(完整word版)第22章《二次函数》全章初备教案
- 格式:doc
- 大小:254.01 KB
- 文档页数:16
22.1.1 二次函数教学目标1.理解、掌握二次函数的概念和一般形式.2.会利用二次函数的概念解决问题.3.列二次函数表达式解决实际问题.教学过程一、情境导入已知长方形窗户的周长为6米,窗户面积为y(米2),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的有关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)1x2-1是分式而不是整式,不符合二次函数的定义式,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.【类型二】确定二次函数中待定字母的取值如果函数y =(k +2)xk 2-2是y 关于x 的二次函数,则k 的值为多少?解析:紧扣二次函数的定义求解.注意易错点为忽视k +2≠0的条件. 解:根据题意知⎩⎨⎧k 2-2=2,k +2≠0,解得⎩⎨⎧k =±2,k ≠-2,∴k =2.方法总结:紧扣定义中的两个特征:①a ≠0;②自变量最高次数为2的二次三项式ax 2+bx +c . 【类型三】求函数值当x =-3时,函数y =2-3x -x 2的值为________.解析:把x =-3直接代入函数的表达式得y =2-3×(-3)-(-3)2=2+9-9=2.即函数的值为2. 方法总结:求函数值实际上就是求代数式的值.用所给的自变量的值替换函数关系式中的自变量,然后计算,注意运算顺序不要改变.【类型四】确定自变量的取值当x =________时,函数y =x 2+5x -5的函数值为1.解析:令y =1,即x 2+5x -5=1,解这个一元二次方程得x 1=-6,x 2=1.即x =-6或1. 方法总结:求二次函数自变量的值实际上就是解一元二次方程.直接转化为关于自变量的一元二次方程,通过解方程确定自变量的取值.探究点二:列二次函数的解析式一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方形.剩余部分的面积为y cm 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数? (2)当x 的值为2或4时,相应的剩余部分面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x的代数式表示出来.如图所示.解:(1)y=122-2x(x+1),即y=-2x2-2x+144,∴y是x的二次函数.(2)当x=2或4时,相应的y的值分别为132cm2或104cm2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题的解决,可以通过分析题目中变量之间的关系,建立二次函数模型.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:若设每件降价x元,每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围.解析:根据题意可知:实际商品的利润为(60-x-40),每星期售出商品的数量为(300+20x),则每星期售出商品的利润为y=(60-x-40)(300+20x),化简,注意要求出自变量x的取值范围.解:由题意,得:y=(60-x-40)(300+20x)=(20-x)(300+20x)=-20x2+100x+6000,自变量x的取值范围为0≤x<20.方法总结:销售利润=单位商品利润×销售数量;商品利润=售价-进价.三、板书设计教学反思教学过程中,强调判断一个函数为二次函数的三个条件,可对比已学过的一次函数,进一步巩固函数的有关知识.22.1.2 二次函数y =ax 2的图象和性质教学目标1.会用描点法画出y =ax 2的图象,理解抛物线的概念. 2.掌握形如y =ax 2的二次函数图象和性质,并会应用.教学过程一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究探究点一:二次函数y =ax 2的图象 【类型一】图象的识别已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )解析:本题进行分类讨论:(1)当a >0时,函数y =ax 2的图象开口向上,函数y =ax 图象经过一、三象限,故排除选项B ;(2)当a <0时,函数y =ax 2的图象开口向下,函数y =ax 图象经过二、四象限,故排除选项D ;又因为在同一直角坐标系中,函数y =ax 与y =ax 2的图象必有除原点(0,0)以外的交点,故选择C.方法总结:分a >0与a <0两种情况加以讨论,并且结合一些特殊点,采取“排除法”. 【类型二】实际问题中图象的识别已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间),则函数图象为( )解析:根据h 关于t 的函数关系式为h =12gt 2,其中g 为正常数,t 为时间,因此函数h =12gt 2图象是受一定实际范围限制的,图象应该在第一象限,是抛物线的一部分,故选A.方法总结:在识别二次函数图象时,应该注意考虑函数的实际意义. 探究点二:二次函数y =ax 2的性质 【类型一】利用图象判断二次函数的增减性作出函数y =-x 2的图象,观察图象,并利用图象回答下列问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比较y 1与y 2的大小; (2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比较y 3与y 4的大小; (3)由(1)、(2)你能得出什么结论?解析:根据画出的函数图象来确定有关数值的大小,是一种比较常用的方法.解:(1)图象如图所示,由图象可知y 1>y 2,(2)由图象可知y 3<y 4;(3)在y 轴左侧,y 随x 的增大而增大,在y 轴右侧,y 随x 的增大而减小.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图进行观察和分析以免解题时产生错误.【类型二】二次函数的图象与性质的综合题已知函数y =(m +3)xm 2+3m -2是关于x 的二次函数.(1)求m 的值;(2)当m 为何值时,该函数图象的开口向下? (3)当m 为何值时,该函数有最小值? (4)试说明函数的增减性.解析:(1)由二次函数的定义可得⎩⎨⎧m 2+3m -2=2,m +3≠0,故可求m 的值.(2)图象的开口向下,则m +3<0; (3)函数有最小值,则m +3>0;(4)函数的增减性由函数的开口方向及对称轴来确定.解:(1)根据题意,得⎩⎨⎧m 2+3m -2=2,m +3≠0,解得⎩⎨⎧m 1=-4,m 2=1,m ≠-3.∴当m =-4或m =1时,原函数为二次函数.(2)∵图象开口向下,∴m +3<0,∴m <-3,∴m =-4.∴当m =-4时,该函数图象的开口向下.(3)∵函数有最小值,∴m +3>0,m >-3,∴m =1,∴当m =1时,原函数有最小值. (4)当m =-4时,此函数为y =-x 2,开口向下,对称轴为y 轴,当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.当m =1时,此函数为y =4x 2,开口向上,对称轴为y 轴,当x <0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大.方法总结:二次函数的最值是顶点的纵坐标,当a >0时,开口向上,顶点最低,此时纵坐标为最小值;当a <0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.探究点三:确定二次函数y =ax 2的表达式【类型一】利用图象确定y =ax 2的解析式一个二次函数y =ax 2(a ≠0)的图象经过点A (2,-2)关于坐标轴的对称点B ,求其关系式.解析:坐标轴包含x 轴和y 轴,故点A (2,-2)关于坐标轴的对称点不是一个点,而是两个点.点A (2,-2)关于x 轴的对称点B 1(2,2),点A (2,-2)关于y 轴的对称点B 2(-2,-2).解:∵点B 与点A (2,-2)关于坐标轴对称,∴B 1(2,2),B 2(-2,-2).当y =ax 2的图象经过点B 1(2,2)时,2=a ×22,∴a =12,∴y =12x 2;当y =ax 2的图象经过点B 1(-2,-2)时,-2=a ×(-2)2,∴a =-12,∴y =-12x 2.∴二次函数的关系式为y =12x 2或y =-12x 2.方法总结:当题目给出的条件不止一个答案时,应运用分类讨论的方法逐一进行讨论,从而求得多个答案.【类型二】二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求:(1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标. 解析:直线与函数y =ax 2的图象交点坐标可利用方程求解.解:(1)∵点A (1,b )是直线与函数y =ax 2图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎨⎧b =a ×12,b =2×1-3,∴⎩⎨⎧a =-1,b =-1.(2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0),由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与抛物线的另一个交点B 的坐标为(-3,-9).【类型三】二次函数y =ax 2的实际应用如图所示,有一抛物线形状的桥洞.桥洞离水面最大距离OM为3m,跨度AB=6m.(1)请你建立适当的直角坐标系,并求出在此坐标系下的抛物线的关系式;(2)一艘小船上平放着一些长3m,宽2m且厚度均匀的矩形木板,要使小船能通过此桥洞,则这些木板最高可堆放多少米?解析:可令O为坐标原点,平行于AB的直线为x轴,建立平面直角坐标系,则可设此抛物线函数关系式为y=ax2.由题意可得B点的坐标为(3,-3),由此可求出抛物线的函数关系式,然后利用此抛物线的函数关系式去探究其他问题.解:(1)以O点为坐标原点,平行于线段AB的直线为x轴,建立如图所示的平面直角坐标系,设抛物线的函数关系式为y=ax2.由题意可得B点坐标为(3,-3),∴-3=a×32,解得a=-13,∴抛物线的函数关系式为y=-13x2.(2)当x=1时,y=-13×12=-13.∵OM=3,∴木板最高可堆放3-13=83(米).方法总结:解决实际问题时,要善于把实际问题转化为数学问题,即建立数学模型解决实际问题的思想.三、板书设计教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2的图象与性质,体会数学建模的数形结合的思想方法.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标1.会用描点法画出y=ax2+k的图象.2.掌握形如y=ax2+k的二次函数图象的性质,并会应用.3.理解二次函数y=ax2+k与y=ax2之间的联系.教学过程一、情境导入在边长为15cm的正方形铁片中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点坐标是什么?二、合作探究探究点一:二次函数y=ax2+k的图象与性质【类型一】y=ax2+k的图象与性质的识别若二次函数y=ax2+2的图象经过点(-2,10),则下列说法错误的是( )A.a=2B.当x<0,y随x的增大而减小C.顶点坐标为(2,0)D.图象有最低点解析:把x=-2,y=10代入y=ax2+2可得10=4a+2,所以a=2,∴y=2x2+2,抛物线开口向上,有最低点,当x<0,y随x的增大而减小,所以A、B、D均正确,而顶点坐标为(0,2),而不是(2,0).故选C.方法总结:抛物线y=ax2+k(a≠0)的顶点为(0,k),对称轴是y轴.【类型二】二次函数y=ax2+k增减性判断,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正确的是( )(2014·广西河池)已知点(xA.若y1=y2,则x1=x2B.若x1=-x2,则y1=-y2C.若0<x1<x2,则y1>y2D.若x1<x2<0,则y1>y2解析:如图所示,选项A:若y1=y2,则x1=-x2,所以选项A是错误的;选项B:若x1=-x2,则y1=y2,所以选项B是错误的;选项C:若0<x1<x2,在对称轴的右侧,y随x的增大而增大,则y<y2,所以选项C是错误的;选项D:若x1<x2<0,在对称轴的左侧,y随x的增大而减小,则y1 1>y2,所以选项D是正确的.方法总结:讨论二次函数的增减性时,应对自变量分区讨论,通常以对称轴为分界线.【类型三】识别y=ax2+k的图象与一次函数图象在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升,当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.【类型四】确定y=ax2+k与y=ax2的关系抛物线y =ax 2+c 与y =-5x 2的形状大小,开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y =-5x 2怎样得到的?解:抛物线y =ax 2+c 与y =-5x 2的形状、大小相同,开口方向也相同,∴a =-5.又∵其顶点坐标为(0,3).∴c =3.∴y =-5x 2+3.它是由抛物线y =-5x 2向上平移3个单位得到的.方法总结:抛物线y =ax 2+k 与y =ax 2开口大小,方向都相同,只是顶点不同,二者可相互平移得到.探究点二:二次函数y =ax 2+k 的应用【类型一】y =ax 2+k 的图象与几何图形的综合应用如图,在平面直角坐标系中,二次函数y =ax 2+c (a <0)的图象过正方形ABOC 的三个顶点A 、B 、C ,则ac 的值是________.解析:二次函数y =ax 2+c 与y 轴的交点为(0,c ),因此OA =c ,根据正方形对角线互相垂直平分且相等,不难求得B (-c 2,c 2)、C (c 2,c 2),因为C (c 2,c2)在函数y =ax 2+c 的图象上,将点C 坐标代入关系式即可求出ac 的值.解:∵y =ax 2+c 与y 轴的交点为(0,c ),四边形ABOC 为正方形,∴C 点坐标为(c 2,c2).∵二次函数y =ax 2+c 经过点C ,∴c 2=a (c2)2+c ,即ac =-2.方法总结:在解决此类问题时,应充分利用抛物线及正方形的对称性. 【类型二】二次函数y =ax 2+k 的实际应用如图所示,一位篮球运动员投篮,球沿抛物线y =-15x 2+72运行,然后准确落入篮筐内,已知篮筐的中心离地面的距离为3.05m.(1)球在空中运行的最大高度为多少?(2)如果该运动员跳起,球出手时离地面的高度为2.25m ,要想投入篮筐,则他距离篮筐中心的水平距离是多少?解:(1)∵y =-15x 2+72的顶点坐标为(0,3.5),∴球在空中运行的最大高度为3.5m.(2)在y =-15x 2+72中,当y =3.05时,3.05=-15x 2+72,解得x =±1.5.∵篮筐在第一象限内,∴篮筐中心的横坐标x =1.5.又当y =2.25时,2.25=-15x 2+72,解得x =±2.5.∵运动员在第二象限内,∴运动员的横坐标x =-2.5.故该运动员距离篮球筐中心的水平距离为1.5-(-2.5)=4(m).三、板书设计教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2+k 的图象与性质,体会抛物线y =ax 2与y =ax 2+k 之间联系与区别.第2课时 二次函数y =a (x -h )2的图象和性质教学目标1.会用描点法画出y =a (x -h )2的图象.2.掌握形如y =a (x -h )2的二次函数图象的性质,并会应用. 3.理解二次函数y =a (x -h )2与y =ax 2之间的联系.