确.题组三综合题组8. 如图13所示,现有两个完全相同的可视为质点的物块都从静止开头运动,一个自由下落,一个沿光滑的固定斜面下滑,最终它们都到达同一水平面上,空气阻力忽视不计,则()A.重力做的功相等,重力做功的平均功率相等B.它们到达水平面上时的动能相等C.重力做功的瞬时功率相等D.它们的机械能都是守恒的答案BD解析两物体从同一高度下落,依据机械能守恒定律知,它们到达水平面上时的动能相等,自由下落的物体先着地,重力做功的平均功率大,而着地时重力做功的瞬时功率等于重力与重力方向上的速度的乘积,故重力做功的瞬时功率不相等,选BD.9. 如图14所示,质量为m=2 kg的小球系在轻弹簧的一端,另一端固定在悬点O处,将弹簧拉至水平位置A处由静止释放,小球到达距O点下方h=0.5 m处的B点时速度为2 m/s.求小球从A运动到B的过程中弹簧弹力做的功(g取10 m/s2).答案-6 J解析对小球和弹簧组成的系统,只有重力和弹簧的弹力做功,故机械能守恒,小球削减的重力势能转化为系统的动能和弹性势能,所以mgh=12m v2+E弹,E弹=mgh-12m v2=6 J,W 弹=-6 J.即弹簧弹力对小球做功为-6 J.10. 如图15所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开头沿轨道下滑,已知轨道半径为R=0.2 m,小物块的质量为m=0.1 kg,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力;(2)小物块在水平面上滑动的最大距离.答案(1)3 N(2)0.4 m解析(1)由机械能守恒定律,得mgR=12m v2B,在B点F N-mg=mv2BR,联立以上两式得F N=3mg=3×0.1×10 N=3 N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得l=Rμ=0.20.5m=0.4 m.11.(2021·福建) 如图16,一不行伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点.地面上的D点与OB在同一竖直线上,已知绳长L=1.0 m,B点离地高度H=1.0 m,A、B两点的高度差h=0.5 m,重力加速度g取10 m/s2,不计空气影响,求:(1)地面上DC两点间的距离s;(2)轻绳所受的最大拉力大小.图13图14图15图16答案 (1)1.41 m (2)20 N解析 (1)小球从A 到B 的过程中机械能守恒,有:mgh =12m v 2B ,① 小球从B 到C 做平抛运动,在竖直方向上有:H = 12gt 2,②在水平方向上有:s =v B t ,③ 联立①②③解得:s =1.41 m .④(2)小球下摆到达B 点时,绳的拉力和重力的合力供应向心力,有:F -mg =m v 2BL ⑤联立①⑤解得:F =20 N 依据牛顿第三定律,F ′=-F , 轻绳所受的最大拉力大小为20 N.12.如图17所示,半径为R 的光滑半圆弧轨道与高为10R 的光滑斜轨道放在同一竖直平面内,两轨道之间由一条光滑水平轨道CD 相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a 、b 两小球挤压,处于静止状态.同时释放两个小球,a 球恰好能通过圆弧轨道的最高点A ,b 球恰好能到达斜轨道的最高点B .已知a 球质量为m 1,b 球质量为m 2,重力加速度为g .求:图17(1)a 球离开弹簧时的速度大小v a ; (2)b 球离开弹簧时的速度大小v b ; (3)释放小球前弹簧的弹性势能E p . 答案 (1)5gR (2)20gR (3)⎝ ⎛⎭⎪⎫52m 1+10m 2gR 解析 (1)由a 球恰好能到达A 点知m 1g =m 1v 2AR由机械能守恒定律得 12m 1v 2a -12m 1v 2A =m 1g ·2R 得v a =5gR .(2)对于b 球由机械能守恒定律得: 12m 2v 2b =m 2g ·10R 得v b =20gR .(3)由机械能守恒定律得 E p =12m 1v 2a +12m 2v 2b得E p =⎝ ⎛⎭⎪⎫52m 1+10m 2gR .。
第八章机械能守恒定律机械能守恒定律课后篇巩固提升合格考达标练1.下列运动过程中,机械能守恒的是()A.热气球缓缓升空B.树叶从枝头飘落C.掷出的铅球在空中运动D.跳水运动员在水中下沉,空气的浮力做功,机械能不守恒,选项A错误;树叶从枝头飘落,所受的空气阻力不能忽略,空气阻力做负功,其机械能不守恒,选项B错误;掷出的铅球在空中运动时,所受空气的阻力对其运动的影响可以忽略,只有重力做功,其机械能守恒,选项C正确;跳水运动员在水中下沉时,所受水的浮力做负功,其机械能不守恒,选项D错误。
2.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,弹簧始终处于弹性限度内,下列关于能量的叙述正确的是()A.重力势能和动能之和总保持不变B.重力势能和弹性势能之和总保持不变C.动能和弹性势能之和总保持不变D.重力势能、弹性势能和动能之和总保持不变,弹力做负功,重力势能、弹性势能及动能都要发生变化,任意两种能量之和都不会保持不变,但三种能量相互转化,总和不变,选项D正确。
3.(多选)(2021江苏徐州高一检测)如图所示,一轻弹簧的一端固定于O点,另一端系一小球,将小球从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由下摆,不计空气阻力,弹簧始终处于弹性限度内,则在小球由A 点摆向最低点B的过程中()A.小球的机械能守恒B.弹簧的弹性势能增加C.弹簧和小球组成的系统机械能守恒D.小球的机械能减少,所以小球的机械能减少,A错误,D正确。
由于弹簧被拉长,所以弹簧的弹性势能增大,B正确。
A到B的过程中,只有重力和弹簧弹力做功,系统机械能守恒,即弹簧和小球组成的系统机械能守恒,C正确。
