【必考题】八年级数学下期末试题及答案
- 格式:doc
- 大小:546.00 KB
- 文档页数:16
人教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、小明记录了昆明市年月份某一周每天的最高气温,如表:日期最高气温那么这周每天的最高气温的众数和中位数分别是()A. ,B. ,C. ,D. ,2、如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x<2的实数C.x>2的实数D.x>0且x≠2的实数3、如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3B.4C.D.54、对于一次函数,下列说法不正确的是()A.图象经过点B.图象与x轴交于点C.图象不经过第四象限 D.当时,5、下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形6、如图,在Rt△ABC中,∠B=90°,AB=BC,AC= .四边形BDEF是△ABC的内接正方形(点D,E,F在三角形的边上).则此正方形的面积为( )A.25.B. .C.5.D.10.7、下面运算正确的是A. B. C. D.8、顺次连接矩形四边中点所得的四边形是()A.菱形B.矩形C.正方形D.平行四边形9、化简的结果是()A. B. C. D.10、关于正比例函数,则下列结论正确的是()A.图象必经过点B.图象经过第一、三象限C. 随的增大而减小D.不论取何值,总有11、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A. B. C. D.12、下列各式计算正确的是( )A. B. C.3+ =3 D.13、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.1014、一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限15、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.50,=0.44,则成绩最稳定的是( )A.甲B.乙C.丙D.丁二、填空题(共10题,共计30分)16、已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B 地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x (分钟)之间的关系如图所示,则A、C两地相距________米.17、如图,在正方形ABCD中,点P是边AB上一点,AB=5BP,点E在对角线AC 上,△PEF是直角三角形,PE=PF,AE=2,△APF的面积为12,则BF的长是________.18、如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为________cm2。
2022—2023年部编版八年级数学下册期末考试题及答案【必考题】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120202.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .35.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.如果2a a 2a 1-+,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________. 2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________. 3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷⎪--⎝⎭,其中1x 2=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由; (2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD =13S△BOC,求点D的坐标.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、C6、C7、D8、C9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、72、22()1y x =-+3、720°.4、x >3.5、36、16三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、x 2-,32-.3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、24°.6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。
八年级数学下册期末考试题及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列各式中,正确的是( )A3=- B.3=- C3=± D3±4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 5.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤76.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.因式分解:24x-=__________.4.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322xx x-=---(2)311xx x-=-2.先化简,后求值:(5a5a(a﹣2),其中a=12+2.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|b40++-=,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM =13S三角形ABC,试求点M的坐标.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y,台,其中每台的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、A6、C7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、(3,7)或(3,-3)3、(x+2)(x-2)4、24.5、49136、15.三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =.2、43、8k ≥-且0k ≠.4、(1)9(2)(0,0)或(-4,0)5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( ) A .4 B .5C .6D .73.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 4.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.(0分)[ID :10202]如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .727.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个8.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-69.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数 C .中位数 D .方差 10.(0分)[ID :10181]若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或√313 11.(0分)[ID :10169]直角三角形中,有两条边长分别为3和4,则第三条边长是( ) A .1B .5C .7D .5或712.(0分)[ID :10167]如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .613.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10158]下列运算正确的是( ) A 235+=B .22=3C .236⨯=D .632÷=二、填空题16.(0分)[ID :10330]如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.17.(0分)[ID :2+1的倒数是____.18.(0分)[ID :10296]20n n 的最小值为___19.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).20.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