教学过程一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.从如图所示的直角坐标系中,你能得到函数图象解析式吗?二、合作探究探究点:二次函数y =a (x -h )2的图象和性质 【类型一】y =a (x -h )2的图象与性质的识别已知抛物线y =a (x -h )2(a ≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a ,h 的值.解:∵抛物线y =a (x -h )2(a ≠0)的顶点坐标为(-2,0),∴h =-2.又∵抛物线y =a (x +2)2经过点(-4,2),∴(-4+2)2·a =2,∴a =12.方法总结:抛物线y =a (x -h )2的顶点坐标为(h ,0),对称轴是直线x =h . 【类型二】二次函数y =a (x -h )2增减性的判断对于二次函数y =9(x -1)2,下列结论正确的是( )A .y 随x 的增大而增大B .当x >0时,y 随x 的增大而增大C .当x >-1时,y 随x 的增大而增大D .当x >1时,y 随x 的增大而增大解析:由于a =9>0,抛物线开口向上,而h =1,所以当x >1时,y 随x 的增大而增大.故选D. 【类型三】确定y =a (x -h )2与y =ax 2的关系能否向左或向右平移函数y =-12x 2的图象,使得到的新的图象过点(-9,-8)?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,设平移后的函数为y =-12(x -h )2,将x =-9,y =-8代入得-8=-12(-9-h )2,所以h=-5或h =-13,所以平移后的函数为y =-12(x +5)2或y =-12(x +13)2.即抛物线的顶点为(-5,0)或(-13,0),所以向左平移5或13个单位.方法总结:根据抛物线平移的规律,向右平移h 个单位后,a 不变,括号内变“减去h ”;若向左平移h 个单位,括号内应“加上h ”,即“左加右减”.【类型四】y =a (x -h )2的图象与几何图形的综合把函数y =12x 2的图象向右平移4个单位后,其顶点为C ,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.解析:利用二次函数平移规律先确定平移后抛物线解析式,确定C 点坐标,再解由得到的二次函数解析式与y =x 组成的方程组,确定A 、B 两点的坐标,最后求△ABC 的面积.解:平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0),解方程组⎩⎨⎧y =12(x -4)2,y =x ,得⎩⎨⎧x =2,y =2,或⎩⎨⎧x =8,y =8.∵点A 在点B 的左边,∴A (2,2),B (8,8).∴S △ABC =S △OBC -S △OAC =12OC ×8-12OC ×2=12.方法总结:两个函数交点的横纵坐标与两个解析式组成的方程组的解是一致的. 三、板书设计教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x-h)2的图象与性质,体会数学建模的数形结合思想方法.第3课时二次函数y=a(x-h)2+k的图象和性质教学目标1.会用描点法画出y=a(x-h)2+k的图象.2.掌握形如y=a(x-h)2+k的二次函数图象的性质,并会应用.3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.教学过程一、情境导入对于二次函数y=(x-1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y=a(x-h)2+k的图象和性质【类型一】二次函数y=a(x-h)2+k的图象求二次函数y =x 2-2x -1的顶点坐标、对称轴及其最值.解析:把二次函数y =x 2-2x -1化为y =a (x -h )2+k (a ≠0)的形式,就会很快求出二次函数y =x 2-2x -1的顶点坐标及对称轴.解:y =x 2-2x -1=x 2-2x +1-2=(x -1)2-2,∴顶点坐标为(1,-2),对称轴是直线x =1.当x =1时,y 最小值=-2.方法总结:把二次函数y =ax 2+bx +c (a ≠0)化成y =a (x -h )2+k (a ≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y =a (x -h )2+k 的性质(2014·山东聊城)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b2a =-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a-2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B. 方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a;当x =2时,二次函数的函数值为y=4a+2b+c;函数的图象在x轴上方时,y>0,函数的图象在x轴下方时,y<0.【类型三】利用平移确定y=a(x-h)2+k的解析式(2014·贵州铜仁)将抛物线y=13x2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A.y=13(x-2)2-1 B.y=13(x-2)2+1C.y=13(x+2)2+1 D.y=13(x+2)2-1解析:由“上加下减”的平移规律可知,将抛物线y=13x2向下平移1个单位所得抛物线的解析式为:y=13x2-1;由“左加右减”的平移规律可知,将抛物线y=13x2-1向右平移2个单位所得抛物线的解析式为y=13(x-2)2-1,故选A.探究点二:二次函数y=a(x-h)2+k的应用【类型一】y=a(x-h)2+k的图象与几何图形的综合(2014·吉林长春)如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为________.(用含a的式子表示)解析:如图,∵对称轴为直线x=-2,抛物线经过原点,与x轴负半轴交于点B,∴OB=4,∵由抛物线的对称性知AB=AO,∴四边形AOBC的周长为AO+AC+BC+OB=△ABC的周长+OB=a+4.故答案是:a+4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y=a(x-h)2+k的实际应用心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间满足函数y=-110 (x-13)2+59.9(0≤x≤30),y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x≤13时,学生的接受能力逐步增强;13≤x≤30时,学生的接受能力逐步降低.(2)当x=10时,y=-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59.(3)当x=13时,y值最大,是59.9,故第13分钟时,学生的接受能力最强.三、板书设计教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x-h)2+k的图象与性质,体会数学建模的数形结合思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质教学目标1.会画二次函数y=ax2+bx+c的图象.2.熟记二次函数y=ax2+bx+c的顶点坐标与对称轴公式.3.用配方法求二次函数y=ax2+bx+c的顶点坐标与对称轴.教学过程一、情境导入火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以近似用h=-5t2+150t+10表示.那么经过多长时间,火箭达到它的最高点?二、合作探究探究点一:二次函数y=ax2+bx+c的图象和性质【类型一】二次函数图象的位置与系数符号互判如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确的结论的序号是________;(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是________.解析:由抛物线开口向上,得a>0;由抛物线y轴的交点在负半轴上,得c<0;由抛物线的顶点在第四象限,得-b2a >0,又a >0,所以b <0;由抛物线与x 轴交点的横坐标是1,得a +b +c =0.因此,第(1)问中正确的结论是①④.在第(1)问的基础上,由a >0、b <0、c <0,可得abc >0;由-b 2a<1、a >0,可得2a +b >0;由点(-1,2)在抛物线上,可知a -b +c =2,又a +b +c =0,两式相加得2a +2c =2,所以a +c =1;由a +c =1,c <0,可得a >1.因此,第(2)问中正确的结论是②③④.方法总结:观察抛物线的位置确定符号的方法:①根据抛物线的开口方向可以确定a 的符号.开口向上,a >0;开口向下,a <0.②根据顶点所在象限可以确定b 的符号.顶点在第一、四象限,-b2a>0,由此得a 、b 异号;顶点在第二、三象限,-b2a <0,由此得a 、b 同号.再由①中a 的符号,即可确定b 的符号.【类型二】二次函数y =ax 2+bx +c 的性质(2014·广西南宁)如图,已知二次函数y =-x 2+2x ,当-1<x <a 时,y 随x 的增大而增大,则实数a 的取值范围是( )A .a >1B .-1<a ≤1C .a >0D .-1<a <2解析:抛物线的对称轴为直线x =-22×(-1)=1,∵函数图象开口向下,在对称轴左侧,y 随x的增大而增大,∴a ≤1.∵-1<x <a ,∴a >-1,∴-1<a ≤1,故选择B.方法总结:抛物线的增减性:当a >0,开口向上时,对称轴左降右升;当a <0,开口向下时,对称轴左升右降.【类型三】二次函数与一次函数的图象的综合识别(2014·贵州遵义)已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图所示,其中正确的是( )解析:∵A 图和D 图中直线y =ax +b 过一、三、四象限,∴a >0,b <0,∴抛物线y =ax 2+bx的开口向上,对称轴x =-b2a >0,∴选项A 错,选项D 正确;B 图和C 图中直线y =ax +b 过二、三、四象限,∴a <0,b <0,∴抛物线的开口向下,且对称轴x =-b2a<0,∴选项B ,C 错.故选择D. 方法总结:多种函数图象的识别,一般可以先确定其中一种函数的图象(如一次函数),再根据函数图象得到该函数解析式中字母的特点,最后结合二次函数图象的开口方向、对称轴或图象经过的特殊点对选项进行逐一考察,得出结论.【类型四】抛物线y =ax 2+bx +c 的平移(2014·浙江丽水)在同一平面直角坐标系内,将函数y =2x 2+4x -3的图象向右平移2个单位,再向下平移1个单位,得到图象的顶点坐标是( )A .(-3,-6)B .(1,-4)C .(1,-6)D .(-3,-4)解析:二次函数y =2x 2+4x -3配方得y =2(x 2+2x )-3=2(x 2+2x +1-1)-3=2(x +1)2-5,将抛物线y =2(x +1)2-5向右平移2个单位所得抛物线的解析式为y =2(x +1-2)2-5=2(x -1)2-5,再将抛物线y =2(x -1)2-5向下平移1个单位所得抛物线的解析式为y =2(x -1)2-5-1=2(x -1)2-6,此时二次函数图象的顶点为(1,-6),故选择C.方法总结:二次函数的平移规律:将抛物线y =ax 2(a ≠0)向上平移k (k >0)个单位所得的函数关系式为y =ax 2+k ,向下平移k (k >0)个单位所得的函数关系式为y =ax 2-k ;向左平移h (h >0)个单位所得函数关系式为y =a (x +h )2;向右平移h (h >0)个单位所得函数关系式为y =a (x -h )2;这一规律可简记为“上加下减,左加右减”.【类型五】二次函数的图象与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0)、B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得:⎩⎨⎧-2+2b +c =0,c =-6,解得⎩⎨⎧b =4,c =-6.∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线的对称轴为直线x =-42×(-12)=4,∴点C 的坐标为(4,0).∴AC =OC -OA=4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6.三、板书设计教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2+bx +c 的图象与性质,体会数学建模的数形结合思想方法.第2课时 用待定系数法求二次函数的解析式教学目标1.通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法.2.会根据不同的条件,利用待定系数法求二次函数的函数关系式,在实际应用中体会二次函数作为一种数学模型的作用.教学过程 一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为12米,你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点:用待定系数法求二次函数解析式 【类型一】用一般式确定二次函数解析式已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),求这个二次函数的解析式.解析:由于题目给出的是抛物线上任意三点,可设一般式y =ax 2+bx +c (a ≠0).解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0),依题意得:⎩⎪⎨⎪⎧a -b +c =-5,c =-4,a +b +c =1,解这个方程组得:⎩⎪⎨⎪⎧a =2,b =3,c =-4.∴这个二次函数的解析式为y =2x 2+3x -4.方法总结:当题目给出函数图象上的三个点时,设一般式为y =ax 2+bx +c ,转化成一个三元一次方程组,以求得a ,b ,c 的值.【类型二】用顶点式确定二次函数解析式已知二次函数的图象顶点是(-2,3),且过点(-1,5),求这个二次函数的解析式.解:设二次函数解析式为y =a (x -h )2+k ,图象顶点是(-2,3),∴h =-2,k =3,依题意得:5=a (-1+2)2+3,解得a =2,∴y =2(x +2)2+3=2x 2+8x +11.方法总结:若已知抛物线的顶点、对称轴或极值,则设顶点式为y =a (x -h )2+k .顶点坐标为(h ,k ),对称轴方程为x =h ,极值为当x =h 时,y 极值=k 来求出相应的数.【类型三】根据平移确定二次函数解析式将抛物线y =2x 2-4x +1先向左平移3个单位,再向下平移2个单位,求平移后的函数解析式.解析:要求抛物线平移的函数解析式,需要将函数y =2x 2-4x +1化成顶点式,然后根据顶点坐标的变换求抛物线平移后的解析式.解:y =2x 2-4x +1=2(x 2-2x +1)-1=2(x -1)2-1,该抛物线的顶点坐标是(1,-1),将其向左平移3个单位,向下平移2个单位后,抛物线的形状,开口方向不变,这时顶点坐标为(1-3,-1-2),即(-2,-3),所以平移后抛物线的解析式为y =2(x +2)2-3.即y =2x 2+8x +5.方法总结:抛物线y =a (x -h )2+k 的图象向左平移m (m >0)个单位,向上平移n (n >0)个单位后的解析式为y =a (x -h +m )2+k +n ;向右平移m (m >0)个单位,向下平移n (n >0)个单位后的解析式为y =a (x -h -m )2+k -n .【类型四】根据轴对称确定二次函数解析式已知二次函数y =2x 2-12x +5,求该函数图象关于x 轴对称的图象的解析式.。