4.以相同大小的初速度v0将物体从同一水平面分别竖直上抛、斜上抛、沿光滑斜面(足够长)上滑,如图所示,三种情况达到的最大高度分别为h1、h2和h3,不计空气阻力(斜上抛物体在最高点的速度方向水平),则()A.h1=h2>h3B.h1=h2<h3C.h1=h3<h2D.h1=h3>h2,上升到最高点时,速度均为0,由机械能守恒定律得mgh=12mv02,所以h=v022g,斜上抛物体在最高点速度不为零,设为v1,则mgh2=12mv02−12mv12,所以h2<h1=h3,故D对。
[A级——合格考达标练]1.如图所示,下列说法正确的是(所有情况均不计摩擦、空气阻力以及滑轮质量)()A.甲图中,火箭升空的过程中,若匀速升空则机械能守恒,若加速升空则机械能不守恒B.乙图中,物块在外力F的作用下匀速上滑,物体的机械能守恒C.丙图中,物块A以一定的初速度将弹簧压缩的过程中,物块A的机械能守恒D.丁图中,物块A加速下落、物块B加速上升的过程中,A、B系统机械能守恒解析:选 D.甲图中,不论是匀速还是加速,由于推力对火箭做功,火箭的机械能都不守恒,是增加的,故A错误;乙图中,物块匀速上滑,动能不变,重力势能增加,则机械能必定增加,故B错误;丙图中,在物块A压缩弹簧的过程中,弹簧和物块A组成的系统只有重力和弹力做功,系统机械能守恒,由于弹性势能增加,则A的机械能减小,故C错误;丁图中,对A、B组成的系统,不计空气阻力,只有重力做功,则A、B组成的系统机械能守恒,故D正确.2.(多选)下列关于机械能守恒的判断正确的是()A.拉着一个物体沿着光滑的斜面匀速上升时,物体的机械能守恒B.如果忽略空气阻力作用,物体做竖直上抛运动时,机械能守恒C.一个物理过程中,当重力和弹力以外的力做了功时,机械能不再守恒D.合外力对物体做功为零时,物体机械能一定守恒解析:选BC.拉着一个物体沿着光滑的斜面匀速上升时,动能不变,势能增大,故机械能增大,故A错误;物体做竖直上抛运动时,只有重力做功,故机械能守恒,故B正确;机械能守恒的条件是除重力和弹力以外的力做功的代数和为零,或者不做功,当重力和弹力以外的力做了功时,物体的机械能不守恒,故C正确;合外力对物体做功为零时,物体机械能不一定守恒,如在拉力作用下竖直向上的匀速运动,物体机械能不守恒,故D错误.3.如图所示,一个用细线悬挂的小球从A点开始摆动,记住它向右能够达到的最大高度,然后用一把直尺在P点挡住悬线,继续观察之后小球的摆动情况并分析,下列结论正确的是()A.在P点放置直尺后,悬线向右摆动的最大高度明显低于没放直尺时到达的高度B.在P点放置直尺后,悬线向右摆动的最大高度明显高于没放直尺时到达的高度C.悬线在P点与直尺碰撞前、后的瞬间相比,小球速度变大D.悬线在P点与直尺碰撞前、后的瞬间相比,小球加速度变大解析:选D.小球从A点开始摆动,在P点挡住摆线后,小球能继续运动,在整个过程中机械能的总量保持不变,机械能是守恒的,小球能上升到原来的高度,故A、B错误;小球到达最低点时水平方向不受力,则悬线在P点与直尺碰撞前、后的瞬间相比,小球速度大小不变,而半径变小,根据a=v2r可知,小球加速度变大,故C错误,D正确.4.把小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).松手后,小球从A到B再到C的过程中,忽略弹簧的质量和空气阻力,下列分析正确的是()A.小球处于A位置时小球的机械能最小B .小球处于B 位置时小球的机械能最小C .小球处于C 位置时小球的机械能最小D .小球处于A 、B 、C 三个位置时小球的机械能一样大解析:选 A.对于系统而言,只有重力和弹簧弹力做功,动能、重力势能、弹性势能相互转化,系统机械能守恒,所以小球处于A 、B 、C 三个位置时系统机械能一样大;而对于小球而言,在A 到B 的过程中,弹簧对小球做正功,弹簧弹性势能减小,故小球机械能增加,B 到C 过程中小球只有重力做功,小球机械能不变,所以小球在A 位置机械能最小,B 、C 位置小球机械能一样大,故A 正确.5.(多选)如图所示,质量相同的两物体处于同一高度,A 沿固定在地面上的光滑斜面下滑,B 自由下落,最后到达同一水平面,取地面为参考平面,则( )A .重力对两物体做功相同B .重力的平均功率P A < P BC .到达底端时重力的瞬时功率相同D .到达底端时两物体的机械能不相同解析:选AB.重力做功为:W =mgh ,由于m 、g 、h 都相同,则重力做功相同,故A 正确;A 沿斜面向下做匀加速直线运动,B 做自由落体运动,A 的运动时间大于B 的运动时间,重力做功相同,由P -=W t 可知,P A < P B ,故B 正确;由机械能守恒定律可知,mgh =12m v 2,得v =2gh ,则知到达底端时两物体的速度大小相等,到达底端时A 重力的瞬时功率 P A =mg v sin θ,B 重力的瞬时功率 P B =mg v ,所以P A <P B ,故C 错误;两物体运动过程中只有重力做功,机械能守恒,两物体初态机械能相同,则到达底端时两物体的机械能相同,故D 错误.[B 级——等级考增分练]6.如图,初速度大小相同的A 、B 、C 三个物体在同一水平面上,A 做竖直上抛,B 做斜上抛,抛射角为θ,C沿斜面上滑(斜面光滑,倾斜角也为θ,足够长),摩擦和空气阻力都略去不计,如用h A 、h B 、h C 分别表示它们各自上升的最大高度.则( )A.h A=h C>h B B.h A=h B=h CC.h B>h C=h A D.h A>h B>h C解析:选A.对于A、C两个球,达到最高点时,A、C两个球的速度均为零,物体的动能全部转化为重力势能,所以A、C的最大高度相同,D错误;对于B 球来说,由于B是斜抛运动,在水平方向上有一个速度,这个分速度的动能不会转化成物体的重力势能,所以B球在最高点时的重力势能要比A、C两球的小,所以高度要比A、C两球的高度小,A正确,B、C错误.7.