排列与组合综合应用题的解法
- 格式:ppt
- 大小:187.50 KB
- 文档页数:16
解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题绑定方法:标题规定将几个相邻元素绑定成一个组,作为一个大元素参与安排例1.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b在a的右边,那么不同的排法种数有a、 B类60种,C类48种,D类36种,D类24种2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2七个人并排站成一排。
如果甲方和乙方不得相邻,则不同的安排类型为A、1440 B、3600 C、4820 D和48003.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3 a.B、C、D和e并排站成一排。
如果B必须站在a的右边(a和B不能相邻),有多少种不同的安排a、24种b、60种c、90种d、120种4.标签排序问题的分步方法:将元素排列到指定位置,首先按照规定排列一个元素,然后在第二步排列另一个元素。
如果你继续这样做,你可以依次完成例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有a、6种b、9种c、11种d、23种5.有序分配问题:有序分配问题是指将元素分成若干组,可以逐步分成若干组例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是a、 1260种B,2025种C,2520种D,5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同样的分配方案也是如此44c12c84c4a、ccc种b、3ccc种c、cca种d、种3a34124844412484441248336.全员分配的分组方法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?2)五本不同的书将分发给四名学生,每个学生至少一本。
排列组合问题的基本模型及解题方法导语:解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类,以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。
注意以下几点:1、解排列组合应用题的一般步骤为:①什么事:明确要完成的是一件什么事(审题);②怎么做:分步还是分类,有序还是无序。
2、解排列组合问题的思路(1) 两种思路:直接法,间接法。
(2) 两种途径:元素分析法,位置分析法。
3、基本模型及解题方法:(一)、元素相邻问题(1)、全相邻问题,捆邦法例1、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。
A 、720B 、360C 、240D 、120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题插空法例2、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种例3、高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是A 、1800B 、3600C 、4320D 、5040解:不同排法的种数为5256A A =3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
解排列组合应用题的26种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。
要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。
实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1、相邻排列——捆绑法:n个不同元素排列成一排,其中某k个元素排在相邻位置上,有多少种不同排法?先将这k个元素“捆绑在一起”,看成一个整体,当作一个元素同其它元素一起排列,共有种排法.然后再将“捆绑”在一起的元素进行内部排列,共有种方法.由乘法原理得符合条件的排列,共种.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.例2 有3名女生4名男生站成一排,女生必须相邻,男生必须相邻,共有多少种不同的站法?解:先把3名女生作为一个整体,看成一个元素,4名男生作为一个整体,看成一个元素,两个元素排列成一排共有种排法;女生内部的排法有种,男生内部的排法有种.故合题意的排法有种.2.相离排列——插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.将n个不同元素排成一排,其中k个元素互不相邻,有多少种排法?先把个元素排成一排,然后把k个元素插入个空隙中,共有排法种.例3 五位科学家和五名中学生站成一排照像,中学生不相邻的站法有多少种?解:先把科学家作排列,共有种排法;然后把5名中学生插入6个空中,共有种排法,故符合条件的站法共有种站法.例4.七位同学并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3、定序问题---倍缩法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.此法也被叫消序法.