最新青岛二中自主招生数学试题及答案
- 格式:doc
- 大小:14.48 MB
- 文档页数:4
2023-2024学年山东省青岛市青岛第二中学高一上学期10月月考数学试题✽一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则下列结论错误的是( )A. B. C. D.2.已知集合,且A中至少有一个奇数,则这样的集合A的个数为( )A. 11B. 12C. 13D. 143.设集合,其中N为自然数集,,,则下列结论正确的是( )A. B.C. D.4.设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若“”是假命题,则a的取值范围为( )A. B. C. D.6.近来牛肉价格起伏较大,假设第一周、第二周的牛肉价格分别为a元/斤、b元/斤,学校甲食堂和乙食堂购买牛肉的方式不同,甲食堂每周购买6000元钱的牛肉,乙食堂每周购买80斤牛肉,甲食堂、乙食堂两次平均单价为分别记为,,则下列结论正确的是( )A. B.C. D. ,的大小无法确定7.已知,,,则的最小值为( )A. B. C. D.8.对于集合A,B,我们把集合叫做集合A与B的差集,记作若集合,集合,且,则实数a的取值范围是( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知全集,,,,,,则下列选项正确的为( )A. B. A的不同子集的个数为8C. D.10.下列说法中,错误的是( )A. 若,,则B. 若,,则C. “对,恒成立”是“”的必要不充分条件D. 设,则的最小值为211.若关于x的不等式的解集为,则的值可以是( )A. B. C. D. 112.已知正实数a,b满足,则下列选项正确的是( )A. 的最大值为2B. 的最小值为C. 的最大值为3D. 的最小值为2三、填空题:本题共4小题,每小题5分,共20分。
2018-2019年最新青岛二中自主招生考试数学模拟精品试卷(第一套)考试时间:90分钟总分:150分一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()A.平移变换 B.轴对称变换 C.旋转变换 D.相似变换3.如果□33ab=3a2b,则□内应填的代数式()A.ab B.3ab C.a D.3a4.一元二次方程x(x-2)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周O长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”。
试用这个方法解决问题:如图,⊙的内接多边形周长为 3 ,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是()A.6 B.8 C.10 D.176、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的()A.中位数B.众数C.平均数D.方差7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.x+1>0,x-3>0B.x+1>0,3-x>0C.x+1<0,x-3>0D.x+1<0,3-x>08.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值 3B.有最小值-1,有最大值0C.有最小值-1,有最大值 3D.有最小值-1,无最大值9.如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )水平面主视方向A .2.5B .2 2C. 3 D. 510.青岛二中广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()(A )两个外离的圆(B )两个外切的圆(C )两个相交的圆(D )两个内切的圆12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0;②abc >0;③8a +c >0;④9a +3b +c <0.其中,正确结论的个数是( )A .1B .2C .3D .4 二、填空题(本小题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案13.当x ______时,分式13-x有意义.14.在实数范围内分解因式:2a 3-16a =________.15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.16.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=________.17.若一次函数y=(2m-1)x+3-2m的图象经过一、二、四象限,则m的取值范围是________.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有________个小圆. (用含n的代数式表示)三、解答题(本大题7个小题,共90分)19.(本题共2个小题,每题8分,共16分)(1).计算:(2011-1)0+18sin45°-2-1(2).