(多选)两个质量不同的小铁块A和B,分别从高度相同的都是光滑的斜面和圆弧面的顶点滑向底部,如图所示.如果它们的初速度都为0,则下列说法正确的是()A.下滑过程中重力所做的功相等B.它们到达底部时动能相等C.它们到达底部时速率相等D.它们在最高点时的机械能和它们到达最低点时的机械能大小各自相等解析:选CD.小铁块A和B在下滑过程中,只有重力做功,机械能守恒,则由mgH=12m v2,得v=2gH,所以A和B到达底部时速率相等,故C、D正确;由于A和B的质量不同,所以下滑过程中重力所做的功不相等,到达底部时的动能也不相等,故A、B错误.8.(2022·吉林实验中学高一期末)如图所示,小球从静止开始沿光滑曲面轨道AB滑下,从B端水平飞出,撞击到一个与地面呈θ=37°的斜面上,撞击点为C.已知斜面上端与曲面末端B相连.若AB的高度差为h,BC间的高度差为H,则h与H的比值等于(不计空气阻力,sin 37°=0.6,cos 37°=0.8)()A.34 B.43 C.49 D.94解析:选C.小球下滑过程中机械能守恒,则有mgh=12m v2B,解得v B=2gh,到达B点后小球做平抛运动,在竖直方向有H=12gt2,水平方向x=v B t,根据几何关系有tan 37°=Hx,解得hH=49,故C正确,A、B、D错误.9.(多选)(2022·青海天峻县教育研究室期末)如图所示,长为L 的细绳一端固定在O 点,另一端拴住一个小球.在O 点的正下方与O 点相距2L 3的地方有一枚与竖直平面垂直的钉子A.把球拉起使细绳在水平方向伸直,由静止开始释放,当细绳碰到钉子后的瞬间(细绳没有断),下列说法正确的是( )A .小球的向心加速度突然增大到原来的3倍B .小球的线速度突然增大到原来的3倍C .小球的角速度突然增大到原来的3倍D .细绳对小球的拉力突然增大到原来的1.5倍解析:选AC.根据m v 2r =ma ,可知半径变为原来的13,向心加速度突然增大到原来的3倍,故A 正确;小球摆下后由机械能守恒定律可知mgL =12m v 2,因小球下降的高度相同,故小球到达最低点时的线速度相同,故B 错误;由于半径变为原来的13,根据v =rω可得,小球的角速度突然增大到原来的3倍,故C正确;在最低点有F -mg =m v 2r ,可得F =mg +m v 2r =mg +2mgL r ,半径改变前F=3mg ,半径变为原来的13后,F ′=7mg ,则拉力变为原来的73倍,故D 错误.10.(2022·西安中学高一期中)如图所示,弯曲斜面与半径为R 的竖直半圆组成光滑轨道,一个质量为m 的小球从高度为4R 的A 点由静止释放,经过半圆的最高点D 后做平抛运动落在水平面的E 点,忽略空气阻力(重力加速度为g ),求:(1)小球在D 点时的速度大小v D ;(2)小球落地点E 离半圆轨道最低点B 的位移x 的大小;(3)小球经过半圆轨道的C 点(C 点与圆心O 在同一水平面)时对轨道的压力大小.解析:(1)小球从A 到D ,根据机械能守恒定律可得mg (4R -2R )=12m v 2D ,整理可以得到v D =2 gR .(2)小球离开D 点后做平抛运动,根据平抛运动规律可以得到水平方向有:x =v D t竖直方向有:2R =12gt 2整理可以得到x =4R .(3)从A 到C ,根据机械能守恒定律得mg (4R -R )=12m v 2C在C 点,根据牛顿第二定律N =m v 2C R整理可以得到N =6mg由牛顿第三定律可知,小球经过半圆轨道的C 点时对轨道的压力大小为6mg . 答案:(1)2gR (2)4R (3)6mg。
习题课1 功和功率[学习目标] 1.熟练掌握恒力做功的计算方法.2.能够分析摩擦力做功的情况,并会计算一对摩擦力对两物体所做的功.3.能区分平均功率和瞬时功率. 一、功的计算 1.恒力的功功的公式W =Fl cos α,只适用于恒力做功.即F 为恒力,l 是物体相对地面的位移,流程图如下:2.变力做功的计算(1)将变力做功转化为恒力做功在曲线运动或有往复的运动中,当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,力F 与v 同向时做正功,力F 与v 反向时做负功. (2)当变力做功的功率P 一定时,如机车恒定功率启动,可用W =Pt 求功.(3)用平均力求功:若力F 随位移x 线性变化,则可以用一段位移内的平均力求功,如将劲度系数为k 的弹簧拉长x 时,克服弹力做的功W =0+F 2x =kx 2·x =12kx 2.(4)用F -x 图象求功若已知F -x 图象,则图象与x 轴所围的面积表示功,如图1所示,在位移x 0内力F 做的功W =F 02x 0.图1例1 一物体在运动中受水平拉力F 的作用,已知F 随运动距离x 的变化情况如图2所示,则在这个运动过程中F 做的功为( )图2A.4 JB.18 JC.20 JD.22 J答案 B解析 方法一 由图可知F 在整个过程中做功分为三个小过程,分别做功为W 1=2×2 J=4 J ,W 2=-1×2 J=-2 J W 3=4×4 J=16 J ,所以W =W 1+W 2+W 3=4 J +(-2)J +16 J =18 J.方法二 F -x 图象中图线与x 轴所围成的面积表示做功的多少,x 轴上方为正功,下方为负功,总功取三部分的代数和,即(2×2-2×1+4×4)J=18 J ,B 正确.例2 在水平面上,有一弯曲的槽道AB ,由半径分别为R2和R 的两个半圆构成.如图3所示,现用大小恒为F 的拉力将一光滑小球从A 点拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )图3A.零B.FRC.32πFR D.2πFR答案 C解析 小球受到的拉力F 在整个过程中大小不变,方向时刻变化,是变力.但是,如果把圆周分成无数微小的弧段,每一小段可近似看成直线,拉力F 在每一小段上方向不变,每一小段上可用恒力做功的公式计算,然后将各段做功累加起来.