初中数学三角形中垂线性质证明及练习题(附答案)
- 格式:doc
- 大小:77.50 KB
- 文档页数:4
三角形中垂线性质及相关练习题(附答案)
三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。
首先我们证明这个问题。
已知:如图8-21所示,PD、NE、MF是△ABC的3条边上的中垂线。
求证:PD、NE、MF交于一点O。
思路:先作两条边AB、AC上的中垂线MF、NE相交于O点,过O作OD⊥BC 于D,其反向延长线与AB交于P。然后再证明D是BC的中点。
证明:作AB、BC边上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。
∵MF⊥AB于F,AF=FB;
∴OA=OB;
∵NE⊥AC于E,AE=EC;
∴OA=OC;
∴OB=OC;
∵OD⊥BC于D;
∴POD是BC边上的中垂线。
∴NE、MF、PD交于一点O;即,三角形的三条中垂线交于一点。
结论:该证法采用直接证法,简单明了,其中运用了中垂线的性质定理和判定定理。
相关练习题:
一、判断题
1、三角形三条边的垂直平分线必交于一点
2、以三角形两边的垂直平分线的交点为圆心,以该点到三角形三个顶点中的任意一点的距离为半径作圆,必经过另外两个顶点
3、平面上只存在一点到已知三角形三个顶点距离相等
4、三角形关于任一边上的垂直平分线成轴对称
二、填空题
5、如左下图,点P为△ABC三边中垂线交点,则PA__________PB__________PC.
6、如右上图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1_______∠2,∠3______∠4,∠5______∠6,∠2+∠3=________度,∠1+∠4=______度,∠5+∠6=_______度,∠BOC=_______度.
7、如左下图,D为BC边上一点,且BC=BD+AD,则AD__________DC,点D在__________的垂直平分线上.
8、如右上图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B__________∠1,∠C__________∠2;若∠BAC=126°,则∠EAG=__________度.
9、如左下图,AD是△ABC中BC边上的高,E是AD上异于A,D的点,若BE=CE,则△__________≌△__________(HL);从而BD=DC,则△________≌△_________(SAS);△ABC是__________三角形.
10、如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠AD B=_________度.
三、作图题
11、(1)分别作出点P,使得PA=PB=PC
(2)观察各图中的点P与△ABC的位置关系,并总结规律:
当△ABC为锐角三角形时,点P在△ABC的__________;
当△ABC为直角三角形时,点P在△ABC的__________;
当△ABC为钝角三角形时,点P在△ABC的__________;
反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.
四、类比联想
12、既然任意一个三角形的三边的垂直平分线交于一点,那三角形的三边上
的中线是否也交于一点;三个角的平分线是否也交于一点;试通过折纸或用直尺、圆规画图验证这种猜想.
答案:
一、1.√ 2.√ 3.√ 4.×
二、1.= = 2.= = = 50 50 80 100
3.= AC
4.= = 72°
5.BED CED BAD C AD等腰
6.60°
三、1.略(2)内部斜边的中点外部
四、类比联想:略