先化简,再计算:x2-1 x2+x÷x-2x-1x,其中x是一元二次方程x2-2x-2=0的正数根.20.(本题共2个小题,每题6分,共12分)(1).如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17) cm,正六边形的边长为(x2+2x) cm(其中x>0).求这两段铁丝的总长.(2).描述证明海宝在研究数学问题时发现了一个有趣的现象:将上图横线处补充完整,并加以证明.21.(本题12分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.票数结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试项目测试成绩/分测试成绩/分测试成绩/分甲乙丙笔试929095面试859580图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?22.(本题12分)如图,已知直线AB与x轴交于点C,与双曲线y=kx交于A(3,203)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.23、(本题12分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)试判断BF与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2.∠F=60,求弓形AB的面积24.(本题12分)已知双曲线y =k x与抛物线y =ax 2+bx +c 交于A (2,3)、B (m,2)、c (-3,n )三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A 、点B 、点C ,并求出△ABC 的面积.O FEABDC25.(本题共2个小题,每题7分,共14分)(1)观察下列算式:① 1 3 3-22=3-4=-1② 2 3 4-32=8-9=-1③ 3 3 5-42=15-16=-1④ __________________________……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.(2)如图,在直角坐标系中,O为坐标原点. 已知反比例函数y=kx(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为1 2 .(1)求k和m的值;(2)点C(x,y)在反比例函数y=kx的图象上,求当1≤x≤3时函数值y的取值范围;(3)过原点O的直线l与反比例函数y=kx的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.2018-2019年最新青岛二中自主招生考试数学模拟精品试卷答案(第一套)1.答案 B解析据绝对值的意义,一个数的绝对值是一个非负数,|a|≥0.2.C3.答案 C解析□=3a2b÷3ab=a.4.答案 A解析x(x-2)=0,x=0或x-2=0,x1=0,x2=2,方程有两个不相等的实数根.5.C6.A7.答案 B解析观察数轴,可知-1<x<3,只有x+1>0,3-x>0的解集为-1<x<3.8.答案 C解析当0≤x≤3时,观察图象,可得图象上最低点(1,-1),最高点(3,3),函数有最小值-1,最大值3.9.答案 D解析在Rt△OAB中,∠OAB=90°,所以OB=12+22= 510.答案 A解析y=-x2+4x=-(x-2)2+4,抛物线开口向下,函数有最大值4.11.D12.答案 D解析由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故①正确.抛物线开口向上,得a >0;又对称轴为直线x =-b2a=1,b =-2a <0.抛物线交y 轴于负半轴,得c <0,所以abc >0,②正确.根据图象,可知当x =-2时,y >0,即4a -2b +c >0,把b =-2a 代入,得4a -2(-2a )+c =8a +c >0,故③正确.当x =-1时,y <0,所以x =3时,也有y <0,即9a +3b +c <0,故④正确.二.填空题13.答案≠3解析因为分式有意义,所以3-x ≠0,即x ≠3. 14.答案2a (a +2 2)(a -22)15.答案9.63310-5解析0.0000963=9.63310-5.16.答案105°解析如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.17.答案m <12解析因为直线经过第一、二、四象限,所以2m -1<0,3-2m >0,解之,得m <12.18.答案n (n +1)+4或n 2+n +4解析第1个图形有2+4=(132+4)个小圆,第2个图形6+4=(233+4)个小圆,第3个图形有12+4=(334+4)个小圆,……第n 个图形有[n (n +1)+4]个小圆.三、解答题(本大题7个小题,共90分)19.(本题共2个小题,每题8分,共16分)(1).解:原式=1+32322-12=312.(2)解:原式=x+1x-1x x+1÷x2-2x+1x=x-1x2xx-12=1x-1.解方程得x2-2x-2=0得,x1=1+3>0,x2=1-3<0.当x=1+3时,原式=11+3-1=13=33.20.