设每一小段的长度分别为l 1,l 2,l 3…l n ,拉力在每一段上做的功W 1=Fl 1,W 2=Fl 2…W n =Fl n ,拉力在整个过程中所做的功W =W 1+W 2+…+W n =F (l 1+l 2+…+l n )=F ⎝⎛⎭⎪⎫π·R 2+πR =32πFR .二、摩擦力做功的特点与计算1.不论是静摩擦力,还是滑动摩擦力都既可以是动力也可以是阻力,也可能与位移方向垂直,所以不论是静摩擦力,还是滑动摩擦力既可以对物体做正功,也可以对物体做负功,还可以对物体不做功.2.一对相互作用的滑动摩擦力等大反向但物体之间存在相对滑动,即两个物体的对地位移不相同,由W =Fl cos α可判断一对相互作用的滑动摩擦力做功的总和不为零.3.一对相互作用的静摩擦力等大反向且物体之间相对静止,即两个物体的对地位移相同,由W =Fl cos α可判断一对相互作用的静摩擦力做功的总和为零.例3 质量为M 的木板放在光滑水平面上,如图4所示.一个质量为m 的滑块以某一速度沿木板表面从A 点滑至B 点,在木板上前进了l ,同时木板前进了x ,若滑块与木板间的动摩擦因数为μ,求摩擦力对滑块、对木板所做的功各为多少?滑动摩擦力对滑块、木板做的总功为多少?图4答案 -μmg (l +x ) μmgx -μmgl解析 由题图可知,木板的位移为l M =x 时,滑块的位移为l m =l +x ,m 与M 之间的滑动摩擦力F f =μmg .由公式W =Fl cos α可得,摩擦力对滑块所做的功为W m =μmgl m cos 180°=-μmg (l +x ),负号表示做负功.摩擦力对木板所做的功为W M =μmgl M =μmgx . 滑动摩擦力做的总功为W =W m +W M =-μmg (l +x )+μmgx =-μmgl 三、功率的计算1.P =W t一般用来计算平均功率,而P =Fv 一般用来计算瞬时功率,此时v 为瞬时速度;但当v 为平均速度时,也可用来计算平均功率.2.应用公式P =Fv 时需注意 (1)F 与v 沿同一方向时:P =Fv .(2)F 与v 方向有一夹角α时:P =Fv cos α.例4 如图5所示,质量为2 kg 的物体以10 m/s 的初速度水平抛出,经过2 s 落地.取g =10 m/s 2.关于重力做功的功率,下列说法正确的是( )图5A.下落过程中重力的平均功率是400 WB.下落过程中重力的平均功率是100 WC.落地前的瞬间重力的瞬时功率是400 WD.落地前的瞬间重力的瞬时功率是200 W 答案 C解析 物体2 s 下落的高度为h =12gt 2=20 m ,落地的竖直分速度为v y =gt =20 m/s ,所以落到地面前的瞬间重力的瞬时功率是P =mgv y =400 W ,下落过程中重力的平均功率是P =mght=200 W ,选项C 正确. 四、机车的两种启动方式运动过程分析 汽车两种启动方式的过程分析与比较两种方式以恒定功率启动以恒定加速度启动P -t 图和v -t 图OA段过程分析v↑⇒F=P(不变)v↓⇒a=F-F fm↓a=F-F fm不变⇒F不变⇒v↑P=Fv↑直到P额=Fv1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t0=v1aAA′段过程分析v↑⇒F=P额v↓⇒a=F-F fm↓运动性质加速度减小的加速直线运动以恒定功率启动的AB 段和以恒定加速度启动的A′B段过程分析F=F fa=0F f=Pv mF=F fa=0F f=Pv m运动性质以v m做匀速运动以v m做匀速运动注意:(1)机车的输出功率:P=Fv,其中F为机车的牵引力,v为机车的瞬时速度.(2)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min =PF f.(3)机车以恒定加速度启动,匀加速过程结束时,功率最大,但速度不最大,v=PF<v m=PF f.(4)机车以恒定功率运行时,牵引力的功W=Pt.例5如图6所示,为修建高层建筑常用的塔式起重机.在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02 m/s的匀速运动.取g=10 m/s2,不计额外功.求:图6(1)起重机允许的最大输出功率;(2)重物做匀加速运动所经历的时间和起重机在第2 s末的输出功率.答案(1)5.1×104 W (2)5 s 2.04×104 W解析(1)设起重机允许的最大输出功率为P0,重物达到最大速度时拉力F0等于重力.P0=F0v m,F0=mg.代入数据得,P0=5.1×104 W.(2)匀加速运动结束时,起重机达到允许的最大输出功率,设此时重物受到的拉力为F,速度为v1,匀加速运动经历的时间为t1,有:P0=Fv1,F-mg=ma,v1=at1.代入数据得,t1=5 s.第2 s末,重物处于匀加速运动阶段,设此时速度为v2,输出功率为P,v2=at,P=Fv2.得:P=2.04×104 W.1.(功的计算)将一质量为m的小球从地面竖直向上抛出,小球上升h后又落回地面,在整个过程中受到的空气阻力大小始终为F f,则关于这个过程中重力与空气阻力所做的功,下列说法正确的是( )A.重力做的功为2mgh,空气阻力做的功为-2F f hB.重力做的功为0,空气阻力做的功也为0C.重力做的功为0,空气阻力做的功为-2F f hD.重力做的功为2mgh,空气阻力做的功为0答案 C解析重力是恒力,可以用公式W=Fl cos α直接计算,由于位移为零,所以重力做的功为零;空气阻力在整个过程中方向发生了变化,不能直接用公式计算,可进行分段计算,上升过程和下降过程空气阻力做的功均为-F f h,因此在整个过程中空气阻力做的功为-2F f h.故选项C正确.2.(摩擦力做功的特点) 如图7所示,A、B两物体叠放在一起,A被不可伸长的细绳水平系于左墙上,B在拉力F作用下,向右匀速运动,在此过程中,A、B间的摩擦力做功情况是( )图7A.对A、B都做负功B.对A、B都不做功C.对A不做功,对B做负功D.