八年级数学下册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列计算正确的是()A.-=B=C.=D=2.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+3.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-25.若(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.68.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A .B .C .D .9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.33x x -=-,则x 的取值范围是________.4.如图,平行四边形ABCD 中,CE AD ⊥于E ,点F 为边AB 中点,12AD CD =,40CEF ∠=︒,则AFE ∠=_________。
【必考题】初二数学下期末模拟试卷(附答案)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .44.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形5.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .26.若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或7.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲 B .乙C .丙D .丁8.函数的自变量取值范围是( ) A .x ≠0 B .x >﹣3 C .x ≥﹣3且x ≠0 D .x >﹣3且x ≠0 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或710.下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷=11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.若3的整数部分是a,小数部分是b,则3a b-=______.15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。
八年级数学下册期末考试及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31π+B.32C.2342π+D.231π+二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=________.2.已知(x﹣1)3=64,则x的值为__________.3.在数轴上表示实数a的点如图所示,化简2(5)a-+|a-2|的结果为____________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=6cm,BC=8cm,则AEF的周长=______cm.6.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x yx y⎧+=⎪⎨⎪-=⎩(2)1263()46x y yx y y+⎧-=⎪⎨⎪+-=⎩2.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣12.3.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在平面直角坐标系xOy中,函数(0)ky xx=>的图象与直线2y x=-交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数(0)ky xx=>的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、B6、D7、A8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、53、3.4、425、96、20三、解答题(本大题共6小题,共72分)1、(1)1083xy=⎧⎪⎨=⎪⎩;(2)2xy=⎧⎨=⎩.2、5.3、–1≤x<34、(1) 65°;(2) 25°.5、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。
新人教版八年级数学下册期末考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21273=___________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B5、D6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、2x (x ﹣1)(x ﹣2).415、36、20三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、x+2;当1x =-时,原式=1.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略5、(1)2;(2)60︒ ;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
新人教版八年级数学下册期末测试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
2023年人教版八年级数学(下册)期末试卷及答案(必考题)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若二次根式51x-有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤52.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.275.若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13或119B.13或15 C.13 D.156.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠410.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.16的算术平方根是___________.3.64的算术平方根是________.4.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB ′=________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S △,则图中阴影部分面积是 ____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中x =5+2,y =5-2.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、C6、A7、A8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、43、4、1.55、46、32°三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、2xyx y-,123、±34、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略;(2)4.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。
2023年人教版八年级数学下册期末考试题及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.已知(x﹣1)3=64,则x的值为__________.3.若关于x的分式方程333x ax x+--=2a无解,则a的值为________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=_________.6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x yx y-=⎧⎨+=⎩(2)410211x yx y-=⎧⎨+=⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.已知11881,2y x x=-+-+求代数式22x y x yy x y x++-+-的值.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、C6、D7、D8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、53、1或1 24、145、40°6、15.3三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、-11x+,-143、14、略(2)∠EBC=25°5、(1)略(2)等腰三角形,理由略6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