第22章二次函数一、复习目标1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
二、课时安排 2三、复习重难点把握二次函数的性质,利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,并能和其它知识点进行综合应用。
四、教学过程 (一)知识梳理 二次函数知识点:1. 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
2. 二次函数的基本形式(1)二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:3. ()2y a x h =-的性质: 4. ()2y a x h k =-+的性质:1. 平移步骤:(1) 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;(2)保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(3) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.2y ax bx c =++的性质(1) 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.(2) 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.(1) 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2) 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点. 7.二次函数的应用: (二)题型、方法归纳 类型一:二次函数的平移【主题训练1】(枣庄中考)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3 C.y=3(x+2)2-3D.y=3(x-2)2-3“上加下减”的平移规律可知,将抛物线y=3x 2向上平移3个单位所得抛物线的解析式为:y=3x 2+3;由“左加右减”的平移规律可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确定顶点坐标平移:根据两抛物线前后顶点坐标的位置确定平移的方向与距离.2.利用规律平移:y=a(x+h)2+k 是由y=ax 2经过适当的平移得到的,其平移规律是“h 左加右减,k 上加下减”.即自变量加减左右移,函数值加减上下移.类型二:二次函数的图象及性质【主题训练2】(某某中考)如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是()个个个个【自主解答】选B.①∵对称轴在y轴右侧,∴- >0,∴ <0,∴a,b异号,∴ab<0,①正确;②把x=0,y=1代入y=ax2+bx+c得c=1,所以二次函数为y=ax2+bx+1; 又∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4a,②正确;③∵当x=1时,图象在x轴上方,∴a+b+c>0;把x=-1,y=0代入y=ax2+bx+1,得b=a+1,∵图象的开口向下,∴a<0,∴a+b+c= a+a+1+1=2a+2<2,∴0<a+b+c<2,③正确;④∵b=a+1,∴a=b-1,∵0<a+b+c<2,c=1,∴0<b-1+b+1<2,即0<2b<2,∴0<b<1,④正确;⑤当x>-1时,函数图象有部分在x轴上方,与x轴有交点,有部分在x轴下方,所以y>0,y=0,y<0都有可能.所以正确的共有4个,选B.归纳:类型三:二次函数与方程、不等式【主题训练3】(贺州中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是.(填入正确结论的序号)【自主解答】∵抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,∴一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,①是正确的.∵抛物线的开b- =1>0,口方向向上,∴a>0;∵抛物线与y轴的交点在y轴的负半轴,∴c<0;∵对称轴x=2ab-=1,∴b=-2a,∴∴a与b异号,则b<0.∴abc>0,②是正确的.∵抛物线的对称轴x=2a2a+b=0,③是错误的.∵当x=-2时,y=4a-2b+c>0,又∵b=-2a,∴4a-2b+c=4a-2(-2a)+c=8a+c>0,④是错误的.∵抛物线的对称轴为直线x=1,∴在x=-1与x=3时函数值相等,由函数图象可知x=-1的函数值为负数,∴x=3时的函数值y=9a+3b+c<0,⑤是正确的.答案:①②⑤归纳:二次函数与方程、不等式的关系1.二次函数与方程:抛物线y=ax2+bx+c与x轴交点的横坐标满足ax2+bx+c=0.2.二次函数与不等式:抛物线y=ax2+bx+c在x轴上方部分的横坐标满足ax2+bx+c>0;抛物线y=ax2+bx+c在x轴下方部分的横坐标满足ax2+bx+c<0.类型四:二次函数的应用【主题训练4】(某某中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表).由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由.(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x 应该在哪个X 围内选择?直接写出结果.【自主解答】(1)选择二次函数.设抛物线的解析式为y=ax 2+bx+c, 根据题意,得4a 2b c 49,a 1,4a 2b c 41,b 2,c 49,c 49-+==-⎧⎧⎪⎪++==-⎨⎨⎪⎪==⎩⎩解得, ∴y 关于x 的函数解析式为y=-x 2-2x+49.不选另外两个函数的理由:点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1)得y=-x 2-2x+49,∴y=-(x+1)2+50. ∵a=-1<0,∴当x=-1时y 的最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大. (3)-6<x<4.归纳:解决二次函数应用题的两步骤1.建模:根据数量关系列二次函数关系建模或者根据图象的形状建模.2.应用:利用二次函数的性质解决问题.(三)典例精讲例题1:(2016·某某省某某市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为时,透光面积最大值约为2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的X围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.(四)归纳小结1.引导学生整理把握本章知识点并熟练掌握。
第二十二章二次函数1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象理解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.5.会利用二次函数的图象求一元二次方程的近似解.6.掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过二次函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.3.运用二次函数的知识解决实际问题,体会数学知识的现实意义,提高学生分析问题、解决问题的能力,培养学生应用数学的意识.4.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等思想方法,养成既能自主探索又能合作探究的良好学习习惯.3.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,获得运用数学解决实际问题的经验,感受数学模型、数学思想在实际问题中的应用价值.二次函数是初中阶段所学的有关函数知识的重点内容之一,学生在学习了正比例函数、一次函数之后,又学习了二次函数,这是对函数及其应用知识学习的深化和提高,也是学习其他初等函数的基础.二次函数是描述现实世界变量之间的关系的重要数学模型,二次函数的图象也是人们最为熟悉的曲线之一,如喷泉水流、抛掷的铅球划过的轨迹等,同时,二次函数的相关性质也是解决有关问题的理论基础,它常与一元二次方程、三角形等知识综合在一起,它综合了初中所学的函数知识,它在中学数学中起着承上启下的作用.二次函数作为重要的数学模型,在解决有关实际问题中发挥着重要作用,通过学习可以培养和提高学生用函数模型解决实际问题的能力. 本章从实际问题情境入手引出基本概念,引导学生进一步体会函数的模型思想,重点内容是对二次函数的图象和性质的理解和掌握,二次函数的图象和性质是从函数y=ax 2出发逐步深入探究的,在探究过程中体现了从特殊到一般、类比、数形结合思想,其中类比思想多处体现,如类比一次函数研究二次函数,而数形结合思想贯穿探究二次函数的图象和性质的始终.对于某些实际问题,力图加强二次函数与实际问题的联系,让学生体会数学与生活息息相关,提高学生应用数学的意识.【重点】1.通过对实际问题情境的分析,确定二次函数的解析式.2.会用描点法画二次函数图象,并从图象中了解二次函数的性质.3.会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题.4.会利用二次函数的图象求一元二次方程的近似解.5.能运用二次函数知识解决实际问题.【难点】1.能够正确运用二次函数的图象及性质解决实际问题.2.理解二次函数与一元二次方程的关系.1.注意对实际问题情境的创设,帮助学生形成模型思想.在教学中要创设丰富的实际问题的情境,使学生理解二次函数的意义,并能够用二次函数的知识解决实际问题.2.鼓励学生采用多种方法了解二次函数的性质.二次函数图象的平移问题是二次函数的教学难点,所以可以让学生将自己的想法表达出来,互相学习和借鉴.3.注重知识之间的联系,帮助学生建立二次函数与其他学过的函数之间的联系.22.3实际问题与二次函数 2课时22.1 二次函数的图象和性质1.通过对实际问题的分析,确定二次函数的解析式,并体会二次函数的意义.2.会用描点法画抛物线,通过图象了解二次函数的性质.3.会用配方法将二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出函数图象的对称轴,并能解决一些简单的实际问题.4.会用待定系数法求二次函数的解析式.1.从实际问题情境中经历探索两个变量之间的关系的过程,使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.2.通过函数的图象探究二次函数的性质,使学生进一步体会数形结合思想在数学中的应用,经历知识的形成过程,了解从特殊到一般的认识过程.1.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,从而提高学生应用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习方法,养成既能自主探索又能合作探究的良好学习习惯.【重点】1.二次函数图象及其性质.2.运用二次函数的知识解决实际问题.【难点】不同形式的二次函数图象之间的位置关系.22.1.1二次函数1.理解并掌握二次函数的定义.2.能判断一个给定的函数是否为二次函数.3.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.1.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系的过程.2.使学生体验如何用数学的方法去描述变量之间的数量关系,发展学生的观察、探究能力及归纳总结能力.3.经历探索具体问题中的数量关系和变化规律的过程,体会建立函数模型的思想.1.通过对一些实际问题的探究,发展学生合理的猜想、推理能力,增强他们学习数学的兴趣.2.通过探索具体问题中的数量关系和变化规律的过程,体会数学来源于生活又应用于生活,提高学生应用数学的意识.【重点】1.理解并掌握二次函数的定义.2.能根据实际问题中的条件确定二次函数的解析式及自变量的取值范围.【难点】用二次函数表示变量之间的关系.【教师准备】多媒体课件(1~3)【学生准备】预习教材P28~29.导入一:出示喷泉图片:图片中喷头喷出的水珠在空中走过一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?这些都将在新的一章中学习.导入二:请同学们阅读章前问题,并回答下列问题:如果改变正方体的棱长x,那么正方体的表面积y会随之改变,y与x之间有什么数量关系?学生思考回答:y=6x2.【问题】y是x的函数吗?这个函数是不是我们以前学过的函数?【师生活动】复习函数、正比例函数、一次函数的概念.导入三:当你走在大街上时,会发现有好多车在奔跑,但你是否想到小汽车的行驶是要限速的?假设小汽车刹车距离s(m)与速度v(km/h )之间的函数关系式为s=v2,一辆汽车的速度为100 km/h.在前方80 m处停放着一辆故障车,你能判断此时是否有危险吗?[设计意图]通过欣赏图片、感受生活中的数量关系式,让学生感受生活中处处有数学,激发学生学习本章的兴趣.同时让学生体会二次函数是刻画某些实际问题的模型,通过复习一次函数的知识,让学生用类比的方法从已有的知识体系中自然地构建出新知识.问题1【课件1】(教材问题1)n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?思路一教师引导学生思考并回答下列问题.n个球队中,每个队要与其他个球队各比赛一场,全部比赛共有场.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的数学模型.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.思路二小组活动,共同探究,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何根据题中的等量关系建立函数解析式?【师生活动】小组讨论,教师在巡视过程中及时解决疑难问题,学生小组讨论后发表讨论结果,教师及时补充.解:n个球队中,每个队要与其他(n-1)个球队各比赛一场,所以比赛的场次数m=n(n-1) ,即m=n2-n.问题2【课件2】(教材问题2)某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x 的值而确定,y与x之间的关系应怎样表示?思路一教师引导学生思考并回答下列问题.这种产品现在的年产量是20 t,一年后的产量是t,再经过一年后的产量是t.分析题意,题目中的等量关系为,所列等式为.【师生活动】学生独立思考后回答问题,教师点评并分析如何建立函数的模型.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.思路二小组活动,共同交流,思考下列问题.(1)明确题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)根据等量关系你能写出函数解析式吗?【师生活动】学生通过交流讨论列出函数解析式,教师在巡视过程中及时解决疑难问题.解:这种产品现在的年产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)·(1+x)t,即y=20(1+x)2.[设计意图]通过师生共同探讨,找到实际问题中的等量关系,列出函数关系式,为引出二次函数的概念做铺垫,同时可提高学生利用方程思想解决实际问题的能力.二、二次函数的概念观察教师板书上的三个函数关系式:(1)y=6x2; (2)m=n2-n; (3)y=20(1+x)2.【思考】(1)这三个函数是我们学过的函数吗?(2)这些函数的自变量x的最高次数是多少?(3)你能说出它们的共同特征吗?