对A做正功,对B做负功答案 C3.(功率的计算)如图8所示是小孩滑滑梯的情景,假设滑梯是固定光滑斜面,倾角为30°,小孩质量为m,由静止开始沿滑梯下滑,滑行距离为s时,重力的瞬时功率为( )图8A.mg gsB.12mg gs C.mg 2gs D.12mg 6gs 答案 B解析 小孩的加速度a =mg sin 30°m =12g ,由v 2=2as 得小孩滑行距离为s 时的速率v =gs ,故此时重力的瞬时功率P =mgv sin 30°=12mg gs ,B 正确.4.(机车启动问题)(多选)一辆质量为m 的轿车,在平直公路上运行,启动阶段轿车牵引力保持不变,而后以额定功率继续行驶,经过一定时间,其速度由零增大到最大值v m ,若所受阻力恒为F f .则关于轿车的速度v 、加速度a 、牵引力F 、功率P 的图象正确的是( ) 答案 ACD解析 由于启动阶段轿车受到的牵引力不变,加速度不变,所以轿车在开始阶段做匀加速运动,当实际功率达到额定功率时,功率不增加了,再增加速度,就须减小牵引力,当牵引力减小到等于阻力时,加速度等于零,速度达到最大值v m =P 额F =P 额F f,所以A 、C 、D 正确,B 错误.5.(机车启动问题)一种以氢气为燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80 kW ,行驶在平直公路上时所受阻力恒为车重的110.若汽车从静止开始先匀加速启动,加速度的大小为a =1.0 m/s 2.达到额定输出功率后,汽车保持功率不变又加速行驶了800 m ,直到获得最大速度后才匀速行驶.试求:(g 取10 m/s 2) (1)汽车的最大行驶速度.(2)汽车匀加速启动阶段结束时的速度大小. (3)汽车从静止到获得最大行驶速度时阻力做的功. 答案 (1)40 m/s (2)20 m/s (3)-2×106J 解析 (1)汽车的最大行驶速度v m =P 额F f =8.0×104110×2.0×103×10 m/s =40 m/s.(2)设汽车匀加速启动阶段结束时的速度为v 1,由F -F f =ma ,得F =4×103N ,由P 额=Fv 1, 得v 1=8.0×1044×103 m/s =20 m/s.(3)匀加速阶段的位移为x 1=v 122a=200 m ,总位移x =x 1+x 2=1 000 m ,阻力做功W =-F f x=-2×106J.课时作业一、选择题(1~7为单项选择题,8~10为多项选择题) 1.关于摩擦力做功,下列说法中正确的是( ) A.滑动摩擦力阻碍物体的相对运动,一定做负功B.静摩擦力起着阻碍物体相对运动趋势的作用,一定不做功C.静摩擦力和滑动摩擦力一定都做负功D.滑动摩擦力可以对物体做正功 答案 D解析 摩擦力总是阻碍物体间的相对运动或相对运动趋势,而且摩擦力对物体既可以做正功,也可以做负功,还可以不做功.综上所述,只有D 正确.2.一个物体在粗糙的水平面上运动,先使物体向右滑动距离l ,再使物体向左滑动距离l ,正好回到起点,来回所受摩擦力大小都为F f ,则整个过程中摩擦力做功为( ) A.0 B.-2F f l C.-F f l D.无法确定答案 B解析 由题意可知,物体运动过程可分两段,两段内摩擦力均做负功,即W =-F f l ,则全程摩擦力所做的功W 总=-2F f l .3.起重机的吊钩下挂着质量为m 的木箱,如果木箱以大小为a 的加速度匀减速下降了高度h ,则木箱克服钢索拉力所做的功为( ) A.mgh B.m (a -g )h C.m (g -a )h D.m (a +g )h 答案 D4.质量为m 的汽车在平直公路上行驶,阻力F f 保持不变.当汽车的速度为v 、加速度为a 时,发动机的实际功率为( )A.F f vB.mavC.(ma +F f )vD.(ma -F f )v 答案 C解析 当汽车的加速度为a 时,有F -F f =ma ,解得F =ma +F f ;根据P =Fv ,则发动机的实际功率P =(ma +F f )v ,选项C 正确.5.质量为m 的汽车,其发动机额定功率为P .当它开上一个倾角为θ的斜坡时,受到的阻力为车重力的k 倍,则车的最大速度为( ) A.Pmg sin θB.P cos θmg (k +sin θ)C.P cos θmgD.P mg (k +sin θ)答案 D解析 当汽车做匀速运动时速度最大,此时汽车的牵引力F =mg sin θ+kmg ,由此可得v m =Pmg (k +sin θ),故选项D 正确.6.如图1所示,在天花板上的O 点系一根细绳,细绳的下端系一小球.将小球拉至细绳处于水平的位置,由静止释放小球,小球从位置A 开始沿圆弧下落到悬点的正下方的B 点的运动过程中,下面说法正确的是( )图1A.小球受到的向心力大小不变B.细绳对小球的拉力对小球做正功C.细绳的拉力对小球做功的功率为零D.重力对小球做功的功率先减小后增大 答案 C解析 小球从A 点运动到B 点过程中,速度逐渐增大,由向心力F =m v 2r可知,向心力增大,故A 错误;拉力的方向始终与小球的速度方向垂直,所以拉力对小球做功为零,功率为零,故B 错误,C 正确;该过程中重力的功率从0变化到0,应是先增大后减小,故D 错误. 7.放在粗糙水平地面上的物体受到水平拉力的作用,在0~6 s 内其速度与时间的图象和该拉力的功率与时间的图象如图2甲、乙所示.下列说法正确的是( )图2A.0~6 s 内物体的位移大小为20 mB.0~6 s 内拉力做功为100 JC.滑动摩擦力的大小为5 ND.0~6 s 内滑动摩擦力做功为-50 J 答案 D解析 在0~6 s 内物体的位移大小为x =12×(4+6)×6 m=30 m ,故A 错误;P -t 图线与时间轴围成的面积表示拉力做功的大小,则拉力做功W F =12×2×30 J+10×4 J=70 J ,故B 错误;在2~6 s 内,v =6 m/s ,P =10 W ,物体做匀速运动,摩擦力F f =F ,得F f =F =Pv=53 N ,故C 错误;在0~6 s 内物体的位移大小为30 m ,滑动摩擦力做负功,即W f =-53×30 J =-50 J ,D 正确.8. 