八年级下册数学期末考试试卷(解析版)一.选择题1.若分式有意义,则x的取值范围是()A. x≠3B. x=3C. x<3D. x>32.下列约分正确的是()A. B. C. D.3.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB长为()A. 20B. 15C. 10D. 54.函数y= 的图象经过点(﹣4,6),则下列各点中在y= 图象上的是()A. (3,8)B. (3,﹣8)C. (﹣8,﹣3)D. (﹣4,﹣6)5.一组数据:3,2,1,2,2的众数,中位数分别是()A. 2,1B. 2,2C. 3,1.D. 2,16.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A. AB=DC,AD=BCB. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. AB∥DC,AB=DC7.在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是()A. ﹣=4B. ﹣=4C. ﹣=4D. ﹣=48.若关于x的方程﹣=0无解,则m的值是()A. 3B. 2C. 1D. ﹣19.点P1(x1,y1)、P2(x2,y2)是一次函数y=5x+10的图象上两点,且x1<x2,则y1﹣y2()A. 大于0B. 大于或等于0C. 小于0D. 小于或等于010.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)二.填空题11.计算:20160+ ﹣13﹣=________.12.化简的结果是________.13.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AC的长是________.14.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是________.(只填一个条件即可,答案不唯一)15.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).(1)点C的坐标是________;(2)将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段AC扫过的面积为________.三.解答题16.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.17.如图,四边形ABCD中,∠A=∠ABC=90°,AD=3,BC=5,E是边CD的中点,连结BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形.(2)若BD=BC,求四边形BDFC的面积.18.如图,已知双曲线y= ,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式y1;(3)根据图象直接写出y≥y1时,x的取值范围.19.小明为了了解本班全体同学在阅读方面的情况,采取全面调查的方法,从喜欢阅读“科普常识、小说、漫画、营养美食”等四类图书中调查了全班学生的阅读情况(要求每位学生只能选择一种自己喜欢阅读的图书类型)根据调查的结果绘制了下面两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班喜欢阅读科普常识的同学有________人,该班的学生人数有________人;(2)补全条形统计图;(3)在扇形统计图中,表示“漫画”类所对圆心角是________度,喜欢阅读“营养美食”类图书的人数占全班人数的百分比为________.20.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.21.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.22.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.23.如图,在平面直角坐标系中,直线L1:y=﹣x+6分别与x轴、y轴交于点B,C,且与直线L2:y= x 交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点且△COD的面积为12,求直线CD的表达式;(3)在(2)的条件下,在射线CD上是否存在点P使△OCP为等腰三角形?若存在,直接写出点P的坐标.若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】A【考点】分式有意义的条件【解析】【解答】解:根据题意可得3﹣x≠0;解得x≠3;故选A.【分析】根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.2.【答案】D【考点】约分【解析】【解答】解:A、=a4,故本选项错误;B、不能化简,故本选项错误;C、不能化简,故本选项错误;D、=﹣=﹣1,故本选项正确.故选D.【分析】根据同底数幂的除法,底数不变指数相减,找出分子与分母的最大公因式,化简即可得出结果.3.【答案】D【考点】平行四边形的性质【解析】【解答】解:∵△AOB的周长比△BOC的周长少10cm 即BC﹣AB=10cm,∵周长是40cm,即BC+AB=20cm,∴AB=5cm.故选D.【分析】由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,联立平行四边形的周长,即可得解.4.【答案】B【考点】反比例函数图象上点的坐标特征【解析】【解答】解:将(﹣4,6)代入y= ,∴k=﹣24,(A)3×8=24,故A不在图象上,(B)3×(﹣8)=﹣24,故B在图象上,(C)﹣8×(﹣3)=24,故C不在图象上,(D)﹣4×(﹣6)=24,故D不在图象上,故选(B)【分析】将(﹣4,6)代入图象中,求出k的值.若将各点的横纵坐标相乘等于k,则该点在反比例函数的图象上.5.【答案】B【考点】中位数、众数【解析】【解答】解:把数据由小到大排列为:1,2,2,2,3,所以这组数据的众数为2,中位数为2.故选B.【分析】先把把数据由小到大排列,然后根据众数和中位数的定义求解.6.【答案】C【考点】平行四边形的判定【解析】【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.7.【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天修x米,可得:,故选A【分析】要求的未知量是工作效率,有工作路程,一定是根据时间来列等量关系的.关键描述语是:“提前4天开通了列车”;等量关系为:原来所用的时间﹣实际所用的时间=4.8.【答案】B【考点】分式方程的解【解析】【解答】解:去分母得:2m﹣3﹣x=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入整式方程得:2m﹣4=0,解得:m=2,故选B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.9.【答案】C【考点】一次函数的性质【解析】【解答】解:∵y=5x+10中k>0,∴y随x增大而增大,∵x1<x2,∴y1<y2,∴y1﹣y2<0,故选:C.【分析】根据一次函数的性质,当k>0时,y随x增大而增大进而可得y1<y2,从而可得答案.10.【答案】B【考点】坐标与图形性质,矩形的性质,轴对称-最短路线问题【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.二.<b >填空题</b>11.【答案】7【考点】实数的运算,零指数幂,负整数指数幂【解析】【解答】解:原式=1+9﹣1﹣2=7,故答案为:7【分析】原式利用零指数幂、负整数指数幂法则计算即可得到结果.12.【答案】-1【考点】分式的加减法【解析】【解答】解:原式= =﹣=﹣1.故答案为:﹣1.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.13.【答案】2【考点】矩形的性质【解析】【解答】解:在矩形ABCD中,OC=OD,∴∠OCD=∠ODC,∵∠AOD=60°,∴∠OCD= ∠AOD= ×60°=30°,又∵∠ADC=90°,∴AC=2AD=2×1=2.故答案为:2.【分析】根据矩形的对角线互相平分且相等可得OC=OD,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OCD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答.14.