(4)通过观察,你能归纳出这种函数的一般形式吗?【师生活动】学生独立思考,小组交流,逐一回答所提问题,教师适时启发学生,共同归纳总结.【课件3】一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.【思考】(1)你身边哪些量之间存在着二次函数关系?(2)二次项系数a能不能为0?b,c能不能为0?为什么?(3)如何判断一个函数是不是二次函数?(4)二次函数与一元二次方程的一般形式有什么关系?【师生活动】学生独立思考回答问题,教师和学生共同归纳二次函数的特征:①函数关系式必须是整式.②自变量的最高次数是2.③二次项系数不为0.④函数y=ax2+bx+c(a,b,c是常数)中,当a≠0时,y=ax2+bx+c是二次函数;当a=0时,y=bx+c,若b≠0,则它是一次函数,若b=0,则y=c是一个常数函数.[设计意图]学生观察讨论,通过老师设计的问题串类比已学函数,抽象出二次函数的特征,归纳总结出二次函数的一般形式,学生经历了探索二次函数概念的形成过程,[过渡语]我们通过实例归纳总结出了二次函数的概念,试试能不能解决下列问题.子:①y=6x2;②y=-3x2+5;③y=200x2+400x+200;④y=x3-2x;⑤y=x2-+3;⑥y=(x+1)2-x2.其中二次函数有.(只填序号)〔解析〕根据二次函数的概念可得①②③符合二次函数的概念;④中自变量的最高次数是3,⑤中函数右边不是整式形式,⑥中函数化简后不含二次项,均不符合二次函数的概念.故填①②③.若y=(m+1)--是二次函数,则m的值为.〔解析〕二次函数的自变量x的最高次数是 ,∴m2-6m-5=2,解得m=7或m=-1.由二次项系数不为0,得m+1≠ ,∴m=7.故填7.在如图所示的一张长、宽分别为 50 cm 和 30 cm的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体铁皮箱的底面积为y cm2.(1)求y与x之间的关系式;(2)写出自变量x的取值范围;(3)当x=5时,长方体铁皮箱的底面积是多少?解:(1)由题意得长方体的底面的长为(50-2x)cm,宽为(30-2x)cm,题目中的等量关系为长方体的底面积=长×宽,所以可得函数解析式为y=(50-2x)(30-2x)=4x2-160x+1500.(2)根据实际意义,小正方形的边长为正数,且两个小正方形的边长和不能大于矩形的宽,所以2x<30,即x<15,且x>0,所以自变量x的取值范围是0<x<15.(3)把x=5代入上述函数解析式,得y=800,所以长方体铁皮箱的底面积是800 cm2.[设计意图]通过例题加深对二次函数概念的理解和掌握,在探索中发现新知,在交流中巩固新知,同时体验在实际问题中建立函数模型,为后边的学习做铺垫,让学生体会数学来源于生活又应用于生活.[知识拓展]1.根据实际问题列二次函数关系式时应注意:(1)正确判别自变量与因变量;(2)确保找到正确的等量关系;(3)将列出的关系式整理成y=ax2+bx+c(a≠0)的形式;(4)确保自变量有意义.2.在二次函数y=ax2+bx+c中,必须注意限制条件a≠0.3.任何一个二次函数都可以化成y=ax2+bx+c(a,b,c为常数,且a≠0)的形式,因此把y=ax2+bx+c(a,b,c为常数,且a≠0)叫做二次函数的一般式.4.在二次函数y=ax2+bx+c(a≠0)中,x的取值范围是全体实数.5.二次函数y=ax2+bx+c(a≠0)与一元二次方程有着密切联系,如果将变量y换成一个常数,那么这个二次函数就是一元二次方程了.1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数,叫做二次函数.2.二次函数满足的条件:①先化简再判断;②等式右边是整式形式;③自变量的最高次数是2;④二次项系数不为0.3.二次函数的自变量的取值范围:自变量的取值在实际问题中要有实际意义.4.根据实际问题写出函数解析式:认真分析题意,找到题目中的等量关系,根据等量关系列出函数解析式.1.下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-解析:A,B中自变量x的次数是1,是一次函数;D中,等式右边不是整式形式.故选C.2.二次函数y=2x2+2x-4的二次项系数与常数项的和为()A.1B.-2C.7D.-6解析:二次函数y=2x2+2x-4中,二次项系数为2,常数项为-4,2+(-4)=-2.故选B.3.y=(m+1)2--3x+1是二次函数,则m的值为.解析:根据二次函数的概念可得m2-m=2,且m+1≠0,解得m=2.故填2.4.若物体运动的路程s(m)与时间t(s)之间的关系为s=5t2+2t,则当t=4 s时,该物体所经过的路程为.解析:把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.5.一个矩形的长是4 cm,宽是3 cm,若将这个矩形的长增加x cm,宽增加2x cm,则它的面积增加到y cm2,试写出y与x的关系式,并求出自变量x的取值范围.解:根据矩形的面积公式得y=(4+x)(3+2x)=2x2+11x+12.自变量x的取值范围是x>0.22.1.1二次函数一、感知二次函数问题1问题2二、二次函数的概念一、教材作业【必做题】教材第29页练习的1,2题.【选做题】教材第41页习题22.1的1题.二、课后作业【基础巩固】1.下列不属于二次函数的是()A.y=(x-1)(x+2)B.y=(x+1)2C.y=1-x2D.y=2(x+3)2-2x22.若y=mx2+nx-p(m,n,p是常数)为二次函数,则()A.m,n,p均不为0B.m≠0,且n≠0C.m≠0D.m≠0,且p≠03.已知二次函数y=3(x-2)2+1,当x=3时,y的值是()A.4B.-4C.3D.-34.若二次函数y=4x2+1的函数值为5,则对应的自变量x的值为()A.1B.-1C.±1D.5.二次函数y=2x(x-1)的二次项系数是,一次项系数是,常数项是.6.如果函数y=(a-1)x2-ax+6是关于x的二次函数,那么a的取值范围是.7.菱形的两条对角线的和为26 cm,则菱形的面积S(cm2)与一条对角线长x(cm)之间的函数关系式为.8.若函数y=(m+1)-2x+3是关于x的二次函数,试确定m的值或其取值范围.9.写出下列各函数关系式,并判断它们是什么类型的函数.(1)正方体的表面积S与棱长a之间的函数关系;(2)圆的面积y与它的周长x之间的函数关系;(3)某产品年产量为30台,计划今后每年比上一年的产量增长x%,两年后该产品的产量y(台)与x之间的函数关系.【能力提升】10.下列函数关系中,可以看作是二次函数y=ax2+bx+c(a≠0)的模型的是 ()A.在一定距离内,汽车行驶的速度与行驶的时间之间的关系B.我国现年人口自然增长率为1%,我国总人口数随年份变化的关系C.一个矩形的周长一定时,矩形面积和矩形一边长之间的关系D.圆的周长与其对应的半径之间的关系11.某商场以每件30元的价格购进一种商品,试销中发现这种商品的日销售量m(件)与每件商品的销售价x(元)满足一次函数m=162-3x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?【拓展探究】12.如图所示,用同样规格的正方形白色和黑色瓷砖铺设矩形地面,请观察下列图形并解答问题.(1)在第n个图形中,每一横行有块瓷砖,每一竖列有块瓷砖,黑色瓷砖共有块;(均用含n的代数式表示)(2)在(1)的条件下,设铺设地面所用瓷砖的总块数为y,请写出y与n之间的函数关系式;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求n的值.【答案与解析】1.D(解析:化简后D中不含有自变量x的二次项,所以D选项不属于二次函数.故选D.)2.C(解析:根据二次函数的概念,即形如y=ax2+bx+c(a,b,c为常数,且a≠0)的函数是二次函数,所以只要满足二次项系数不为0即可.故选C.)3.A(解析:把x=3代入函数解析式,可得y=4.故选A.)4.C(解析:把y=5代入函数解析式,得4x2+1=5,解得x=±1.故选C.)5.2-20(解析:将原式整理得y=2x2-2x,所以二次项系数为2,一次项系数为-2,常数项为0.)6.a≠1(解析:二次函数中二次项系数不为0,所以a-1≠0,即a≠1.故填a≠1.)7.S=-x2+13x(解析:根据题意可得菱形的另一条对角线长为(26-x)cm,由菱形的面积公式可得S=x(26-x)=-x2+13x.故填S=-x2+13x.)8.解:∵函数y=(m+1)-2x+3是关于x的二次函数,∴m2+1=2,且m+1≠0,解得m=1.9.解:(1)S=6a2,是二次函数. (2)y=ππ=π,是二次函数. (3)y=30(1+x%)2,是二次函数.10.C(解析:设一个矩形的周长为a,矩形的一边长为x,则另一边长为-x,则矩形的面积S=x-=-x2+x,是二次函数.故选C.)11.解:由题意可知该商品每件的利润为(x-30)元,则y=(162-3x)(x-30),即y=-3x2+252x-4860,所以y是x的二次函数.12.解:(1)由图形规律可以得出:每一横行有(n+3)块瓷砖,每一竖列有(n+2)块瓷砖,黑色瓷砖数=(n+3)(n+2)-n(n+1)=4n+6.故答案为:(n+3),(n+2),(4n+6).(2)y=(n+3)(n+2),即y=n2+5n+6. (3)由题意得(n+3)(n+2)=506,解得n1=-25(舍去),n2= ,∴n的值为20.本节课由实际问题导入新知识,呈现了“问题情境——建立数学模型——归纳总结——知识拓展”的过程,在探究过程中,给学生提供探索和交流的空间,在小组交流、合作中获取知识,把要探究的知识设计成问题形式,降低了难度,让学生体验成功的快乐,激发学习兴趣.学生在课堂上学会了与他人交流,学会了探索,提升了分析问题和解决问题的能力.此外,教学中实际问题的解决贯穿整节课,让学生体会建模思想是解决数学问题的重要途径,培养了学生应用数学的意识.由于这节课内容较少,在学习了一次函数和一元二次方程后,学习这节课应该是很简单的,所以误认为学生会通过自学掌握所有知识,教学时对于概念的形成过程有点过于急躁,造成学生对概念的细节问题掌握不牢固,在后边的练习中出错较多,缺乏学习数学知识的严谨性,所以在课堂上要重视探究知识的过程.二次函数是一种常见的函数,应用非常广泛,许多实际问题往往可以归结为二次函数问题加以研究.在教学中要重视二次函数概念的形成和构建,在对二次函数的概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体会用函数思想去描述、研究变量之间的变化规律的意义.练习(教材第29页)1.解:S= πr·r+ πr2= πr2.2.解:y=(30+x)(20+x)=x2+50x+600.1.本节课主要学习二次函数的概念,通过具体实例中变量之间关系的特征,感受二次函数的特征和意义,从而形成对二次函数的初步认识,本节课的重点是强调具体问题的分析、抽象,渗透数学建模思想.教师引导学生分析问题,并用关系式表示这一关系的过程,引出二次函数的概念,获得二次函数表示变量关系的体验,学生在教师的引导下,通过自主探索与合作交流,理解并掌握本节课的重点,学生通过主动探索,获取知识,丰富数学活动的经验,逐步达到学会学习的目的.2.对于九年级的学生来说,之前已经学过常量与变量、一次函数和正比例函数,对于函数是刻画变量之间关系的数学模型也有了一定的认识,所以在此基础上可以用类比的方法继续深入学习二次函数.而且学生的逻辑思维、概括归纳能力也有了一定的提高,本节课根据教材实例引导学生自主探究,分析题意,得到相应的函数关系式,分析所得到的三个关系式的共同特征,由学生概括归纳,得到二次函数的概念和一般式,这样很自然地就突破了本节课的难点.学生通过经历知识的形成过程培养了分析问题和解决问题的能力,提高了数学的应用意识.已知函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,该函数是二次函数?(2)当a为何值时,该函数是一次函数?〔解析〕由二次函数的定义知a2-4≠0,据此可以求得a的值;由一次函数的定义知a2-4=0,且a+2≠0,据此可以求得a的值.解:( )∵该函数是二次函数,∴二次项系数不为0,即a2-4≠0,解得a≠±2,∴当a≠±2时,该函数是二次函数.( )∵该函数是一次函数,∴a2-4=0,且a+2≠0,解得a=±2,且a≠- ,∴a=2.22.1.2二次函数y=ax2的图象和性质1.能用描点法画出二次函数y=ax2的图象.2.能根据对二次函数y=ax2的图象的理解,掌握二次函数y=ax2的性质.3.初步建立二次函数表达式与其图象之间的关系.1.经历探索和发现二次函数的图象的特点和性质的过程,获得研究函数性质的经验.2.通过二次函数的图象探究其性质,进一步体会数形结合思想的应用.1.经历观察、推理、交流等过程,获得研究问题和合作交流的方法和经验,体验数学活动中的探索性和创造性.2.在数学学习活动中,体会数学和实际生活的联系,感受数学的实际意义,激发学生学习数学的乐趣.【重点】用描点法画出二次函数y=ax2的图象,掌握二次函数y=ax2的性质.【难点】探究二次函数y=ax2的图象特点和性质的过程.【教师准备】教材图22.1—3,图22.1—4,图22.1—5.【学生准备】复习二次函数的概念.导入一:图中的拱桥是什么曲线?这条曲线有什么特点?通过对本节课的学习,相信大家一定会回答这个问题.导入二:复习提问:1.正比例函数、一次函数的图象分别是什么?(一条直线.)2.画函数图象的基本步骤是什么?(列表、描点、连线.)3.一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质.)4.我们能否类比研究一次函数的性质的方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数的性质的方法来研究二次函数的性质,应先研究二次函数的图象.)导入三:如图所示,一名篮球运动员手中的球在离篮筐中心水平距离4 m处投篮,当球运行的水平距离为2.5 m时,球达到最大高度3.5 m,然后准确落入篮筐内,已知篮筐距离地面的高度为3.05 m.。
第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