如图3所示,一子弹以水平速度射入放置在光滑水平面上原来静止的木块,并留在木块当中,在此过程中子弹钻入木块的深度为d ,木块的位移为l ,木块与子弹间的摩擦力大小为F ,则( )图3A.F 对木块做功为FlB.F 对木块做功为F (l +d )C.F 对子弹做功为-FdD.F 对子弹做功为-F (l +d ) 答案 AD解析 木块的位移为l ,由W =Fl cos α得,F 对木块做功为Fl ,子弹的位移为l +d ,木块对子弹的摩擦力的方向与位移方向相反,故木块对子弹的摩擦力做负功,W =-F (l +d ).故A 、D 正确.9.汽车发动机的额定功率为60 kW ,汽车质量为5 t.汽车在水平面上行驶时,阻力与车重成正比,g =10 m/s 2,当汽车以额定功率匀速行驶时速度为12 m/s.突然减小油门,使发动机功率减小到40 kW ,对接下来汽车的运动情况的描述正确的有( ) A.先做匀减速运动再做匀加速运动 B.先做加速度增大的减速运动再做匀速运动C.先做加速度减小的减速运动再做匀速运动D.最后的速度大小是8 m/s 答案 CD解析 根据P =Fv 知,功率减小,则牵引力减小,牵引力小于阻力,根据牛顿第二定律知,汽车产生加速度,加速度的方向与速度方向相反,汽车做减速运动,速度减小,则牵引力增大,知汽车做加速度减小的减速运动,当牵引力再次等于阻力时,汽车做匀速运动,故A 、B 错误,C 正确;当功率为60 kW 时,匀速直线运动的速度为12 m/s ,则F f =P 1v 1=60 00012N=5 000 N ,当牵引力再次等于阻力时,又做匀速直线运动,v 2=P 2F f =40 0005 000m/s =8 m/s ,故D 正确.10. 质量为2 kg 的物体置于水平面上,在运动方向上受到水平拉力F 的作用,沿水平方向做匀变速运动,拉力F 作用2 s 后撤去,物体运动的速度图象如图4所示,则下列说法正确的是(取g =10 m/s 2)( )图4A.拉力F 做功150 JB.拉力F 做功350 JC.物体克服摩擦力做功100 JD.物体克服摩擦力做功175 J 答案 AD解析 由图象可知撤去拉力后,物体做匀减速直线运动,加速度大小a 2=2.5 m/s 2,所以滑动摩擦力F f =ma 2=5 N ;加速过程加速度大小a 1=2.5 m/s 2,由F -F f =ma 1得,拉力F =ma 1+F f =10 N.由图象可知F 作用2 s 时间内的位移l 1=15 m ,撤去F 后运动的位移l 2=20 m ,全程位移l =35 m ,所以拉力F 做功W 1=Fl 1=10×15 J=150 J ,A 正确,B 错误;物体克服摩擦力做功W 2=F f l =5×35 J=175 J ,C 错误,D 正确. 二、非选择题11.如图5甲所示,在风洞实验室里,一根足够长的细杆水平固定,某金属小球穿在细杆上静止于细杆左端,现有水平向右的风力F 作用于小球上,风力F 随时间t 变化的F -t 图象如图乙所示,小球沿细杆运动的v -t 图象如图丙所示,取g =10 m/s 2,求0~5 s 内风力所做的功.图5答案 18 J解析 由题图丙可知0~2 s 内为匀加速阶段,a =v -0t 1=22m/s 2=1 m/s 2 0~2 s 内的位移:x 1=12at 1 2=12×1×4 m=2 m , 2~5 s 内的位移:x 2=vt 2=2×3 m=6 m ,则风力做功为W =F 1x 1+F 2x 2=18 J.12.一辆重5 t 的汽车,发动机的额定功率为80 kW.汽车从静止开始以加速度a =1 m/s 2做匀加速直线运动,车受到的阻力为车重的0.06倍.(g 取10 m/s 2)求:(1)汽车做匀加速直线运动的最长时间;(2)汽车开始运动后,5 s 末和15 s 末的瞬时功率.答案 (1)10 s (2)40 kW 80 kW解析 (1)设汽车做匀加速运动过程中所能达到的最大速度为v 0,对汽车由牛顿第二定律得F -F f =ma即P 额v 0-kmg =ma , 代入数据得v 0=10 m/s所以汽车做匀加速直线运动的最长时间t 0=v 0a =101s =10 s (2)由于10 s 末汽车达到了额定功率,5 s 末汽车还处于匀加速运动阶段,P =Fv =(F f +ma )at =(0.06×5×103×10+5×103×1)×1×5 W=40 kW15 s 末汽车已经达到了额定功率P 额=80 kW.13.某探究性学习小组对一辆自制遥控车的性能进行研究.他们让这辆小车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图6所示的v -t 图象,已知小车在0~t 1时间内做匀加速直线运动,t 1~10 s 时间内小车牵引力的功率保持不变,7 s 末达到最大速度,在10 s 末停止遥控让小车自由滑行,小车质量m =1 kg ,整个运动过程中小车受到的阻力F f 大小不变.求:图6(1)小车所受阻力F f 的大小;(2)在t 1~10 s 内小车牵引力的功率P ;(3)求出t 1的值及小车在0~t 1时间内的位移.答案 (1)2 N (2)12 W (3)1.5 s 2.25 m解析 (1)在10 s 末撤去牵引力后,小车只在阻力F f 的作用下做匀减速运动, 由图象可得减速时加速度的大小为a =2 m/s 2则F f =ma =2 N(2)小车做匀速运动阶段即7~10 s 内,设牵引力为F ,则F =F f 由图象可知v m =6 m/s解得P =Fv m =12 W(3)设t 1时间内的位移为x 1,加速度大小为a 1,t 1时刻的速度大小为v 1, 则由P =F 1v 1得F 1=4 N , F 1-F f =ma 1得a 1=2 m/s 2,则t 1=v 1a 1=1.5 s ,x 1=12a 1t 1 2=2.25 m.。