【答案】∠BAD=90°或AC=BD【考点】菱形的性质,正方形的判定【解析】【解答】解:要使菱形成为正方形,只要菱形满足以下条件之一即可,(1)有一个内角是直角(2)对角线相等.即∠BAD=90°或AC=BD.故答案为:∠BAD=90°或AC=BD.【分析】根据菱形的性质及正方形的判定来添加合适的条件.15.【答案】(1)(1,4)(2)16【考点】点的坐标,坐标与图形变化-平移【解析】【解答】解:(1)∵∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),∴AB=3,则AC= =4,故C(1,4);故答案为:(1,4);(2)∵将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,∴4=2x﹣6,解得:x=5,则△ABC沿x轴向右平移了4个单位长度,故线段AC扫过的面积为:4×4=16.故答案为:16.【分析】(1)直接利用勾股定理得出AC的长,进而得出答案;(2)直接得出△ABC沿x轴向右平移的距离进而得出线段AC扫过的面积.三.<b >解答题</b>16.【答案】解:原式= ÷ = •= ,当a=0时,原式= =2.【考点】分式的化简求值【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a=0代入计算即可求出值.17.【答案】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,又∵E是边CD的中点,∴CE=DE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE∴四边形BDFC是平行四边形;(2)解:∵BD=BC=5,∴AB= = =4,∴四边形BDFC的面积=BC•AB=5×4=20.【考点】平行四边形的判定与性质【解析】【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.18.【答案】(1)解:∵y= ,经过点D(6,1),∴=1,∴k=6;(2)解:∵点D(6,1),∴BD=6,设△BCD边BD上的高为h,∵△BCD的面积为12,∴BD•h=12,即×6h=12,解得h=4,∴CA=3,∴=﹣3,解得x=﹣2,∴点C(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,得,所以,直线CD的解析式为y= x﹣2,(3)解:∵点D(6,1),点C(﹣2,﹣3),∴当y≥y1时,x的取值范围为:x≤﹣2,0<x≤6.【考点】反比例函数与一次函数的交点问题【解析】【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据函数图象即可得到结论.19.【答案】(1)16;40(2)解:喜欢漫画的有:40﹣4﹣12﹣16=8(人),如图:(3)72;10%【考点】全面调查与抽样调查,扇形统计图,条形统计图【解析】【解答】解:解:(1)由条形图可知阅读科普常识的同学有16人,∵喜欢阅读小说的有12人,占30%,∴该班的学生人数为:12÷30%=40(人),故答案为:16,40;(2)喜欢漫画的有:40﹣4﹣12﹣16=8(人),如图:;(3)在扇形统计图中,表示“漫画”类所对圆心角是×360°=72°,喜欢阅读“营养美食”类图书的人数占全班人数的百分比:4÷40=10%;故答案为:72,10%;【分析】(1)由喜欢阅读小说的有12人,占30%,即可求得该班的学生人数;(2)用总人数﹣4﹣12﹣16,即可求得喜欢漫画的人数,则可把条形统计图补充完整;(3)由题意可得“漫画”类所对圆心角×360°=72°,喜欢阅读“营养美食”类图书的人数占全班人数的百分比:4÷40=10%;20.【答案】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC,在△ADE与△CED中,,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x= ,即DF= .【考点】翻折变换(折叠问题)【解析】【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.21.【答案】(1)解:由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)解:∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【考点】一次函数的应用【解析】【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.22.【答案】(1)解:结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)解:结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)解:结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【考点】平行四边形的性质【解析】【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.23.【答案】(1)解:联立两直线解析式可得,解得,∴A(6,3),在y=﹣x+6中,令y=0可求得x=12,令x=0可得y=6,∴B(12,0),C(0,6)(2)解:∵点D在线段OA上,∴可设D(x,x)(0≤x≤6),∵△COD的面积为12,∴×6x=12,解得x=4,∴D(4,2),∵C(0,6),∴可设直线CD的表达式为y=kx+6,把D(4,2)代入可得4=2k+6,解得k=﹣1,∴直线CD的表达式为y=﹣x+6(3)解:∵点P在射线CD上,∴可设P(t,﹣t+6)(t≥0),∵C(0,6),O(0,0),∴PC= = t,OP= = ,且OC=6,∵△OCP为等腰三角形,∴有PC=PO、PC=OC和PO=OC三种情况,①当PC=PO时,即t= ,解得t=3,此时P点坐标为(3,3);②当PC=OC时,即t=6,解得t=3 ,此时P点坐标为(3 ,6﹣3 );③当PO=OC时,即=6,解得t=0或t=6,当t=0时,P与O重合,不合题意,舍去,故t=6,此时P点坐标为(6,0);综上可知存在满足条件的点P,其坐标为(3,3)或(3 ,6﹣3 )或(6,0).【考点】一次函数的应用,一次函数的性质【解析】【分析】(1)联立两直线解析式可求得A点坐标,利用直线L1的解析式可求得B、C的坐标;(2)可设D(x,x),由题意可求得x的值,则可求得D点坐标,利用待定系数法可求得直线CD的表达式;(3)可设出P点坐标,利用勾股定理可表示出PC、PO和OC的长,分PC=PO、PC=OC和PO=OC三种情况,分别得到关于P点坐标的方程,可求得P点坐标.。
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。
)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。
八年级下册数学期末试卷测试卷(含答案解析)一、选择题1.下列二次根式,无论x 取什么值都有意义的是( ) A .xB .21x -C .21x D .21x +2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .5、12、13D .30、50、603.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB //CD ,AB =CD C .AB =CD ,AD //BCD .AB //CD ,AD //BC4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE=NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,直线 y 1 与 y 2 相交于点C , y 1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y 2 与 x 轴 交于点 B (3,0),与 y 轴交于点 A ,下列说法正确的个数有( )①y 1的 解 析 式 为12y x =+;② OA = OB ;③2AC BC =④12y y ⊥;⑤ ∆AOB ≅ ∆BCD . A .2 个B .3个C .4 个D .5 个二、填空题9.5x -中字母x 的取值范围是__________.10.如图,在菱形ABCD 中,AC ,BD 两对角线相交于点O .若∠BAD =60°,BD =2cm ,则菱形ABCD 的面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 14.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是____(写出一个即可).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).(1)线段AB的长为;(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=92.①用直尺画出一个满足条件的△ABC;②写出所有符合条件的点C 的坐标.