22.1 二次函数的图象和性质22.1.1 二次函数课题22.1.1 二次函数授课人知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,让学生归纳二次函数的概念并能够根据函数特征识别二次函数.数学思考学生能对具体情境中的数学信息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.问题解决通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来于生活,又服务于生活的辩证观点.教学目标情感态度通过观察、操作、交流、归纳等数学活动,加深对二次函数概念的理解,发展学生的数学思维,增强学生学好数学的愿望与信心.教学重点对二次函数的理解.教学难点由实际问题确定函数解析式和确定自变量的取值范围.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.我们学习过哪些函数呢?试着举例说明一下.2.下列函数是什么函数?有不认识的吗?能说说你所认识的函数的图象和性质吗?(1)y=2x+1;(2)y=-4x;(3)y=3x2+1.3.学习函数应从哪几个方面进行探究呢?师生活动:教师提出以上问题,引导学生回答,师生共同回顾、交流,适时做好总结.问题解析:1.学习过的函数有一次函数,正比例函数是其特殊形式.2.(2)是正比例函数;(1)(2)是一次函数.3.学习函数一般是从函数的定义、函数的一般形式、函数的图象及其性质、函数的实际应用等方面进行学习.由回顾旧知识入手,通过回顾已经学习过的函数的相关知识对要学习的新知识有明确的方向,通过类比进行延伸,符合学生的认知规律.活动一:创设情境导入新课【课堂引入】图22-1-5问题:如图22-1-5,正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,则y与x以学生熟悉、感兴趣的问题作为课题引入,激发学生学习新知识的兴趣,同时为引入新课奠定基础.之间的函数解析式是什么?它是一次函数吗?有什么特点?学生思考后回答,教师点拨:这是我们今天需要学习和研究的“二次函数”数学模型.活动二:实践探究交流新知1.探究新知(1)n个球队参加比赛,每两个队之间都要进行一场比赛,场数m与球队数n之间有什么关系?每个队要与几个队各比赛一场?(2)某产品今年的年产量是20 t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将由计划所定的x的值而确定,y与x之间的关系应怎样表示?教师提问:(1)以上问题中有哪些变量?其中哪些是自变量?列出问题中的函数解析式;(2)观察上面的函数解析式,分析解析式有什么特点.让学生独立思考完成解答,教师适当地引导与点拨,共同得到问题的结论.教师板书:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.2.解析新知教师指导学生观察二次函数的定义,交流、讨论二次由现实中的实际问题入手,给学生创设熟悉的问题情境,通过问题的解决为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲,学生通过分析、交流探究二次函数的概念,加深对概念的理解,为解决问题打下基础.函数的特征,并进行总结:①等式左边是函数y,右边是关于自变量的整式;②a,b,c都是常数,a≠0;③等式右边自变量的最高次数为2,一次项和常数项可以为0,但是必须保留二次项;④自变量x的取值范围是任意实数.教师做好归纳:二次函数的一般形式:y=ax2+bx+c(a,b,c是常数,a≠0),ax2叫做二次项,a叫做二次项系数,bx 叫做一次项,b叫做一次项系数,c是常数项.活动三:开放训练体现应用【应用举例】例1 下列函数中,属于二次函数的是( C )A.y=2x-3B.y=(x+1)2-x2C.y=2x2-7xD.y=-x例2 关于函数y=(500-10x)(40+x),下列说法不正确的是( C )A.y是x的二次函数B.二次项系数是-10C.一次项是100D.常数项是20000例3 若y=(m+1)xm2-6m-5是二次函数,则m的值为 7 .师生活动:学生自主进行解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,应用举例有利于学生对二次函数概念的理解,能起到及时巩固的作用.共同得到正确的结论,并获得解题的经验.【拓展提升】例4 李师傅要在一张长、宽分别为50 cm和30 cm 的矩形铁皮的四个角上,各剪去一个大小相同的小正方形,用剩余的部分制作一个无盖的长方体箱子,小正方形的边长为x cm,长方体箱子的底面积为ycm2.求:(1)y与x之间的函数解析式;(2)自变量x的取值范围;(3)当x=5 cm时,长方体箱子的底面积.教师重点关注:学生对已解问题与未解问题的对比分析能力;给予学生一定的时间去思考、充分讨论,争取让学生自己得到解答方法,并对学习有困难的学生适当引导、点拨.例4中的三个问题层层递进,在复习旧知识的同时获得解决新问题的经验,进一步内化新知、突破难点.活动四:课堂总结反思【达标测评】1.下列函数中是二次函数的是( B )A.y=x+12 B.y=3(x-1)2C.y=(x+1)2-x2D.y=3x-12.若函数y=(a-1)x2+2x+a2-1是关于x的二次函数,则( C )A.a=1B.a=±1C.a≠1D.a≠-13.已知关于x的函数y=(m2-1)xm2-m是二次函数,求m的值.从简单的应用开始,及时巩固新知,让学生获得对二次函数深层次的理解,从多个角度进行检测,达到学有所成的目的.4.已知二次函数y=2x2+x-3.(1)当x=1时,求它所对应的函数值y;(2)当y=0时,求它所对应的自变量x的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?请同学们说一说.教师进行总结:二次函数的定义及各部分名称;根据实际问题列二次函数解析式及求函数值.2.布置作业:(1)教材第29页练习第1,2题.(2)教材第41页习题22.1第1,2题.学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]在复习回顾环节中,教师引导学生复习一次函数和一反思教学过程和教师表现,进一步优化操作流程和提升自身素质.元二次方程的知识,为学习二次函数做好铺垫;在探究新知过程中,通过类比学习使知识简单化,思路清晰化,学习效果较好;在课堂训练环节中,选用例题典型且有思维深度,学生能够运用所学新知进行解答,能够圆满完成教学任务.②[讲授效果反思]对于二次函数的认识,强调几点:(1)一般形式中各项的名称;(2)二次项系数不能为0;(3)二次函数解析式的多种形式.③[师生互动反思]从课堂氛围和课堂效果分析,学生能够积极投入新知学习中,能够集中精力完成学习任务.④[习题反思]好题题号 错题题号 典案二导学设计学习目标:1、通过观察发现二次函数的特点,得出二次函数的定义,能区分二次函数;2、能够根据实际问题,熟练地列出二次函数关系式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
人教版数学九年级上册教案22.1.1《二次函数》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习。
二次函数是中学数学中的重要内容,也是高考中的热点之一。
本章内容主要包括二次函数的定义、图象与性质,以及二次函数的应用。
在学习本章之前,学生已经掌握了函数、方程等基础知识,为本章的学习打下了基础。
二. 学情分析九年级的学生已具备一定的逻辑思维能力和抽象思维能力,但对于二次函数这一复杂的概念,仍需要通过具体实例和实际操作来理解和掌握。
在学习过程中,学生可能对二次函数的图象与性质产生困惑,需要教师进行引导和解释。
三. 教学目标1.了解二次函数的定义和一般形式;2.掌握二次函数的图象与性质,并能运用其解决实际问题;3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.二次函数的定义和一般形式;2.二次函数的图象与性质;3.二次函数的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的知识;2.使用多媒体辅助教学,展示二次函数的图象与性质;3.学生进行小组讨论和合作交流,提高学生的动手能力和团队协作能力。
六. 教学准备1.多媒体教学设备;2.教学PPT;3.练习题和测试题;4.教学课件。
七. 教学过程导入(5分钟)教师通过一个实际问题引入二次函数的概念,如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。
引导学生思考:这个二次函数是什么样子?它的图象是什么样的?呈现(10分钟)教师通过PPT展示二次函数的一般形式和图象,解释二次函数的定义和性质。
同时,教师可以通过举例来说明二次函数的应用,如:抛物线、顶点坐标的计算等。
操练(10分钟)教师布置一些练习题,让学生动手计算和绘制二次函数的图象。
教师可以学生进行小组讨论,共同解决问题。
巩固(10分钟)教师通过一些实际问题,让学生运用二次函数的知识来解决问题。
教师可以引导学生进行思考和讨论,帮助学生巩固所学知识。
拓展(10分钟)教师可以引导学生思考:二次函数的图象和性质与其他函数有什么不同?如何判断一个函数是否为二次函数?教师可以学生进行小组讨论,引导学生进行拓展思考。
初中数学人教版九年级上册实用资料第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-1x2(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1(2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题.22.1.2二次函数y=ax2的图象和性质通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.重点从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.难点画二次函数y=ax2的图象.一、引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1(2)y=2x2+7(3)y=x-2(4)y=3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.二、教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.二次函数y=ax2(a≠0)的图象和性质图象(草图) 开口方向顶点对称轴最高或最低点最值a>0当x=____时,y有最____值,是________.a<0当x=____时,y有最____值,是________.活动4:达标检测(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.作业布置教材第32页练习.22.1.3二次函数y=a(x-h)2+k的图象和性质1.经历二次函数图象平移的过程;理解函数图象平移的意义.2.了解y=ax2,y=a(x-h)2,y=a(x-h)2+k三类二次函数图象之间的关系.3.会从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.重点从图象的平移变换的角度认识y=a(x-h)2+k型二次函数的图象特征.难点对于平移变换的理解和确定,学生较难理解.一、复习引入二次函数y=ax2的图象和特征:1.名称________;2.顶点坐标________;3.对称轴________;4.当a>0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外);当a<0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x轴的________(除顶点外).二、合作学习在同一坐标系中画出函数y=12x2,y=12(x+2)2,y=12(x-2)2的图象.(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数y =ax 2和y =a(x -h)2图象之间的关系1.结合学生所画图象,引导学生观察y =12(x +2)2与y =12x 2的图象位置关系,直观得出y =12x 2的图象――→向左平移两个单位y =12(x +2)2的图象.教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如: (0,0)――→向左平移两个单位(-2,0); (2,2)――→向左平移两个单位(0,2); (-2,2)――→向左平移两个单位(-4,2).②也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程. 2.用同样的方法得出y =12x 2的图象――→向右平移两个单位y =12(x -2)2的图象.3.请你总结二次函数y =a(x -h)2的图象和性质.y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象. 函数y =a(x -h)2的图象的顶点坐标是(h ,0),对称轴是直线x =h.4.做一做 (1)(2)填空:①抛物线y =2x 2向________平移________个单位可得到y =2(x +1)2;②函数y =-5(x -4)2的图象可以由抛物线________向________平移________个单位而得到.四、探究二次函数y =a(x -h)2+k 和y =ax 2图象之间的关系1.在上面的平面直角坐标系中画出二次函数y =12(x +2)2+3的图象.首先引导学生观察比较y =12(x +2)2与y =12(x +2)2+3的图象关系,直观得出:y =12(x+2)2的图象――→向上平移3个单位y =12(x +2)2+3的图象.(结合多媒体演示) 再引导学生观察刚才得到的y =12x 2的图象与y =12(x +2)2的图象之间的位置关系,由此得出:只要把抛物线y =12x 2先向左平移2个单位,在向上平移3个单位,就可得到函数y=12(x +2)2+3的图象. 2.做一做:请填写下表:函数解析式 图象的对称轴图象的顶点坐标y =12x 2 y =12(x +2)2 y =12(x +2)2+33.总结y =a(x -h)2+k 的图象和y =ax 2图象的关系y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象――→当k >0时,向上平移k 个单位当k <0时,向下平移|k|个单位y =a(x -h)2+k 的图象.y =a(x -h)2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k). 口诀:(h ,k)正负左右上下移(h 左加右减,k 上加下减)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而减小,当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.4.练习:课本第37页 练习五、课堂小结1.函数y =a(x -h)2+k 的图象和函数y =ax 2图象之间的关系.2.函数y =a(x -h)2+k 的图象在开口方向、顶点坐标和对称轴等方面的性质. 六、作业布置教材第41页 第5题22.1.4 二次函数y =ax 2+bx +c 的图象和性质(2课时)第1课时 二次函数y =ax 2+bx +c 的图象和性质1.掌握用描点法画出二次函数y =ax 2+bx +c 的图象.2.掌握用图象或通过配方确定抛物线y =ax 2+bx +c 的开口方向、对称轴和顶点坐标. 3.经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及配方的过程,理解二次函数y =ax 2+bx +c 的性质.重点通过图象和配方描述二次函数y =ax 2+bx +c 的性质. 难点理解二次函数一般形式y =ax 2+bx +c(a ≠0)的配方过程,发现并总结y =ax 2+bx +c 与y =a(x -h)2+k 的内在关系.一、导入新课1.二次函数y=a(x-h)2+k的图象,可以由函数y=ax2的图象先向________平移________个单位,再向________平移________个单位得到.2.二次函数y=a(x-h)2+k的图象的开口方向________,对称轴是________,顶点坐标是________.3.二次函数y=12x2-6x+21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?二、教学活动活动1:通过配方,确定抛物线y=12x2-6x+21的开口方向、对称轴和顶点坐标,再描点画图.(1)多媒体展示画法(列表,描点,连线);(2)提出问题:它的开口方向、对称轴和顶点坐标分别是什么?(3)引导学生合作、讨论观察图象:在对称轴的左右两侧,抛物线从左往右的变化趋势.活动2:1.不画出图象,你能直接说出函数y=-x2+2x-3的图象的开口方向、对称轴和顶点坐标吗?2.你能画出函数y=-x2+2x-3的图象,并说明这个函数具有哪些性质吗?(1)在学生画函数图象的同时,教师巡视、指导;(2)抽一位或两位同学板演,学生自纠,老师点评;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?活动3:对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?(1)组织学生分组讨论,教师巡视;(2)各组选派代表发言,全班交流,达成共识,抽学生板演配方过程;教师课件展示二次函数y=ax2+bx+c(a>0)和y=ax2+bx+c(a<0)的图象.(3)引导学生观察二次函数y=ax2+bx+c(a≠0)的图象,在对称轴的左右两侧,y随x 的增大有什么变化规律?(4)引导学生归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性质.活动4:已知抛物线y=x2-2ax+9的顶点在坐标轴上,求a的值.