机械能守恒定律习题及答案【篇一:《机械能守恒定律》各节练习题(精华版)(含答案)】>一、选择题1.如图5-19-1所示,两个互相垂直的力f1和f2作用在同一物体上,使物体运动,物体发生一段位移后,力f1对物体做功为4j,力f2对物体做功为3j,则力f1与f2的合力对物体做功为( ) a.7j b.5j c.3.5j d.1j 2.一个力对物体做了负功,则说明( ) 图5-19-1a.这个力一定阻碍物体的运动b.这个力不一定阻碍物体的运动3.关于摩擦力对物体做功,以下说法中正确的是( )a.滑动摩擦力总是做负功b.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体一定做负功d.静摩擦力对物体总是做正功4.下列说法中正确的是( )a.功是矢量,正、负表示方向b.功是标量,正、负表示外力对物体做功,还是物体克服外力做功 c.力对物体做正功还是做负功,取决于力和位移的方向关系d.力做功总是在某过程中完成的,所以功是一个过程量5.如图5-19-2所示,一物体分别沿ao,bo轨道由静止滑到底端,物体与轨道间的动摩擦因数相同,物体克服摩擦力做功分别为w1,和w2,则( )a.w1w2 b.wl=w2c.w1w2 d.无法比较6.关于作用力与反作用力做功的关系,下列说法中正确的是( ) 图5-19-2a.当作用力做正功时,反作用力一定做负功b.当作用力不做功时,反作用力也不做功c.作用力与反作用力所做的功一定是大小相等、正负相反的d.作用力做正功时,反作用力也可以做正功二、填空7.______和______是做功的两个不可缺少的因素.8.如图5-19-3所示,用300n拉力f在水平面上拉车行走50m.已知拉力和水三、计算、说理题9.一人用100n的力从深4m的水井中匀速向上提水,然后提着水在水平地面上行走了12m,再匀速走到6 m深的地下室,则此人对水桶的力所做的功为多少?图5-19-43.功率一、选择题1.关于功率的概念,下列说法中正确的是(a.功率是描述力对物体做功多少的物理量b.由p?) w可知,功率与时间成反比 tc.由p=fv可知:只要f不为零,v也不为零,那么功率p就一定不为零d.某个力对物体做功越快,它的功率就一定大2.关于汽车在水平路上运动,下列说法中正确的是( )a.汽车启动后以额定功率行驶,在速率达到最大以前,加速度是在不断增大的b.汽车启动后以额定功率行驶,在速度达到最大以前,牵引力应是不断减小的c.汽车以最大速度行驶后,若要减小速度,可减小牵引力功率行驶d.汽车以最大速度行驶后,若再减小牵引力,速率一定减小3.下面关于功率的说法正确的是()a.做功多的物体,功率一定大b.功率大的汽车做功一定快c.-10kw小于8kwd.-10kw大于8kw4.设河水阻力跟船的速度平方成正比,若船匀速运动的速度变为原来的2倍,则船的功率变为原来的()倍 b. 2倍 c.4倍 d.8倍5.质量为m的物体从静止开始做加速度为a的匀加速直线运动,在运动时间为t的过程中,合外力对它做功的平均功率为( )a.matb.212ma2t matc.2ma2td.226.汽车上坡时,必须换挡,其目的是( )a.减小速度,得到较小的牵引力b.增大速度,得到较小的牵引力c.减小速度,得到较大的牵引力d.增大速度,得到较大的牵引力二、填空7.用与斜面平行的10n的拉力沿斜面把一个物体从斜面底端拉到顶端需时间2.5s,已知斜面长3.0m,物体在斜面顶端时的速度为2.0m/s,在这过程中拉力的平均功率为______w,在斜面顶端的瞬时功率为______w.8.一个质量为5kg的物体从45m高的楼上自由下落至地面,则这一过程中重力的平均功率为: ,落地时重力的瞬时功率为:.三、计算题9.质量m=3kg的物体,在水平拉力f=6n的拉力作用下,在光滑的水平面上从静止开始运动,运动时间t=3s,求:(1)力f在3s内对物体所做的功(2)力f在3s内对物体所做的功的平均功率(3)3s末力f对物体所做的功的瞬时功率(1)滑块从a到b的过程中重力的平均功率.(2)滑块滑到b点时重力的瞬时功率.图5-20-111. 跳绳是一种健身运动.设某运动员的质量是50kg,他1min跳绳180次,假定在每次跳跃中,脚与地面的接触时间占跳跃一次所需时间的的平均功率是多大?2,则该运动员跳绳时,克服重力做功54.重力势能一、选择题1.关于重力势能,下列说法中正确的是( )a.重力势能的大小只由重物本身决定b.重力势能恒大于零c.在地面上的物体具有的重力势能一定等于零d.重力势能实际上是物体和地球所共有的2.关于重力势能与重力做功,下列说法中正确的是( )a.物体克服重力做的功等于重力势能的增加b.在同一高度,将物体以初速v0向不同的方向抛出,从抛出到落地过程中,重力做的功相等,物体所减少的重力势能一定相等c.重力势能等于零的物体,不可能对别的物体做功d.用手托住一个物体匀速上举时,手的支持力做的功等于克服重力的功与物体所增加的重力势能之和.3.关于重力势能的几种理解,正确的是( )a.重力对物体做正功时.物体的重力势能减小b.放在地面上的物体,它的重力势能一定等于零c.在不同高度将某一物体抛出.落地时重力势能相等d.相对不同的参考平面,物体具有不同数值的重力势能,但并不影响有关重力势能问题4.将一个物体由a移至b,重力做功( )a.与运动过程中是否存在阻力有关b.与物体沿直线或曲线运动有关c.与物体是做加速、减速或匀速运动有关d.与物体初、末位置高度差有关5.一实心铁球和一实心木球质量相等,将它们放在同一水平面上,下列说法正确的是()a.铁球的重力势能大于木球重力势能b.铁球的重力势能等于木球重力势能c.铁球的重力势能小于木球重力势能d.上述三种情况都有可能二、填空题6.一质量为1kg的物体,位于离地面高1.5m处,比天花板低2.5m.以地面为零势能位置时,物体的重力势能等于__ j;以天花板为零势能位置时,物体的重力势能等于____j(g取10m2/s)7.