(1).解:由已知得,正五边形周长为5(x2+17) cm,正六边形周长为6(x2+2x) cm.因为正五边形和正六边形的周长相等,所以5(x2+17)=6(x2+2x).整理得x2+12x-85=0,配方得(x+6)2=121,解得x1=5,x2=-17(舍去).故正五边形的周长为53(52+17)=210(cm).又因为两段铁丝等长,所以这两段铁丝的总长为420 cm.答:这两段铁丝的总长为420 cm.(2)解:如果ab+ba+2=ab,那么a+b=ab.证明:∵ab+ba+2=ab,∴a2+b2+2abab=ab,∴a2+b2+2ab=(ab)2,∴(a+b)2=(ab)2,∵a>0,b>0,a+b>0,ab>0,∴a+b=ab.21.解:(1)乙30%;图二略.(2)甲的票数是:200334%=68(票),乙的票数是:200330%=60(票),丙的票数是:200328%=56(票),(3)甲的平均成绩:x 1=6832+9235+85332+5+3=85.1,乙的平均成绩:x 2=6032+9035+95332+5+3=85.5,丙的平均成绩:x 3=5632+9535+80332+5+3=82.7,∵乙的平均成绩最高,∴应该录取乙.22.解:(1)∵双曲线y =k x 过A (3,203),∴k =20.把B (-5,a )代入y =20x,得a =-4.∴点B 的坐标是(-5,-4). 设直线AB 的解析式为y =mx +n ,将A (3,203)、B (-5,-4)代入得,203=3m +n ,-4=-5m +n ,解得:m =43,n =83.∴直线AB 的解析式为:y =43x +83.(2)四边形CBED 是菱形.理由如下:易求得点D 的坐标是(3,0),点C 的坐标是(-2,0).∵BE //x 轴,∴点E 的坐标是(0,-4).而CD =5, BE =5, 且BE //CD . ∴四边形CBED 是平行四边形. 在Rt △OED 中,ED 2=OE 2+OD2,∴ED =32+42=5,∴ED =CD . ∴四边形CBED 是菱形.23.解:证明:(1)BF 与⊙O 相切,连接OB 、OA ,连接BD ,∵AD ⊥AB ,∴∠BAD=90°,∴BD 是直径,∴BD 过圆心. ∵AB=AC ,∴∠ABC=∠C ,∵∠C=∠D ,∴∠ABC=∠D ,∵AD ⊥AB ,∴∠ABD+∠D=90°,∵AF=AE ,∴∠EBA=∠FBA ,∴∠ABD+∠FBA=90°,∴OB ⊥BF ,∴BF 是⊙O 切线.(2)∵∠F=600,∴∠D=900-∠F=300,∴∠AOB=600,∴△AOB 为等边三角形..S 弓形AB=33224336026022.24.解:(1)把点A (2,3)代入y =kx得:k =6.∴反比例函数的解析式为:y =6x.把点B (m,2)、C (-3,n )分别代入y =6x得:m =3,n =-2.把A (2,3)、B (3,2)、C (-3,-2)分别代入y =ax 2+bx +c 得:4a +2b +c =3,9a +3b +c =2,9a -3b +c =-2,解之得a =-13,b =23,c =3.∴抛物线的解析式为:y =-13x 2+23x +3.(2)描点画图(如图):S △ABC =12(1+6)35-123131-123634=352-12-12=5.25.(1).解:(1)436-52=24-25=-1.(2)答案不唯一.如n ()n +2-()n +12=-1.(3)n ()n +2-()n +12=n 2+2n -()n 2+2n +1=n 2+2n -n 2-2n -1 =-1. 所以一定成立.(2)解:(1)∵A (2,m ),∴OB =2,AB =m ,∴S △A OB =12OB 2AB =12323m =12,∴m =12.∴点A 的坐标为(2,12).把A (2,12)代入y =k x ,得12=k2,∴k =1.(2)∵当x =1时,y =1;当x =3时,y =13,又∵反比例函数y =1x在x >0时,y 随x 的增大而减小,∴当1≤x ≤3时,y 的取值范围为13≤y ≤1.(3) 由图象可得,线段PQ 长度的最小值为 22.。
山东省青岛第二中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.已知空间向量()1,3,5a =-r ,()2,,b x y =r ,且//a b r r ,则x y -=( )A .16-B .16C .4D .4-2.已知点()2,3A -,()3,2B --,若过点()1,1P -的直线与线段AB 相交,则该直线斜率的取值范围是( )A .32,,43⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U B .][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭ C .34,23⎡⎤-⎢⎥⎣⎦D .43,32⎡⎤-⎢⎥⎣⎦ 3.已知空间向量()1,,2a n =r ,()2,1,2b =-r ,若3a b -r r 与b r 垂直,则a r 等于( )A B C D .24.设A ,B 为两个随机事件,以下命题正确的为( )A .若A ,B 是对立事件,则()1P AB =B .