活动5:检测反馈1.填空:(1)抛物线y=x2-2x+2的顶点坐标是________;(2)抛物线y=2x2-2x-1的开口________,对称轴是________;(3)二次函数y=ax2+4x+a的最大值是3,则a=________.2.写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=3x2+2x;(2)y=-2x2+8x-8.3.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该图象具有哪些性质.4.抛物线y=ax2+2x+c的顶点是(-1,2),则a,c的值分别是多少?答案:1.(1)(1,1);(2)向上,x=12;(3)-1;2.(1)开口向上,x=-13,(-13,-13);(2)开口向下,x=2,(2,0);3.对称轴x=-1,当m>0时,开口向上,顶点坐标是(-1,3-m);4.a=1,c=3.三、课堂小结与作业布置课堂小结二次函数y=ax2+bx+c(a≠0)的图象与性质.作业布置教材第41页第6题.第2课时用待定系数法求二次函数的解析式1.掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2.能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性.3.能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质.重点二次函数的解析式和利用函数的图象观察性质.难点利用图象观察性质.一、复习引入1.抛物线y=-2(x+4)2-5的顶点坐标是________,对称轴是________,在________________侧,即x________-4时,y随着x的增大而增大;在________________侧,即x________-4时,y随着x的增大而减小;当x=________时,函数y最________值是________.2.抛物线y=2(x-3)2+6的顶点坐标是________,对称轴是________,在________________侧,即x________3时,y随着x的增大而增大;在________________侧,即x________3时,y随着x的增大而减小;当x=________时,函数y最________值是________.二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(-3,0),B(1,0),C(0,-2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x=3,且图象经过点(1,0)和(5,0).说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例2已知函数y=x2-2x-3,(1)把它写成y=a(x-h)2+k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y<0,其对应的图象应在x轴的下方,自变量x就有相应的取值范围.例3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a________0;b________0;c________0;b2-4ac________0.说明:二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的符号的关系:系数的符号图象特征a的符号a>0 抛物线开口向____a<0 抛物线开口向____的符号-b2a-b2a>0 抛物线对称轴在y轴的____侧b=0 抛物线对称轴是____轴-b2a<0 抛物线对称轴在y轴的____侧c的符号c>0 抛物线与y轴交于____c=0 抛物线与y轴交于____c<0 抛物线与y轴交于____三、课堂小结本节课你学到了什么?四、作业布置教材第40页练习1,2.22.2二次函数与一元二次方程1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.3.会用计算方法估计一元二次方程的根.重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.一、复习引入1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.2.二次函数y=ax2+bx+c(a≠0)的图象和性质:(1)顶点坐标与对称轴;(2)位置与开口方向;(3)增减性与最值.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-b2a时,函数y有最小值4ac-b24a.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-b2a时,函数y有最大值4ac-b24a.二、新课教学探索二次函数与一元二次方程:二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x +2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x 轴没有交点.举例:求二次函数图象y =x 2-3x +2与x 轴的交点A ,B 的坐标.结论:方程x 2-3x +2=0的解就是抛物线y =x 2-3x +2与x 轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax 2+bx +c =0的两个根是x 1,x 2,则抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别是A(x 1,0),B(x 2,0).例1 已知函数y =-12x 2-7x +152,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y 轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x 在什么范围内时,y 随着x 的增大而增大?何时y 随着x 的增大而减少;并求出函数的最大值或最小值.三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系. 五、作业布置教材第47页 第3,4,5,6题.22.3 实际问题与二次函数(2课时)第1课时 用二次函数解决利润等代数问题能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y =ax 2+bx +c(a ≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.重点把实际生活中的最值问题转化为二次函数的最值问题. 难点1.读懂题意,找出相关量的数量关系,正确构建数学模型. 2.理解与应用函数图象顶点、端点与最值的关系.一、复习旧知,引入新课1.二次函数常见的形式有哪几种?二次函数y =ax 2+bx +c(a ≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a >0时,图象开口向________,当a <0时,图象开口向________.2.二次函数知识能帮助我们解决哪些实际问题呢?二、教学活动活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?2.如果你是老板,你会怎样定价?3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.活动3:达标检测某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w 最大为1 600元.三、课堂小结与作业布置课堂小结通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?作业布置教材第51~52页习题第1~3题,第8题.第2课时二次函数与几何综合运用能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.重点应用二次函数解决几何图形中有关的最值问题.难点函数特征与几何特征的相互转化以及讨论最值在何处取得.一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程问题1:教材第49页探究1.用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 为多少米时,场地的面积S 最大?分析:提问1:矩形面积公式是什么? 提问2:如何用l 表示另一边?提问3:面积S 的函数关系式是什么?问题2:如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S ,如何设自变量?提问3:面积S 的函数关系式是什么?答案:设垂直于墙的边长为x 米,S =x(60-2x)=-2x 2+60x.提问4:如何求解自变量x 的取值范围?墙长32 m 对此题有什么作用? 答案:0<60-2x ≤32,即14≤x <30.提问5:如何求最值?答案:x =-b 2a =-602×(-2)=15时,S max =450.问题3:将问题2中“墙长为32 m ”改为“墙长为18 m ”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x 米?则如何表示另一边?答案:设矩形面积为S m 2,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x.提问4:当x =30时,S 取最大值.此结论是否正确?提问5:如何求自变量的取值范围?答案:0<x ≤18.提问6:如何求最值?答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题.2.阅读教材第52~54页.五、课堂小结与作业布置课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页习题第4~7题,第9题.。
实际问题与二次函数一、教材分析函数是描述客观世界变化规律的重要数学模型。
二次函数也是一种数学建模的方法。
本课主要是从学生感兴趣的实际问题为背景,引导学生建立二次函数的模型,求出二次函数的表达式,以解决实际生活中的求最值问题。
教师可以引导学生通过二、学情分析教学时,教师可以引导学生通过配方或直接应用顶点公式来求值,让学生学会灵活解题。
但对于函数自变量的取值范围,学生往往容易忽略,教师做好能够多举实例,引导学生分析问题,解决问题,以达到熟练程度。
三、教学目标1、经历探索并建立二次函数的模型的过程,学生初步形成利用函数的观点认识现实世界的意识和能力。
2、探究并学会求二次函数在实际问题中的最大值和最小值。
3、体会二次函数是最优化问题的重要数学模型,感受数学的应用价值。
四、教学重点难点重点建立二次函数的模型解决实际问题难点合理从现实问题中建立二次函数的数学模型。
五、教学过程设计一、情境导入1、通过配方法,写出下列抛物线的开口方向、对称轴和顶点:(1)y=6x2+12x; (2)y=-4x2+8x-10学生自主探究解决问题,部分学生板演:解:(1)y=6(x+1)2-6,抛物线的开口方向向上,对称轴为x=-1,顶点是(-1,-6)(2)y=-4(x-1)2-6,抛物线的开口方向向上,对称轴为x=-1,顶点是(-1,-6);2、观察以上两个函数,请你们探究哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?你是如何得到的?学生自主探究:解:函数y=6x2+12有最小值,最小值y=-6;函数y=-4x2+8x-10有最大值,最大值y=-6.3.由上题,你可以得到怎样的结论?二、互动新授问题从地面竖直向上抛出一个小球,小球的高度h与小球的运动时间(单位:s)之间的关系是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,,小球最高?小球运动中的最大高度是多少?教师启发学生思考:我们该如何解决这个问题?师生合作探究:可以借助函数图象解决这个问题。
第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教案教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣.教学重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念.教学难点1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.教学过程一、情境导入,初步认识展示执实心球图片,体验体育中的数学二、温故知新1.什么叫做函数?(学生回顾)2.我们学过哪些函数?(PPT展示)三、探究新知问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 多边形的对角线总数d与边数n有什么关系?可以想出,如果多边形有n条边,那么它有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可以作条对角线,用n的式子表d为:。
示这里d是n的函数吗?全班同学合作交流,共同完成上面的问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释d=12n(n-3)而不是d=n(n-3)的原因.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x2,m=12n2-12n,y=20x2+40x+20有哪些共同点?【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同.四、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1; (4)y=1-3x 2.2. 说出下列二次函数的二次项系数、一次项系数、常数项。
单元备课一、单元名称:二次函数二、单元知识分析“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数的基础上,进一步学习二次函数的初步知识。
本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。
尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。
对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。
对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。
在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。
最后,对二次函数的应用部分,教材中大胆采用了前几年的部分中考题,让人感到紧跟中考方向。
另外,从题目的难度看,虽然比旧教材的题目减少了,但是题目的难度却有增无减,这给教师的教和同学们的学都是一个大的考验。
三、单元教学目标1.知识与技能:让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
2.过程与方法:通过学习和探究会分析简单的二次函数的有关问题。
3.情感态度价值观:要让学生认识到轴对称图形的美感,并理解二次函数的应用之广泛。
四、单元教学重点难点重点:1.掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
2.学会分析简单的二次函数的有关问题。
难点1、二次函数与一元二次方程的关系。
2、二次函数的应用题。
五、单元课时安排(共13课时)22.1 二次函数的图象和性质 7课时22.2 二次函数与一元二次方程 1课时22.3 实际问题与二次函 2课时小结 3课时课时教案课时教案课时教案课时教案课时教案课时教案课时教案课时教案课时教案。
第二十二章二次函数二次函数教学设计一、教学目标知识方面:1.理解并掌握二次函数的概念;2.能根据实际问题中的条件列出二次函数的解析式。