将n个不同元素排列成一排,其中某k个元素的顺序保持一定,有多少种不同排法?n个不同元素排列成一排,共有种排法;k个不同元素排列成一排共有种不同排法.于是,k个不同元素顺序一定的排法只占排列总数的分之一.故符合条件的排列共种.例5.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()A、24种B、60种C、90种D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.例6. A,B,C,D,E五个元素排成一列,要求A在B 的前面且D在E的前面,有多少种不同的排法?解:5个不同元素排列一列,共有种排法. A,B两个元素的排列数为;D,E两个元素的排列数为.因此,符合条件的排列法为种.4、标号排位问题---分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例7.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选.5、留空排列——借元法例8、一排10个坐位,3人去坐,每两人之间都要留空位,共有种坐法。
排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
解排列组合应用题的解法•技巧引言:1、本资料对排列、组合应用题归纳为8种解法、13种技巧2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。
弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则(3)先不考虑附加条件,计算岀排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。
3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得岀的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得岀的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。
下面通过一些例题来说明几种常见的解法。
一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五.排除法六.机会均等法七.转化法八.隔板法一.运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。
例1: n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有C0种结果;1个人通过,有c n种结果,……;n个人通过,有C;种结果。
所以一共有C: C n C:2n种可能的结果。
解法2 :用分步记数的原理。
第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。
所以一共有2n种可能的结果。
排列组合问题的几种巧解方法排列组合应用问题是历年高考必考题目,因其内容比较抽象、题型繁多、灵活多变、解题方法独特,与学生原有解题经验甚不相同,而成为高中数学教学的一个难点。
但只要我们认真审题,明确题目属于排列还是组合问题,或是排组混合问题,抓住问题本质特征,把握基本思想,灵活应用基本原理,注意讲究一些基本策略和方法技巧,善于分类讨论,适当转化,就能开拓思路,化难为易,使问题迎刃而解。
求解排列组合问题除了掌握两个基本原理(加法原理和乘法原理)外,没有现成的方法可套,只能根据具体问题灵活采用各种技巧。
本文就此通过一些实例介绍一下解决此类问题的一些常见的技巧。
一、对等法。
在有些问题中,某种限制条件的肯定与否定是对等的,各占全体的二分之一,在求解中只要求出全体,就可以得到所求。
例如:期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?分析:对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了。
并且也避免了问题的复杂性。
解:不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种。
二、插入法。
对于某两个元素或者几个元素要求不相邻的问题,可以用插入法,即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素后的空档之中即可。
例如:学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析:此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解:先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
专题一排列与组合应用题一、知识提要1.排列与组合应用题,是高考的常见题型,且与后面学习的古典概型问题联系密切。
高考中重点考查有附加条件的应用问题,解决的方法主要从以下三个方面考虑:(1)以元素为主,特殊元素优先考虑(2)以位置为主,特殊位置优先考虑(3)间接法:暂不考虑附加条件,计算出排列或组合数,再减去不符合条件的情况。
2.排列组合综合问题一般思路:先组合后排列,即先选元素后排列,同时注意按性质分类或按时间的发生过程分步。
3.解决首先纸条的排列、组合问题的一般策略有:(1)特殊元素优先考虑安排的策略;(2)正难则反,等价转化的策略;(3)相邻问题捆绑处理策略;(4)不相邻问题插空处理策略;(5)定序问题、平均分组问题除法策略;(6)“小集团”排列问题宪政体后局部策略;(7)分排问题直排处理策略;(8)构造模型的策略。