甲、乙两物体,质量大小关系为m甲=5m乙,从很高的同一高度处自由下落2s,重力做功之比为_____,对地面而言的重力势能之比为_____.三、计算题5.探究弹性势能的表达式图5-21-16.探究功与物体速度变化的关系一、选择题1.关于弹性势能,下列说法正确的是( )a.发生弹性形变的物体都具有弹性势能b.只有弹簧在发生弹性形变时才具有弹性势能c.弹性势能可以与其他形式的能相互转化d.弹性势能在国际单位制中的单位是焦耳2.下列说法中正确的是( )a.当弹簧变长时,它的弹性势能一定增大b.当弹簧变短时,它的弹性势能一定变小c.在拉伸长度相同时,劲度系数越大的弹簧,它的弹性势能越大d.弹簧在拉伸时的弹性势能一定大于压缩时的弹性势能3.在探究弹簧的弹性势能的表达式时,下面的猜想有一定道理的是( )a.重力势能与物体离地面的高度有关,弹性势能与弹簧的伸长量有关;重力势能与重力的大小有关,弹性势能可能与弹力的大小有关,而弹力的小又与弹簧的劲度系数是有关.因此2弹性势能可能与弹簧的劲度系数愚和弹簧的伸长量的二次方x有关23 b.a选项中的猜想有一定道理,但不应该与x有关,而应该是与x有关c.a选项中的猜想有一定道理,但应该是与弹簧伸长量的一次方即x有关.d.上面三个猜想都没有可能性.4.关于探究功与物体速度变化的关系实验中,下列叙述正确的是( )a.每次实验必须设法算出橡皮筋对小车做功的具体数值b.每次实验中,橡皮筋拉伸的长度没有必要保持一致c.放小车的长木板应该尽量使其水平d.先接通电源,再让小车在橡皮筋的作用下弹出5.如图5-22-1所示为与小车相连,穿过打点计时器的一条纸带,纸带上的点距并不都是均匀的下列说法正确的是( )①纸带的左端是与小车相连的②纸带的右端是与小车相连的图5-22-1③利用e、f、g、h、i、j这些点之间的距离来确定小车的速度④利用a、b、c、d、e这些点之间的距离来确定小车的速度a.①③ b.②④ c.①④ d、②③6.如图5-22-2所示,一个物体以速度冲向与竖直墙壁相连的轻质弹簧,弹簧被压缩,在此过程中下列说法正确的是() a.物体对弹簧做的功与弹簧的压缩量成正比b.物体向墙壁运动相同的位移,弹力所做的功不相等c.弹力做正功,弹簧的弹性势能减小图5-22-2 d.弹力做负功,弹簧的弹性势能增加7.动能和动能定理一、选择题1.关于对动能的理解,下列说法正确的是( )a.动能是机械能的一种表现形式,凡是运动的物体都具有动能b.动能总为正值c.一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化d.动能不变的物体,一定处于平衡状态2.关于运动物体所受的合力、合力的功、运动物体动能的变化,下列说法正确的是( )a.运动物体所受的合力不为零,合力必做功,则物体的动能一定要变化【篇二:机械能守恒定律练习题及其答案】t>姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题物体质量处,轻,b,现将板抽走,a将拉动b上升,设a与地面碰后不反弹,b上升过程)中不会碰到定滑轮,问:b物体在上升过程中离地的最大高度为多大?(取(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体a、b可视为质点,用轻质细线连接跨过光滑圆柱体,b着地a恰好与圆心等高,若无初速度地释放,则b上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端b点与水平直轨道相切,如图所示,一小球自a点起由静止开始沿轨道下滑,已知圆轨道半径为r,小球的质量为m,不计各处摩擦,求:(1)小球运动到b点时的动能;(2)小球下滑到距水平轨道的高度为r时速度的大小和方向;(3)小球经过圆弧形轨道的b点和水平轨道的c点时,所受轨道支持力各是多大。
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
o A 《机械能守恒定律》习题课(二)系统机械能守恒 刘彩丽2013 5.10 教学目标:1、复习巩固判断单个物体的机械能是否守恒的方法以及解决守恒问题2、学会运用机械能守恒定律解决两个物体组成的系统机械能守恒问题 教学重点:1、2 课时:2节课一、复习巩固:1、机械能守恒的判断 下面列举的各个实例中,那些情况下机械能是守恒的?( )①一小球在粘滞性较大的液体中匀速下落;②用细线拴着一个小球在竖直平面内做圆周运动;③用细线拴着一个小球在光滑水平面内做匀速圆周运动;④拉着一个物体沿光滑的斜面匀速上升;⑤一物体沿光滑的固定斜面向下加速运动A .②③⑤B .①②④C .①③④D .②③④2、单个物体的机械能守恒的应用质量为m 的小球,以初速度v 0由地面竖直上抛,空气阻力可忽略不计,小球到达最高点的高度为h ,当小球又落回到出发点时,小球具有的机械能为(以地面为重力势能的零点) mgh +mgh mv mgh mv 2D 21C B 21A 2020. . . .3.系统机械能是否守恒判断自主学习:1.系统机械能是否守恒的判断方法(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。
不做功,系统的机械能就不变。
(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。
系统内物体的重力所做的功不会改变系统的机械能自我检测:一个轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面肯弹簧保持原长的A 点无初速度释放,让它自由下摆,不计空气阻力,在重物由A 摆到最低点的过程中,A 、重物的重力势能减少。
B 、重物的重力势能增加。
C 、系统的机械能不变。
D 、重物的机械能减少。
二.系统机械能守恒定律的应用自主学习:2.系统间的相互作用力分为三类:1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。