3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。
4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。
情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。
二、教材分析本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。
根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。
重点是理解二次函数的概念,能根据已知条件写出函数解析式;难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。
三、教学过程教学过程:一、提出问题,导入新课。
1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么?2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。
你能举出一些生活中类似的曲线吗?二、合作交流,形成概念。
1.列式表示下面函数关系。
问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。
问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示?活动中教师关注:学生参与小组合作讨论后,能否明白题意,写出相应关系式。
(2)问题3中可先分析一年后的产量,再得出两年后的产量。
教学内容二次函数本节共需 1 课时本课为第 1 课时教学目标通过具体问题引入二次函数的概念;在解决问题的过程中体会二次函数的意义.教学重点通过具体问题引入二次函数概念,在解决问题的过程中体会二次函数的意义.教学难点如何建立数学模型教具准备学案每生一份课型新授课教学过程初备统复备(1)正方形边长为2a( cm),它的面积 s( cm)是多少?(2)已知正方体的棱长为x ㎝,表面积为y cm2 , 则 y 与 x 的关系是。
情境创设(3)矩形的长是 4 厘米,宽是 3 厘米,如果将其长与宽都增加 x 厘米,则面积增加y 平方厘米,试写出y 与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是,它是我们学过的函数吗?,1、请你结合学习一次函数概念的经验,给以上三个函数下个定义.2、归纳:二次函数的概念3、结合“情境”中的三个二次函数的表达式,给出常探究新知数 a、 b、 c 的取值范围,强调a0 。
4、结合“情境”中的三个二次函数的表达式,说说它们的自变量的取值范围。
实践与探索 1例1.m取哪些值时,函数y(m2m) x2mx(m1) 是以x为自变量的二次函数?分析若函数y(m2m) x2mx( m1) 是二次函数,须满足的条件是:m2m0.解若函数y(m2)2mx(m1)是二次函m2m x数,则m0 .解得m0 ,且 m1.因此,当m 0,且m 1时,函数y(m 2m) x2mx(m1) 是二次函数.探索若函数y(m2m) x2mx( m1) 是以x 为自变量的一次函数,则m取哪些值?实践与探索 2应用与拓展小结与作业例 2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积 S( cm2)与正方体棱长 a( cm)之间的函数关系;2(2)写出圆的面积 y( cm)与它的周长 x( cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000 元本金,若不计利息,求本息和y(元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S 2( cm )与一对角线长x( cm)之间的函数关系.(1)y x 20(2)y ( x 2)( x 2) ( x 1)2(3)y x 21x(4)yx 22x 3y ( k 1)x k2k2.当 k 为何值时,函数 1 为二次函数?3.已知正方形的面积为y(cm2 ) ,周长为x(cm).(1)请写出 y 与 x 的函数关系式;(2)判断 y 是否为 x 的二次函数.正方形铁片边长为 15cm,在四个角上各剪去一个边长为x( cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积 S(cm2)与小正方形边长 x( cm)之间的函数关系式;(2)当小正方形边长为 3cm 时,求盒子的表面积回顾与反思形如 y ax 2bx c 的函数只有在a0 的条件下才是二次函数.课堂作业:习题 1 ~3家庭作业:《九年级教辅资料》对应题教学后记:教学内容教学目标教学重点教学难点教具准备教学过程情境导入实践与探索 1二次函数的图象与性质(本节共需7 课时1)主备人:黄维贤本课为第 1 课时会用描点法画出二次函数y ax2的图象,概括出图象的特点及函数的性质.通过画图得出二次函数特点识图能力的培养坐标小黑板一块课型新授课初备统复备我们已经知道,一次函数y 2x1,反比例函数y 3 y3的图象分别是、,那x xx2的图象是什么呢?么二次函数y(1)描点法画函数y x 2的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时, y 的值如何?(2)观察函数y x 2的图象,你能得出什么结论?例 1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?( 1)y 2x2( 2)y2x2共同点:都以y 轴为对称轴,顶点都在坐标原点.2不同点: y 2x 的图象开口向上,顶点是抛物线的最线自左向右下降;在对称轴的右边,曲线自左向右上升.y2x 2的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.注意点:在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.践与探索 2小与作例 3.已知正方形周Ccm,面 S cm2.(1)求 S 和 C 之的函数关系式,并画出象;(2)根据象,求出 S=1 cm2,正方形的周;(3)根据象,求出 C 取何, S≥ 4 cm2.分析此是二次函数用,解要注意自量的取范;画象,自量 C的取在取范内.解( 1)由意,得S1C2(C0) .16列表:2468⋯⋯描点、,象如26. 2. 2.(2)根据象得S=12cm ,正方形的周是 4cm.( 3)根据象得,当 C≥8cm , S≥42cm .注意点:(1)此象原点空心点.(2)横、字母中的字母 C、 S,不要地写成 x、 y.(3)在自量取范内,象抛物的一部分.堂小:通本的学你有哪些收?堂作:本 P家庭作:《九年教料》教学后:教学内容教学目标教学重点教学难点教具准备教学过程情境导入实践与探索 1二次函数的图象与性质(本节共需7 课时2)主备人:黄维贤本课为第 2 课时会画出 y ax2k 这类函数的图象,通过比较,了解这类函数的性质.通过画图得出二次函数性质识图能力的培养投影仪课型新授课初备统复备同学们还记得一次函数y 2x 与 y 2 x 1 的图象的关系吗?你能由此推测二次函数y x2与y x2 1 的图象之间的关系吗?,那么 y x2与 y x 22的图象之间又有何关系?.例 1 .在同一直角坐标系中,画出函数y2x 2与y2x 2 2 的图象.解列表.描点、连线,画出这两个函数的图象,如图26. 2. 3所示.回顾与反思:当自变量 x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数y 2x 2与y2x 2 2 的图象之间的关系吗?例 2.在同一直角坐标系中,画出函数y x 21与y x 2 1 的图象,并说明,通过怎样的平移,可以由抛物线 y x 2 1 得到抛物线 yx 2x 21.实践与回顾与反思抛物线y1和抛物线y x 2 1 分别是由抛物线y x2向上、向下平移探索 2一个单位得到的.探索如果要得到抛物线 y x2 4 ,应将抛物线y x 2 1 作怎样的平移?课堂小结:本节课你的收获有哪些?(函数y ax 2图像的关系。
第22章二次函数,教案篇一:20XX最新人教版第二十二章二次函数教案第22章二次函数第一课时篇二:20XX新人教版22章二次函数全章教案第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
教学时间课题22.1 二次函数(2)课型新授课教学目标知识和能力使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
过程和方法使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
课堂教学程序设计设计意图一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数教学目标1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.教学重点二次函数的概念和解析式.教学难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.教学过程一、创设情境,导入新课问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).二、合作学习,探索新知请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系:(1)圆的半径x(cm)与面积y(cm2);(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2).(一)教师组织合作学习活动:1.先个体探求,尝试写出y与x之间的函数解析式.2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a ≠0)的形式.板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项.三、做一做1.下列函数中,哪些是二次函数?(1)y=x2(2)y=-1x2(3)y=2x2-x-1(4)y=x(1-x)(5)y=(x-1)2-(x+1)(x-1)2.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)y=x2+1(2)y=3x2+7x-12(3)y=2x(1-x)3.若函数y=(m2-1)xm2-m为二次函数,则m的值为________.四、课堂小结反思提高,本节课你有什么收获?五、作业布置教材第41页第1,2题.22.1.2二次函数y=ax2的图象和性质教学目标通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.教学重点从“数”(解析式)和“形”(图象)的角度理解二次函数y=ax2的性质,掌握二次函数解析式y=ax2与函数图象的内在关系.教学难点画二次函数y=ax2的图象.教学过程一、引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1(2)y=2x2+7(3)y=x-2(4)y=3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.二、教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:在坐标纸上画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)教师强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.活动3:在同一个直角坐标系中画函数y=x2,y=0.5x2,y=2x2的图象.类似活动2:让学生归纳总结出这些图象的共同点和不同点,再进一步提炼出二次函数y=ax2(a≠0)的图象和性质.二次函数y=ax2(a≠0)的图象和性质____时,y有最____值,是________.a<0当x=____时,y有最____值,是________.(1)函数y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小.作业布置教材第32页练习.22.1.3 二次函数y =a (x -h )2+k 的图象和性质教学目标1.经历二次函数图象平移的过程;理解函数图象平移的意义.2.了解y =ax 2,y =a(x -h)2,y =a(x -h)2+k 三类二次函数图象之间的关系. 3.会从图象的平移变换的角度认识y =a(x -h)2+k 型二次函数的图象特征. 教学重点从图象的平移变换的角度认识y =a(x -h)2+k 型二次函数的图象特征. 教学难点对于平移变换的理解和确定,学生较难理解.教学过程 一、复习引入二次函数y =ax 2的图象和特征:1.名称________;2.顶点坐标________;3.对称轴________;4.当a >0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x 轴的________(除顶点外);当a <0时,抛物线的开口向________,顶点是抛物线上的最________点,图象在x 轴的________(除顶点外).二、合作学习在同一坐标系中画出函数y =12x 2,y =12(x +2)2,y =12(x -2)2的图象.(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到? (4)由此,你发现了什么?三、探究二次函数y =ax 2和y =a(x -h)2图象之间的关系1.结合学生所画图象,引导学生观察y =12(x +2)2与y =12x 2的图象位置关系,直观得出y =12x 2的图象――→向左平移两个单位y =12(x +2)2的图象.教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系,如: (0,0)――→向左平移两个单位(-2,0); (2,2)――→向左平移两个单位(0,2); (-2,2)――→向左平移两个单位(-4,2).②也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程. 2.用同样的方法得出y =12x 2的图象――→向右平移两个单位y =12(x -2)2的图象.3.请你总结二次函数y =a(x -h)2的图象和性质.y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象.函数y =a(x -h)2的图象的顶点坐标是(h ,0),对称轴是直线x =h. 4.做一做 (1)(2)①抛物线y =2x 2向________平移________个单位可得到y =2(x +1)2;②函数y =-5(x -4)2的图象可以由抛物线________向________平移________个单位而得到.四、探究二次函数y =a(x -h)2+k 和y =ax 2图象之间的关系1.在上面的平面直角坐标系中画出二次函数y =12(x +2)2+3的图象.首先引导学生观察比较y =12(x +2)2与y =12(x +2)2+3的图象关系,直观得出:y =12(x+2)2的图象――→向上平移3个单位y =12(x +2)2+3的图象.(结合多媒体演示) 再引导学生观察刚才得到的y =12x 2的图象与y =12(x +2)2的图象之间的位置关系,由此得出:只要把抛物线y =12x 2先向左平移2个单位,在向上平移3个单位,就可得到函数y=12(x +2)2+3的图象. 2.做一做:请填写下表:3.总结y =a(x -h)+k 的图象和y =ax 图象的关系y =ax 2(a ≠0)的图象――→当h >0时,向右平移h 个单位当h <0时,向左平移|h|个单位y =a(x -h)2的图象――→当k >0时,向上平移k 个单位当k <0时,向下平移|k|个单位y =a(x -h)2+k 的图象.y =a(x -h)2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k). 