二、典型问题(一)排队问题例1.4男3女坐在一排,分别求下列各种排法的种数(1)某人必须在中间(2)某两人必须站在两端(3)某人不在中间和两端(4)甲不在最左端且乙不能在最左端(5)甲乙两人必须相邻(6)甲乙两人不能相邻(7)甲乙两人必须相隔1人(8)4男必须相邻,3女也必须相邻(9)3女不能相邻(10)甲必须在乙的左边(11)4男不等高,按高矮顺序排列点评:排队问题中常分为“在和不在”、“邻与不邻”、“顺序固定”等问题。
变式练习:1、四个人参加一次聚会,若任意两人不同是到场,则甲比乙先到的情况有__种,若甲乙丙三人中甲先到,其次是乙,丙最后到的情况有___种。
2、三名男歌手,两名女歌手联合举行一场音乐会,演出的出场顺寻要求两名女歌手之间恰有一名男歌手,不同的出场顺序有___种。
3、有6名同学参加了演讲比赛,决出了第一至第六的名次,评委告诉甲,乙两位同学“你们都没有拿到冠军,但甲不是最差”则这6名同学的排名顺序有___种。
(二)分组问题:1.弄清是否为平均分租,若是平均分组,则需用除法策略2.分组后是否需分配,若分配则需要排列.(先分组在排列)例2.六本不同的书,按下列要求各有多少种不同的分法?(1)分成三堆,一堆一本,一堆二本,一堆三本。
排列组合常见题型及解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
1 重复排列“住店法”重复排列问题要区分两类元素:一类可以重复,另一类不能重复。
把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。
例1 8名同学争夺3项冠军,获得冠军的可能性有()2. 特殊元素(位置)用优先法:把有限制条件的元素(位置)称为特殊元素(位置),可优先将它(们)安排好,后再安排其它元素。
对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?例2(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。
例3 5个“1”与2个“2”可以组成多少个不同的数列?3. 相邻问题用捆绑法:对于要求某几个元素必须排在一起的问题,可用“捆绑法”“捆绑”为一个“大元素:与其他元素进行排列,然后相邻元素内部再进行排列。
例1. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?例2(1996年上海高考题)有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种(结果用数字表示)。
4. 相离问题用插空法:元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
n n nn 解排列组合应用题的解法·技巧引言:1、本资料对排列、组合应用题归纳为 8 种解法、13 种技巧2、解排列组合问题的“16 字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。
弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1) 以元素为主,应先满足特殊元素的要求,再考虑其他元素(2) 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则.(3) 先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数 前两种方式叫直接解法,后一种方式叫间接(剔除)解法 注:数量不大时可以逐一排出结果。
3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且 每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果, 任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列, 无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。
下面通过一些例题来说明几种常见的解法。
一. 运用两个基本原理二. 特殊元素(位置)优先 三. 捆绑法 四. 插入法 五. 排除法 六. 机会均等法 七. 转化法 八. 隔板法一. 运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。
例 1:n 个人参加某项资格考试,能否通过,有多少种可能的结果?解法 1:用分类记数的原理,没有人通过,有 C 0 种结果;1 个人通过,有 C 1 种结 n n果,……;n 个人通过,有C n 种结果。
所以一共有C 0 + C 1 + +C n = 2n 种可能的结果。
高中数学排列组合与概率的综合应用题解析与求解在高中数学中,排列组合与概率是两个重要的概念和技巧。
排列组合主要涉及对对象的选择和排列,而概率则是研究事件发生的可能性。
在解决实际问题时,这两个概念常常会结合起来使用。
本文将通过具体的题目来说明如何应用排列组合与概率的知识解决综合应用题。
题目一:某班有10个男生和8个女生,从中选出3个人组成一个小组,其中至少有1个男生。
求这样的小组的可能数。
解析:这是一个典型的排列组合问题,我们需要从10个男生中选出至少1个男生,再从8个女生中选出剩下的2个人。
根据排列组合的知识,我们可以得出解题步骤如下:1. 选出1个男生的可能数:C(10, 1) = 102. 从8个女生中选出2个人的可能数:C(8, 2) = 283. 将步骤1和步骤2的结果相乘,得到最终的结果:10 * 28 = 280所以,这样的小组的可能数为280。