若A ,B 是互斥事件,11(),()32P A P B ==,则1()6P A B += C .若11(),()32P A P B ==,且1()3P AB =,则A ,B 是独立事件 D .若A ,B 是独立事件,12(),()33P A P B ==,则1()9P AB = 5.已知点()0,1P -关于直线10x y -+=对称的点Q 在圆22:50C x y mx +++=上,则m =( ) A .4 B .5 C .-4 D .-56.连掷两次骰子得到的点数分别为m 和n ,记向量(),a m n =v 与向量()1,1b =-v 的夹角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦的概率是( ) A .512 B .12 C .712D .56 7.边长为1的正方形ABCD 沿对角线AC 折叠,使14AD BC ⋅=u u u r u u u r ,则三棱锥D ABC -的体积为( )A B C D 8.已知空间向量a r ,b r ,c r 两两的夹角均为60o ,且2a b ==r r ,4c =r .若向量x r ,y r 满足()x x a x b ⋅+=⋅r r r r r ,()y y a y c ⋅+=⋅r r r r r ,则x y -r r 的最大值是( )A .1+B .1C .D .2二、多选题9.下列说法正确的是( )A .8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是6111B .若样本数据1x ,2x ,L ,10x 的平均数为2,则数据121x -,221x -,L ,1021x -的平均数为3C .一组数据4,3,2,6,5,8的60%分位数为6D .某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知m ∈R ,若过定点A 的动直线1:20l x my m -+-=和过定点B 的动直线2:420l mx y m +-+=交于点P (P 与A ,B 不重合),则以下说法正确的是( )A .B 点的坐标为()2,4-B .22PA PB +为定值C .PAB S V 最大值为252D .2PA PB +的最大值为11.在棱长为1的正方体1111ABCD A B C D -中,1BP xBB yBC =+u u u r u u u r u u u r ,x ,()0,1y ∈,11AQ z AC =u u u r u u u r ,[]0,1z ∈,若直线1A P 与11A B 的夹角为45o ,则下列说法正确的是( )A .线段1A PB 1AQ PQ +的最小值为1C .对任意点P ,总存在点Q ,使得1⊥D Q CPD .存在点P ,使得直线1A P 与平面11ADD A 所成的角为60o三、填空题12.已知()11,0,1n =-u r ,()2,3,2n m =-u u r ,()30,1,1n =-u u r ,若{}123,,n n n u r u u r u u r 不能构成空间的一个基底,则m =.13.已知半径为1的圆经过点()3,4,则其圆心到直线3430x y --=距离的最大值为. 14.在长方体1111ABCD A B C D -中,已知异面直线1AC 与11B C ,1AC 与11C D 所成角的大小分别为60o 和45o ,E 为1CC 中点,则点E 到平面1A BC 的距离为.15.平面直角坐标系中,矩形的四个顶点为,O 0,0 ,()8,0A ,()8,6B ,C 0,6 ,光线从OA 边上一点()04,0P 沿与x 轴正方向成θ角的方向发射到AB 边上的1P 点,被AB 反射到BC 上的2P 点,再被BC 反射到OC 上的3P 点,最后被OC 反射到x 轴上的()4,0P t 点,若()4,6t ∈,则tan θ的取值范围是.四、解答题16.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程. 17.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为()1101p p <<,收到0的概率为11p -;发送1时,收到0的概率为()2201p p <<,收到1的概率为21p -.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1,若依次收到1,1,1,则译码为1).(1)已知13p 4=,223p =, (i )若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率; (ii )若采用单次传输方案,依次发送0,0,1,判断事件“第三次收到的信号为1”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(2)若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求2p 的取值范围.18.如图,四面体ABCD 中,ABC V 为等边三角形,且2AB =,ADC △为等腰直角三角形,且90ADC ∠=o .(1)当BD(i )求二面角D AC B --的正弦值;(ii )当P 为线段BD 中点时,求直线AD 与平面APC 所成角正弦值;(2)当2BD =时,若()01DP DB λλ=<<u u u r u u u r ,且PH ⊥平面ABC ,H 为垂足,CD 中点为M ,AB中点为N ;直线MN 与平面APC 的交点为G ,当三棱锥P ACH -体积最大时,求MG GN的值.。