口诀:(h ,k)正负左右上下移(h 左加右减,k 上加下减)从二次函数y =a(x -h)2+k 的图象可以看出:如果a >0,当x <h 时,y 随x 的增大而减小,当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.4.练习:课本第37页 练习五、课堂小结1.函数y=a(x-h)2+k的图象和函数y=ax2图象之间的关系.2.函数y=a(x-h)2+k的图象在开口方向、顶点坐标和对称轴等方面的性质.六、作业布置教材第41页第5题22.1.4二次函数y=ax2+bx+c的图象和性质(2课时)第1课时二次函数y=ax2+bx+c的图象和性质教学目标1.掌握用描点法画出二次函数y=ax2+bx+c的图象.2.掌握用图象或通过配方确定抛物线y=ax2+bx+c的开口方向、对称轴和顶点坐标.3.经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及配方的过程,理解二次函数y=ax2+bx+c的性质.教学重点通过图象和配方描述二次函数y=ax2+bx+c的性质.教学难点理解二次函数一般形式y=ax2+bx+c(a≠0)的配方过程,发现并总结y=ax2+bx+c与y=a(x-h)2+k的内在关系.教学过程一、导入新课1.二次函数y=a(x-h)2+k的图象,可以由函数y=ax2的图象先向________平移________个单位,再向________平移________个单位得到.2.二次函数y=a(x-h)2+k的图象的开口方向________,对称轴是________,顶点坐标是________.3.二次函数y=12x2-6x+21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?二、教学活动活动1:通过配方,确定抛物线y=12x2-6x+21的开口方向、对称轴和顶点坐标,再描点画图.(1)多媒体展示画法(列表,描点,连线);(2)提出问题:它的开口方向、对称轴和顶点坐标分别是什么?(3)引导学生合作、讨论观察图象:在对称轴的左右两侧,抛物线从左往右的变化趋势.活动2:1.不画出图象,你能直接说出函数y=-x2+2x-3的图象的开口方向、对称轴和顶点坐标吗?2.你能画出函数y=-x2+2x-3的图象,并说明这个函数具有哪些性质吗?(1)在学生画函数图象的同时,教师巡视、指导;(2)抽一位或两位同学板演,学生自纠,老师点评;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?活动3:对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?(1)组织学生分组讨论,教师巡视;(2)各组选派代表发言,全班交流,达成共识,抽学生板演配方过程;教师课件展示二次函数y=ax2+bx+c(a>0)和y=ax2+bx+c(a<0)的图象.(3)引导学生观察二次函数y=ax2+bx+c(a≠0)的图象,在对称轴的左右两侧,y随x的增大有什么变化规律?(4)引导学生归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性质.活动4:已知抛物线y=x2-2ax+9的顶点在坐标轴上,求a的值.活动5:检测反馈1.填空:(1)抛物线y=x2-2x+2的顶点坐标是________;(2)抛物线y=2x2-2x-1的开口________,对称轴是________;(3)二次函数y=ax2+4x+a的最大值是3,则a=________.2.写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=3x2+2x;(2)y=-2x2+8x-8.3.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该图象具有哪些性质.4.抛物线y=ax2+2x+c的顶点是(-1,2),则a,c的值分别是多少?答案:1.(1)(1,1);(2)向上,x=12;(3)-1;2.(1)开口向上,x=-13,(-13,-13);(2)开口向下,x=2,(2,0);3.对称轴x=-1,当m>0时,开口向上,顶点坐标是(-1,3-m);4.a=1,c=3.三、课堂小结与作业布置课堂小结二次函数y=ax2+bx+c(a≠0)的图象与性质.作业布置教材第41页第6题.第2课时用待定系数法求二次函数的解析式教学目标1.掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2.能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,对称轴,最值和增减性.3.能根据二次函数的解析式画出函数的图象,并能从图象上观察出函数的一些性质.教学重点二次函数的解析式和利用函数的图象观察性质.教学难点利用图象观察性质.教学过程一、复习引入1.抛物线y=-2(x+4)2-5的顶点坐标是________,对称轴是________,在________________侧,即x________-4时,y随着x的增大而增大;在________________侧,即x________-4时,y随着x的增大而减小;当x=________时,函数y最________值是________.2.抛物线y=2(x-3)2+6的顶点坐标是________,对称轴是________,在________________侧,即x________3时,y随着x的增大而增大;在________________侧,即x________3时,y随着x的增大而减小;当x=________时,函数y最________值是________.二、例题讲解例1根据下列条件求二次函数的解析式:(1)函数图象经过点A(-3,0),B(1,0),C(0,-2);(2)函数图象的顶点坐标是(2,4),且经过点(0,1);(3)函数图象的对称轴是直线x=3,且图象经过点(1,0)和(5,0).说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例2已知函数y=x2-2x-3,(1)把它写成y=a(x-h)2+k的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图象交x轴于A,B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0?说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图象判定函数值何时为正,何时为负,同样也要充分利用图象,要使y<0,其对应的图象应在x轴的下方,自变量x就有相应的取值范围.例3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a________0;b________0;c________0;b2-4ac________0.说明:二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的符号的关系:系数的符号图象特征a的符号a>0 抛物线开口向____a<0 抛物线开口向____-b2a的符号-b2a>0抛物线对称轴在y轴的____侧b=0 抛物线对称轴是____轴-b2a<0抛物线对称轴在y轴的____侧c的符号c>0 抛物线与y轴交于____c=0 抛物线与y轴交于____c<0 抛物线与y轴交于____本节课你学到了什么?四、作业布置教材第40页练习1,2.22.2二次函数与一元二次方程教学目标1.总结出二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根,两个相等的实根和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.3.会用计算方法估计一元二次方程的根.教学重点方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.教学难点二次函数的图象与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程一、复习引入1.二次函数:y=ax2+bx+c(a≠0)的图象是一条抛物线,它的开口由什么决定呢?补充:当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.2.二次函数y=ax2+bx+c(a≠0)的图象和性质:(1)顶点坐标与对称轴;(2)位置与开口方向;(3)增减性与最值.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当x=-b2a时,函数y有最小值4ac-b24a.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小;当x=-b2a时,函数y有最大值4ac-b24a.二、新课教学探索二次函数与一元二次方程:二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x +2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.当二次函数y =ax 2+bx +c 的图象和x 轴有交点时,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax 2+bx +c =0的根.当b 2-4ac >0时,抛物线与x 轴有两个交点,交点的横坐标是一元二次方程0=ax 2+bx +c 的两个根x 1与x 2;当b 2-4ac =0时,抛物线与x 轴有且只有一个公共点;当b 2-4ac <0时,抛物线与x 轴没有交点.举例:求二次函数图象y =x 2-3x +2与x 轴的交点A ,B 的坐标. 结论:方程x 2-3x +2=0的解就是抛物线y =x 2-3x +2与x 轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax 2+bx +c =0的两个根是x 1,x 2,则抛物线y =ax 2+bx +c 与x 轴的两个交点坐标分别是A(x 1,0),B(x 2,0).例1 已知函数y =-12x 2-7x +152,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与y 轴的交点关于图象对称轴的对称点,然后画出函数图象的草图;(2)自变量x 在什么范围内时,y 随着x 的增大而增大?何时y 随着x 的增大而减少;并求出函数的最大值或最小值.三、巩固练习请完成课本练习:第47页1,2四、课堂小结二次函数与一元二次方程根的情况的关系. 五、作业布置教材第47页 第3,4,5,6题.22.3实际问题与二次函数(2课时)第1课时用二次函数解决利润等代数问题教学目标能够理解生活中文字表达与数学语言之间的关系,建立数学模型.利用二次函数y=ax2+bx+c(a≠0)图象的性质解决简单的实际问题,能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题.教学重点把实际生活中的最值问题转化为二次函数的最值问题.教学难点1.读懂题意,找出相关量的数量关系,正确构建数学模型.2.理解与应用函数图象顶点、端点与最值的关系.教学过程一、复习旧知,引入新课1.二次函数常见的形式有哪几种?二次函数y=ax2+bx+c(a≠0)的图象的顶点坐标是________,对称轴是________;二次函数的图象是一条________,当a>0时,图象开口向________,当a<0时,图象开口向________.2.二次函数知识能帮助我们解决哪些实际问题呢?二、教学活动活动1:问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?活动2:问题:某商场的一批衬衣现在的售价是60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为每件40元,如何定价才能使利润最大?1.问题中的定价可能在现在售价的基础上涨价或降价,获取的利润会一样吗?2.如果你是老板,你会怎样定价?3.以下问题提示,意在降低题目梯度,提示考虑x的取值范围.(1)若设每件衬衣涨价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期少卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?(2)若设每件衬衣降价x元,获得的利润为y元,则定价为________元,每件利润为________元,每星期多卖________件,实际卖出________件.所以y=________.何时有最大利润,最大利润为多少元?根据两种定价可能,让学生自愿分成两组,分别计算各自的最大利润;老师巡视,及时发现学生在解答过程中的不足,加以辅导;最后展示学生的解答过程,教师与学生共同评析.活动3:达标检测某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润w与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?答案:(1)y=-x+180;(2)w=(x-100)y=-(x-140)2+1 600,当售价定为140元,w 最大为1 600元.三、课堂小结与作业布置课堂小结通过本节课的学习,大家有什么新的收获和体会?尤其是数形结合方面你有什么新的体会?作业布置教材第51~52页习题第1~3题,第8题.第2课时二次函数与几何综合运用教学目标能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.教学重点应用二次函数解决几何图形中有关的最值问题.教学难点函数特征与几何特征的相互转化以及讨论最值在何处取得.教学过程一、引入新课上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用.二、教学过程问题1:教材第49页探究1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l 为多少米时,场地的面积S最大?分析:提问1:矩形面积公式是什么?提问2:如何用l表示另一边?提问3:面积S的函数关系式是什么?问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?分析:提问1:问题2与问题1有什么不同?提问2:我们可以设面积为S ,如何设自变量?提问3:面积S 的函数关系式是什么?答案:设垂直于墙的边长为x 米,S =x(60-2x)=-2x 2+60x.提问4:如何求解自变量x 的取值范围?墙长32 m 对此题有什么作用? 答案:0<60-2x ≤32,即14≤x <30.提问5:如何求最值?答案:x =-b 2a =-602×(-2)=15时,S max =450.问题3:将问题2中“墙长为32 m ”改为“墙长为18 m ”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?提问1:问题3与问题2有什么异同?提问2:可否模仿问题2设未知数、列函数关系式?提问3:可否试设与墙平行的一边为x 米?则如何表示另一边?答案:设矩形面积为S m 2,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x.提问4:当x =30时,S 取最大值.此结论是否正确?提问5:如何求自变量的取值范围?答案:0<x ≤18.提问6:如何求最值?答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.三、回归教材阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?四、基础练习1.教材第51页的探究3,教材第57页第7题. 2.阅读教材第52~54页.五、课堂小结与作业布置 课堂小结1.利用求二次函数的最值问题可以解决实际几何问题.2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.作业布置教材第52页 习题第4~7题,第9题.。