通过这个题目,我们可以看到排列组合的应用,以及如何将多个步骤结合起来求解问题。
这对于高中学生来说,是一个很好的练习。
题目二:某班有10个男生和8个女生,从中随机选出3个人组成一个小组,求这样的小组中至少有1个男生的概率。
解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。
根据概率的定义,我们可以得出解题步骤如下:1. 满足条件的小组数:根据题目一的解析,我们已经知道满足条件的小组数为280。
2. 总的小组数:从18个人中选出3个人的可能数为C(18, 3) = 816。
3. 将步骤1除以步骤2,得到最终的结果:280 / 816 ≈ 0.343。
所以,这样的小组中至少有1个男生的概率约为0.343。
通过这个题目,我们可以看到概率的应用,以及如何计算概率的具体步骤。
这对于高中学生来说,是一个很好的练习。
题目三:某班有10个男生和8个女生,从中选出3个人组成一个小组,求这样的小组中至少有2个男生的概率。
解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。
排列组合应用题基本解法举例〔关键词〕排列;组合;间接法;捆绑法;插空法;消序法虽然关于排列、组合的应用题是千变万化的,但其解题思路却离不开“分步相乘,分类相加,有序排列,无序组合”的原则.要熟练掌握解题技巧,我们还必须掌握处理排列、组合问题的一些基本技巧、方法.下面举列说明.1. 特殊位置法例1:从10人中选3人站成一排,其中甲不站首位,共有多少种不同排法?分析:首位是特殊位置,先排首位有A种排法,再排其余两位有A种排法,分步相乘得AA=648.2. 间接法例2:有7人站成一排,其中甲不站首位,且乙不站末位,共有多少种不同排法?分析:可用间接法得A-2A+A.其中甲站首位的方法有A种,乙站末位的方法有A种,包含甲站首位且乙站末位的情况有A种.3. 捆绑法例3:6件不同商品排成一排,其中甲、乙、丙3件商品一定要排在一起,共有多少种不同排法?分析:先把甲、乙、丙捆绑起来当一个元素参加排列有A种排法,然后这3件商品内部再排列有A种排法.分步相乘得AA=144.对于有相邻要求的排列组合题,可用此法.4. 插空法例4:有5个男生和4个女生排成一排,其中女生不能相邻,有多少种不同排法?分析:第一步,先排5个男生有A种排法;第二步,5个男生之间(包括两端)的6个空位中插入4个女生有A种排法.由分步相乘法得AA=43200.5. 先选后排法例5:从8个男生和4个女生中选3个男生2个女生,担任5种不同的工作,有多少种方法?分析:AA为错解,因为漏掉了男、女生的混合排列.正确解法用先选后排法,即先按要求选出5人有CC种方法,后进行排列有A种方法,由分步相乘法得CCA=40320.6. 消序法例6:有身高各不相同的10个人站成一排,要求甲、乙、丙3人从左边顺次一个比一个低(可以不相邻),共有多少种不同排法?分析:首先不考虑限制条件,共有A种不同排法;其次对甲、乙、丙3人的排列消序得:=604800,即共有604800种排法.7. 平均分组法例7:A、B、C、D、E、F 6人平均分成三组下棋,有多少种不同分法?分析:CCC为错解,其中有重复.如:6人中先选A、B为一组,再在剩余4人中选C、E为一组,最后剩余2人D、F为一组;6人中先选C、E为一组,再在剩余4人中选A、B为一组,最后剩余2人D、F为一组.以上两种不同分法得到的结果是完全相同的,即A、B为一组,C、E为一组,D、F为一组.不难发现,错解对这一种分法算了6次.故易得,正确解法为=15.8. 查字典法例8:由0、1、2、3、4、5六个数字,可以组成多少个没有重复数字且比324105大的六位数?分析:从高位排查如下:(1)查首位有4×××××、5×××××,故有2A个数;(2)查前两位有34××××、35××××,故有2A个数;(3)查前三位有325×××,故有A个数;(4)查前四位有3245××,故有A个数;(5)查前五位有324150,故有1个数.故共有:2A+2A+A+A+1=297个数.。
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 443由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学排列组合与概率的综合应用题解析在高中数学中,排列组合与概率是一个重要的知识点,也是学生们较为薄弱的部分。
本文将通过具体的题目举例,分析其考点,并给出解题技巧,以帮助高中学生和他们的父母更好地理解和应用这一知识点。
一、题目一:从1、2、3、4、5、6六个数字中任选三个数字,组成三位数,求能被3整除的三位数的个数。
解析:这是一个典型的排列组合问题。
我们需要从六个数字中任选三个数字,组成三位数。
首先,我们可以确定百位上的数字只能是1、2、3,因为0不能作为三位数的百位数。
然后,十位和个位上的数字可以是任意的。
所以,我们需要计算的是从1、2、3中选取一个数字作为百位数,从1、2、3、4、5、6中选取两个数字作为十位和个位数的排列数。
根据排列组合的知识,我们知道从n个不同元素中取出m个元素的排列数可以表示为P(n,m) = n!/(n-m)!,其中,n!表示n的阶乘。
根据题目要求,我们可以得到P(3,1) * P(6,2) = 3!/(3-1)! * 6!/(6-2)! = 3 * 6 * 5 = 90。
所以,能被3整除的三位数的个数为90个。
二、题目二:有6个红球,4个蓝球和2个绿球,从中任选5个球,求至少选到一个红球的概率。