青岛自主招生试题一、数学1. 若a+b=8,且a^2+b^2=34,则a^3+b^3=?2. 已知正方形的边长为x,若一个正方形的面积比它小18平方单位,则此正方形的边长为多少?3. 若log2=0.3010,log3=0.4771,log5=0.6989,则log(2/3)+log(3/5)的值等于多少?二、物理1. 一辆汽车以20m/s的速度匀速行驶30秒,求汽车行驶的距离。
2. 一颗质量为0.2kg的物体以2m/s的速度竖直向上抛出,求它到达最高点时速度的大小。
3. 一辆货车质量为2吨,以10m/s的速度与一辆轿车质量为1吨、速度为20m/s的轿车正向碰撞,两车碰撞后以共同速度运动,求碰撞后的速度。
三、化学1. 编写反应方程式:铁和硫反应生成硫化铁。
2. 简述酸性溶液和碱性溶液的特点。
3. 用适当的试剂可以将氢气和氧气转化为水,请写出反应方程式。
四、英语根据所给的句子,选择正确的单词或短语填空。
1. I have ________ to go to the park this afternoon. (plan / planned)2. Tom is ________ than his brother. (tall / taller)3. The cat ________ the mouse and then ran away. (catch / caught)4. John ________ running in the park every morning. (like / likes)五、历史1. 青岛曾是哪个国家租借地?2. 青岛是中国哪个省的下辖市?3. 第一次鸦片战争后,青岛被哪个国家占领?4. 请简述青岛保卫战的背景和重要意义。
六、政治1. 请列举中国的党派。
2. 中国共产党成立的时间是?3. 请简述中国的国家制度。
七、地理1. 青岛位于中国的哪个省?2. 青岛附近有哪个著名的半岛?3. 请简述青岛的气候特点。
山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.传染病负压隔离病房的室内气压低于室外大气压。
关于负压病房,下列说法正确的是()A.病房内处于真空状态B.病房内的气压一定是1个标准大气压C.病房内的空气可以通过门窗流向病房外D.可以通过从病房内抽气实现负压2.如图甲所示是某校九年級的同学们在参加“青羊区中学生物理科技创新大赛”时设计的空气质量测仪的原理,电源电压恒为3V,R0为10 的定值电阻,R为可以感知空气污染指数的可变电阻,其阻值随污染指数交化的情况如图乙所示。
用电压表示数反映污染指数,污染指数在50以下为空气质量优,90-102之间为空气质量良,100~150为轻微污染,151~200为轻度污染,201~250为中度污染,251~300为轻度重污染,300以上为重度污染,下列分析正确的是()A.污染指数越小,电压表示数越大B.比赛当天电压表示数为1V时,属于轻微污染C.污染指数越大,电路中消耗的总功率越小 D.污染指数为50时,电压表的示数为2.5V 3.如图,四个完全相同的玻璃瓶内装有质量不等的同种液体,用大小相同的力敲击四个玻璃瓶的同一位置,如果能分别发出“dou(1)”、“ruai(2)”、“mi(3)“、“fa (4)”四个音阶,则与这四个音阶相对应的玻璃瓶的序号是()A.丁丙乙甲B.乙甲丙丁C.丁甲丙乙D.甲丙乙丁4.如图所示,某一型号的锁设置了三种打开方式:密码(S1)、特定指纹(S2)或应急钥匙(S3),三者都可以单独使电动机M工作而打开门锁,下列电路设计符合要求的是A.B.C.D.5.如图所示,电源电压恒为6V,R1=10Ω,电流表量程为0~0.6A,电压表量程为0~3V,滑动变阻器R2规格“20Ω 0.5A”。
闭合开关S后,在保证电路安全的前提下移动滑片P,下列描述正确的是()A.电压表示数和电流表示数的关系B.R2的阻值和电流表示数的关系C.R1电功率和电流表示数的关系D.电路总功率和电流表示数的关系6.通电导体在磁场中受到力的作用。
山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.下列四幅图片与其对应的说法,正确的是()A.甲图中通过改变尺子伸出桌面的长度,可以探究音调与频率的关系B.乙图中用示波器显示两列声波的波形图,这两列声波的音色相同C.丙图中“GPS导航”是利用超声波在卫星与汽车之间传递信息的D.丁图中用手搓杯口,通过改变杯中的水量可以探究响度与振幅的关系2.如图是一种手摇式手机充电器,只要摇转手柄,就可以给手机充电。
以下四幅图中能反映手摇充电器原理的是()A.B.C.D.3.以下是我们生活中常见到的几种现象:①篮球撞击在篮板上被弹回;②用力揉面团,面团形状发生变化;③用力握小球,球变瘪了;④一阵风把地面上的灰尘吹得漫天飞舞.在这些现象中,物体因为受力而改变运动状态的是A.①②B.①④C.②③D.②④4.如图所示的物态变化现象中,需要吸热的是()A.霜的形成B.河水结冰C.樟脑丸逐渐变小D.露珠的形成5.如图所示是乘客刷身份证进站的情景,将身份证靠近检验口,机器的感应电路中就会产生电流,从而识别乘客身份,下图说明该原理的是()A.B.C.D.6.如图,将装有适量水的小玻璃瓶瓶口向下,使其漂浮在大塑料瓶内的水面上,拧紧大瓶瓶盖,通过改变作用在大瓶侧面的压力大小,实现小瓶的浮与沉.则()A.用力捏大瓶,小瓶不能实现悬浮B.用力捏大瓶,小瓶内的气体密度变大C.盖上小瓶瓶盖,捏大瓶也能使小瓶下沉D.打开大瓶瓶盖,捏大瓶也能使小瓶下沉7.隐型眼镜是一种直接贴在眼睛角膜表面的超薄镜片,可随眼球的运动而运动。