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问: (1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD.(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.【参考答案】一、选择题 1.D 解析:D 【分析】直接利用二次根式有意义,则被开方数是非负数,进而得出答案. 【详解】解:A.x 0x 时,二次根式有意义,故此选项不合题意;2B.1x -210x -时,二次根式有意义,故此选项不合题意;21C.x 0x ≠时,二次根式有意义,故此选项不合题意; 2D.1x +x 取什么值,二次根式都有意义,故此选项符合题意.故选:D . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.C解析:C 【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. 【详解】解:A 、22+32≠42,不能构成直角三角形,故此选项不符合题意;B 32+42≠52,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点睛】本题主要考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.A解析:A【分析】设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.【详解】解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE225AE AB=+=a,∴EF5=a,∴AF=EF﹣AE=(5-1)a,∵四边形AFGH为正方形,∴AH=AF=(5-1)a,∴()515122aAHAB a--==.故选:A.【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.A解析:A【解析】【分析】连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵MAO NCOAM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO≌△CNO(ASA),∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=62°, ∴∠BCA=∠DAC=62°, ∴∠OBC=90°-62°=28°. 故选A . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.C解析:C 【解析】 【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④. 【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠,BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒,9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点, ∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,∴点M 是AN 的中点,又∵90ADN ∠=︒, ∴12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故②正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故③正确;如图,连接EN ,∵AM NM =,AM BE ⊥,∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ∴EC ,AE ∴,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】通过待定系数法,求出直线y 1的解析式,于是可对①进行判断;利用待定系数法求出y 2的解析式为y =﹣x +3,则可确定A (0,3),所以OA =OB ,于是可对②进行判断;通过两点间的距离公式求出AC 、BC 的长,从而对③进行判断;计算∠EDO 和∠ABO 的度数,再通过三角形的内角和定理得出∠DCB 的度数,即可对④进行判断;通过计算BD 和AB 的长可对⑤进行判断.【详解】由图可知:直线y 1过点(0,1),(1,2),∴直线y 1的解析式为11y x =+,所以①错误;设y 2的解析式为y =kx +b ,把C (1,2),B (3,0)代入得:230k b k b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩,所以y 2的解析式为y =﹣x +3,当x =0时,y =﹣x +3=3,则A (0,3),则OA =OB ,所以②正确;∵A (0,3),C (1,2),B (3,0),∴ACBC ,∴12AC BC ==,所以③错误; 在11y x =+中,令y 1=0,得x =-1,∴D (-1,0),∴OD =1.∵OE =1,∴OD =OE ,∴∠EDO =45°.∵OA =OB =3,∴∠ABO =45°,∴∠DCB =180°-45°-45°=90°,∴DC ⊥AB ,∴12y y ⊥,故④正确;因为BD =3+1=4,而AB ,所以△AOB 与△BCD 不全等,所以⑤错误.故正确的有②④.故选A.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定.二、填空题9.5x≥【解析】【分析】根据二次根式成立的条件可直接进行求解.【详解】解:由题意得:x-≥,解得:5x≥;50x≥.故答案为5【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:3【解析】【分析】BD=1,可证△ABD是等由菱形的性质可得AB=AD,AC⊥BD,AO=CO,BO=DO=12边三角形,可得AB=BD=4,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=1BD=1cm,2∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=2cm,∴223cm=-AO AB BO∴AC=3,∴菱形ABCD 的面积=12AC ×BD =2,故答案为:【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解. 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c ∵>>∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.S 1=S 2【分析】由矩形的性质找出90D B ∠=∠=︒,结合对边互相平行即可证出四边形PEDH 和四边形PFBG 都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.【详解】解:∵四边形ABCD 为矩形,∴90D B ∠=∠=︒.又∵////EF AB CD ,////GH AD BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵//EF AB ,//HG BC ,四边形ABCD 为矩形,∴四边形AEPG 和四边形PHCF 也是矩形,∴ACD ABC SS =,PHC PCF S S =,AEP APG S S =, ∴ACD PHC AEP ABC PCF APG S S S S S S --=--,∴12S S故答案为:12S S .【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.13.32y x =--【解析】【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-2.故答案为:y=-3x-2.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.14.C解析:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE 是平行四边形,当CB=BF 时,平行四边形CBFE 是菱形,当CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 时,都可以得出四边形CBFE 为菱形. 故答案为:如:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象,则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==,由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a +b )(a ﹣b )=a 2﹣b 2的结构是解题关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3 ∴AB ==(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3 ∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型. 21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x 即可.