解析:这是一个概率问题。
我们需要计算从12个球中任选5个球至少选到一个红球的概率。
首先,我们可以计算从12个球中任选5个球的总的可能性,即C(12,5) =12!/(5!*(12-5)!) = 792。
然后,我们需要计算选到至少一个红球的情况。
选到至少一个红球可以分为两种情况:选到1个红球和4个其他球,或者选到2个红球和3个其他球。
对于第一种情况,我们可以计算C(6,1) * C(6,4) =6!/(1!*(6-1)!) * 6!/(4!*(6-4)!) = 6 * 15 = 90。
对于第二种情况,我们可以计算C(6,2)* C(6,3) = 6!/(2!*(6-2)!) * 6!/(3!*(6-3)!) = 15 * 20 = 300。
解答排列组合应用题的常用方法(一)教学目标:要求学生在掌握分步计数原理与分类计数原理的基础上,能用它们分析和解决一些简单的应用问题。
要求学生掌握并能灵活运用解应用题的一些常用方法。
教学重难点:题型的分析和方法的灵活选用。
教材分析:解决排列组合问题首先必须分清它是排列问题还是组合问题;其次,分析求解过程要注意掌握处理排列与组合问题的基本思想,即按元素的性质分类或按事件发生过程分步。
另外,对于同一个问题应从多个角度去思考,一题多解,这样既可防止重复与遗漏问题,又可提高分析问题的能力。
解排列组合应用题,首先必须认真审题,明确问题是排列问题,还是组合问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。
教学过程:总的原则—合理分类和准确分步解排列(或)组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
例1 、6个同学和2个老师排成一排照相,2个老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?练习(1)0,1,2,3,4,5可组成多少个无重复数字的五位偶数?(2)0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数?(3)0,1,2,3,4,5可组成多少个无重复数字且大于31250的五位数?(4)31250是由0,1,2,3,4,5组成的无重复数字的五位数中从小到大第几个数?解题方法(一)特殊优先,一般在后对于问题中的特殊元素、特殊位置要优先安排。
对实际问题,有时“元素优先”,有时“位置优先”。
例 2 用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24B.30C.40D.60(二)排列组合混合,先选后排对于排列组合混合问题,宜先用组合选取元素,再进行排列。
例:4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种?(三)正难则反,间接处理(间接法)对于某些排列组合问题的正面情况较复杂,而反面情况较简单时,可先考虑无限制条件的排列,再减去其反面情况的总数,此时应注意既不能多减又不能少减。
排列数和组合数应用题解题技巧《排列数和组合数应用题解题技巧》嘿,同学们!今天咱们来唠唠排列数和组合数应用题的解题技巧。
这排列数和组合数啊,就像两个神秘的魔法盒,里面装着好多有趣的数学秘密呢。
先说说排列数吧。
排列就像是给一群小伙伴排队,顺序可重要啦。
比如说,咱们班要选几个同学站成一排领奖,这就是排列问题。
那怎么解排列数应用题呢?首先得搞清楚题目里的元素有多少个。
就好比有一堆不同颜色的球,你得知道一共有几个球。
这就像是数清楚排队的小伙伴有几个一样。
然后呢,要看取几个元素来进行排列。
比如说要从咱们班这么多同学里选3个同学站成一排,那这个3就是要取的元素个数。
我给大家举个例子哈。
有5个不同的字母A、B、C、D、E,要从中选3个字母进行排列,问有多少种排法。
这时候,咱们就可以用排列数公式啦,A(n,m)=n!/(n - m)!。
这里n就是总的字母个数5,m就是要选的字母个数3。
那就是A(5,3)=5!/(5 - 3)!=5×4×3 = 60种排法。
那组合数又是什么呢?组合就像是从一堆东西里挑出几个,不考虑顺序。
比如说从一篮子水果里挑几个水果出来吃,不管先拿哪个后拿哪个,只要挑出来的水果是一样的,就只算一种情况。
解组合数应用题的时候啊,同样也要先确定元素的总数和要选取的元素个数。
不过这里可就不用管顺序啦。
比如说还是那5个字母A、B、C、D、E,现在要从中选3个字母组成一组,不考虑顺序,这就是组合问题。
组合数公式是C(n,m)=n!/m!(n - m)!。
那C(5,3)=5!/3!(5 - 3)!=10种组合方法。
有时候啊,题目可不会直接告诉你是排列还是组合。
这时候怎么办呢?咱们就得仔细分析题目啦。
要是题目里提到了顺序,比如说排队、编号、座位的顺序之类的,那大概率就是排列问题。
要是只说选出几个东西,没有提到顺序,那就很可能是组合问题。
再给大家讲个好玩的例子。
学校要组织一个小型乐队,有8个同学会不同的乐器,现在要选3个同学组成乐队。
排列组合常见21种解题方法.排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标:1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一。
特殊元素和特殊位置优先策略:例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3^1种方法,然后排首位共有C4^1种方法,最后排其它位置共有A4^3种方法,根据分步计数原理得到答案为C4^1 × C3^1 × A4^3 = 288.入问题或空位法来解决。