【详解】解:(1)设y=kx+b ,代入(20,10解析:(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg.【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b=⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1)①证明见解析;②;(2);(3).【分析】(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如解析:(1)①证明见解析;②60EBF ∠=︒;(2)IH =;(3)222EG AG CE =+.【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)IH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩, BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒, 3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩, DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
一、选择题1.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >3.(0分)[ID :10206]下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 4.(0分)[ID :10145]计算4133÷的结果为( ). A .32B .23C .2D .25.(0分)[ID :10134]对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大6.(0分)[ID :10192]如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD7.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .88.(0分)[ID :10175]函数y =x√x+3的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠09.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定10.(0分)[ID :10164]某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数11.(0分)[ID :10156]如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=;②3;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④12.(0分)[ID:10155]如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上.若AFD的周长为18,ECF的周长为6,四边形纸片ABCD的周长为(的点F处)A.20B.24C.32D.4813.(0分)[ID:10151]如图,已知△ABC中,AB=10 ,AC=8 ,BC = 6 ,DE是AC的垂直平分线,DE交AB于点D ,交AC于点E ,连接CD ,则CD的长度为()A.3B.4C.4.8D.514.(0分)[ID:10150]如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8015.(0分)[ID:10148]如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.3二、填空题16.(0分)[ID:10332]如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.17.(0分)[ID :10327]如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)18.(0分)[ID :10323]如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.19.(0分)[ID :10304]若x <2,化简22)x -(+|3﹣x|的正确结果是__. 20.(0分)[ID :10296]已知20n 是整数,则正整数n 的最小值为___ 21.(0分)[ID :10265]已知实数a 、b 在数轴上的位置如图所示,则化简222()a b b a +--的结果为________22.(0分)[ID :10263]直角三角形两直角边长分别为3+1,31,则它的斜边长为____.23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID:10249]如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______25.(0分)[ID:10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.三、解答题26.(0分)[ID:10401]某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.27.(0分)[ID:10385]某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.28.(0分)[ID:10370]如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:(1)在图(1)中,作与MN平行的直线AB;(2)在图(2)中,作与MN垂直的直线CD.29.(0分)[ID:10353]如图,在平行四边形ABCD中,已知点E在AB上,点F在CD =.上,且AE CF求证:DE BF=.30.(0分)[ID:10424]如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.D4.D5.C6.B7.D8.B9.B10.C11.C12.B13.D14.C15.A二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°17.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK是矩形四边形18.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴19.5-2x【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x-203-x0∴原式=2-x+3-x=5-2x故20.5【解析】【分析】因为是整数且则5n是完全平方数满足条件的最小正整数n为5【详解】∵且是整数∴是整数即5n是完全平方数;∴n的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘21.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在22.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B 解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.2.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.4.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式2===.故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 6.B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B7.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.8.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.9.B解析:B【解析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】连接OP ,如图所示: ∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.10.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.考点:统计量的选择.11.C解析:C【解析】【分析】易证Rt ABE Rt ADF ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF 与ABE 的面积比.【详解】∵四边形ABCD 是正方形,AEF 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE 和Rt ADF 中, AB AD AE AF ⎧⎨⎩==∴()Rt ABE Rt ADF HL ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF 中,∵tan tan 60AG AG AFG GF GC ∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,.在Rt ABE 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S :ABE S11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键. 12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD 的周长等于△AFD 和△CFE 的周长的和.【详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm .故矩形ABCD 的周长为24cm .故答案为:B .【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.13.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因DE 为AC 边的中垂线,可得DE ⊥AC ,AE=CE=4,所以DE 为三角形ABC 的中位线,即可得DE=12BC =3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质. 14.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.15.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC 满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MB K的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.18.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴解析:(4,0)(2n﹣1,2n)【解析】【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A3、B n的坐标.【详解】解:∵点A1坐标为(1,0),∴OA 1=1,过点A 1作x 轴的垂线交直线于点B 1,可知B 1点的坐标为(1,2),∵点A 2与点O 关于直线A 1B 1对称,∴OA 1=A 1A 2=1,∴OA 2=1+1=2,∴点A 2的坐标为(2,0),B 2的坐标为(2,4),∵点A 3与点O 关于直线A 2B 2对称.故点A 3的坐标为(4,0),B 3的坐标为(4,8), 此类推便可求出点A n 的坐标为(2n ﹣1,0),点B n 的坐标为(2n ﹣1,2n ).故答案为(4,0),(2n ﹣1,2n ).考点:一次函数图象上点的坐标特征.19.5-2x 【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x -203-x0∴原式=2-x+3-x=5-2x 故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x >0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x| =2x -+|3﹣x|∵x <2∴x -2<0,3-x >0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简. 2的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.20.5【解析】【分析】因为是整数且则5n 是完全平方数满足条件的最小正整数n 为5【详解】∵且是整数∴是整数即5n 是完全平方数;∴n 的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘 解析:5【解析】【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴5n是完全平方数;∴n的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.21.0【解析】【分析】根据数轴所示a<0b>0b-a>0依据开方运算的性质即可求解【详解】解:由图可知:a<0b>0b-a>0∴故填:0【点睛】本题主要考查二次根式的性质和化简实数与数轴去绝对值号关键在解析:0【解析】【分析】根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.【详解】解:由图可知:a<0,b>0, b-a>0,a b b a a b b a-+--=-+-+=()0故填:0【点睛】本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.22.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+(−1)2=斜边2,斜边,勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.考点:方差三、解答题26.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.(1)9.6度;(2)9度;9度;(3)7603.2度.【解析】【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.28.(1)见解析;(2)见解析【解析】试题分析:画图即可.试题解析:如图:29.证明见解析.【解析】【分析】由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.(1)见解析(2)27【解析】【分析】(1)根据矩形的判定即可求解;(2)根据题意作出图形,根据直角三角形的性质及勾股定理即可求解.【详解】(1)∵四边形ABCD是平行四边形,又BE=AB∴四边形BECD是平行四边形,∵∠ABD=90°,∴平行四边形BECD是矩形;(2)如图,作PG⊥AE于G点,∵CE=2,∠DAB=30°,∴∠CBE=30°,PG=1,BE=23∴AB=23∵P为BC中点,∴G为BE中点,∴AG=AB+BG=33∴AP=22=27AG PG【点睛】此题主要考查矩形的性质,解题的关键是熟知矩形判定与性质.。
【必考题】八年级数学下期末试题及答案一、选择题1.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =0 3.已知函数y =11x x +-,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠14.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==,则AB 的长为( )A .3B .4C .43D .55.下列说法: ①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .1 6.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .47.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .38.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米 9.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 10.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .611.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m12.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.14.在函数41x y x -=+中,自变量x 的取值范围是______. 15.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.16.若ab <0,则代数式2a b 可化简为_____.17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .18.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲 乙 测试成绩(百分制) 面试 86 92笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
根据两人的平均成绩,公司将录取___.19.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.20.将正比例函数y=﹣3x的图象向上平移5个单位,得到函数_____的图象.三、解答题21.如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求B C的长.22.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.23.如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?24.某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)25.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y与x之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.3.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.5.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.6.B解析:B【解析】由图象可得2535k k <⎧⎨>⎩ ,解得5532k << ,故符合的只有2;故选B. 7.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.8.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC 中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B .【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.9.D解析:D【解析】【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.【详解】解:∵(a-b )(a 2-b 2-c 2)=0,∴a-b=0,或a 2-b 2-c 2=0,即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.10.C解析:C【解析】【分析】【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C11.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF 即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB =90° 或∠BAC =45°或∠B =45°【解析】【分析】先证明四边形ADCF 是平行四边形,再证明AC=DF 即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF 是正方形,理由:∵E 是AC 中点,∴AE=EC ,∵DE=EF ,∴四边形ADCF 是平行四边形,∵AD=DB ,AE=EC ,∴DE=12BC , ∴DF=BC ,∵CA=CB ,∴AC=DF ,∴四边形ADCF 是矩形,点D. E 分别是边AB 、AC 的中点,∴DE//BC ,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF 是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式 解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010x x -≥⎧⎨+≠⎩, 解得:x ≥4,故答案为x ≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y =2x +13中的x .②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 16.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b >0,a <0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a >0;当a <0;当a=0.17.9【解析】∵四边形ABCD 是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F 分别是AOAD 的中点(cm)故答案为25解析:9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC == (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.18.乙【解析】【分析】根据题意先算出甲乙两位候选人的加权平均数再进行比较即可得出答案【详解】甲的平均成绩为:(86×6+90×4)÷10=876(分)乙的平均成绩为:(92×6+83×4)÷10=884解析:乙【解析】【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数最高,所以乙将被录取.故答案为:乙.【点睛】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.19.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.20.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.三、解答题21.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.【详解】∵D、E是AB、BC的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.22.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【详解】详解:证明:,,在和中,,≌;解:如图所示:由知≌,,,,四边形ABDF是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.23.点B将向左移动0.8米.【解析】【分析】根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的长度,根据BB1=CB1-CB即可求得BB1的长度.【详解】解:在△ABC中,∠C=90°,∴AC2+BC2=AB2,即AC2+0.72=2.52,∴AC =2.4.在△A 1B 1C 中,∠C =90°,∴A 1C 2+B 1C 2=A 1B 12,即(2.4–0.4)2+B 1C 2=2.52,∴B 1C =1.5.∴B 1B =1.5–0.7=0.8,即点B 将向左移动0.8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求CB 1的长度是解题的关键.24.(1)当0≤t≤30时,日销售量w =2t ;当30<t≤40时,日销售量w =﹣6t+240;(2)第一批产品A 上市后30天,这家商店日销售利润Q 最大,日销售利润Q 最大是3600元.【解析】【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A 的日销售量w 与上市时间t 的关系;(2)根据函数图象中的数据可以求得第一批产品A 上市后,哪一天这家商店日销售利润Q 最大,并求出Q 的最大值.【详解】解:(1)由图①可得,当0≤t≤30时,可设日销售量w =kt ,∵点(30,60)在图象上,∴60=30k .∴k =2,即w =2t ;当30<t≤40时,可设日销售量w =k 1t+b .∵点(30,60)和(40,0)在图象上,∴116030k b 040k b =+⎧⎨=+⎩, 解得,k 1=﹣6,b =240,∴w =﹣6t+240.综上所述,日销售量w =2(030)6240(3040)t t t t ⎧⎨-+<⎩; 即当0≤t≤30时,日销售量w =2t ;当30<t≤40时,日销售量w =﹣6t+240;(2)由图①知,当t =30(天)时,日销售量w 达到最大,最大值w =60,又由图②知,当t =30(天)时,产品A 的日销售利润y 达到最大,最大值y =60(元/件),∴当t =30(天)时,日销售量利润Q 最大,最大日销售利润Q =60×60=3600(元), 答:第一批产品A 上市后30天,这家商店日销售利润Q 最大,日销售利润Q 最大是3600元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.。