目前使用的软质隐型眼镜由甲醛丙烯酸羟乙酯(HEMA)制成,中心厚度只有 0.05mm.如图是某人观察物体时,物体在眼球内成像的示意图,则该人所患眼病及矫正时应配制的这种隐型眼镜的镜片边缘的厚度分别为()A.近视眼,大于 0.05mm B.近视眼,小于 0.05mmC.远视眼,大于 0.05mm D.远视眼,小于 0.05mm8.如图所示,使用中属于费力杠杆的是()A.核桃夹B.起子C.镊子D.羊角锤9.关于信息和能源,下列说法正确的是()A.电风扇工作时,电能主要转化为内能B.煤、石油、风能、天然气等都是不可再生能源C.目前的核电站是利用核裂变释放的核能工作的D.能量在转移、转化过程中总是守恒的,我们无需节约能源10.为了揭示大自然的奥秘,无数科学家进行了不懈的探索。
青岛自招试题青岛自招试题是指青岛地区高中生报考本地高校自主招生考试的试题。
下面是青岛自招试题的相关参考内容:一、数学试题1.已知函数f(x)=3x^2+5x-2,求f(-2)的值。
解析:将x替换为-2,得到f(-2)=3*(-2)^2+5*(-2)-2=222.解方程:3(x-1)=2x+7解析:将方程化简,得到3x-3=2x+7,再将未知数放在一边和常数项放在一边,得到x=103.已知等差数列的首项是2,公差是3,求前10项的和。
解析:首项是2,公差是3,前10项的和可以用等差数列求和公式Sn = n/2[2a+(n-1)d]来计算,将n=10,a=2,d=3带入公式,得到Sn = 10/2[2*2+(10-1)*3]=110二、英语试题1.用适当的形式填空:The weather is getting __________ (bad), we should take an umbrella with us.解析:形容词的比较级是用来表示两个事物在某一方面的大小或程度的,根据句意,应选bad的比较级worse。
2.选择正确的短语填空:He is fond ____ playing basketball.A. inB. ofC. toD. with解析:根据句意可知,该句表示喜欢做某事,应选B选项。
3.阅读理解:Mr. White is a businessman. He speaks French very well. He can speak English, too. He learns Chinese. His Chinese is not very good. But he likes China and likes Chinese people. He wants to speak Chinese well. He has a lot of friends in China.问题:What languages can Mr. White speak?解析:根据文章可知,Mr. White会说法语和英语,所以他会说两种语言。
青岛二中2024年8月高三数学试题一、单选题1.已知集合(){}lg 23,{1}M x y x N y y ==-=>∣∣,则M N = ()A .31,2⎛⎫- ⎪⎝⎭B .31,2⎛⎫⎪⎝⎭C .()1,+∞D .3,2⎛⎫+∞ ⎪⎝⎭2.某高中为鼓励全校师生增强身体素质,推行了阳光校园跑的措施,随机调查7名同学在某周周日校园跑的时长(单位:分钟),得到统计数据如下:35,30,50,90,70,85,60.则该组数据的中位数和平均数分别为()A .60,58B .60,60C .55,58D .55,603.已知()i1ia z a +=∈+R 为实数,则2i z z +=()A B .2C .1D4.曲线e sin2x y x =+在点()0,1处的切线方程为()A .3220x y +-=B .2210x y -+=C .310x y -+=D .3220x y -+=5.已知锐角,αβ满足sin sin sin cos cos ααβαβ+=,则2αβ+=()A .π2B .π3C .π4D .π6.过点()1,3P -的直线l 与曲线()22:(2)123M x y x -+=≤≤有两个交点,则直线l 斜率的取值范围为()A .2,13⎛⎤ ⎥⎝⎦B .4,23⎛⎤ ⎥⎝⎦C .2,23⎛⎤ ⎥⎝⎦D .2,43⎛⎤ ⎥⎝⎦7.已知椭圆2222:1(0)x y T a b a b+=>>的右焦点为F ,过F 且斜率为1的直线l 与T 交于,A B 两点,若线段AB 的中点M 在直线20x y +=上,则T 的离心率为()A B 3C D .28.如图,在平行四边形ABCD 中,tan 7,5,BAD AB AD E ∠===为边BC 上异于端点的一点,且45AE DE ⋅=,则sin CDE ∠=()A B .725C .513D .14二、多选题9.已知双曲线22:136x y C m m -=-+,则()A .m 的取值范围是()6,3-B .1m =时,C 的渐近线方程为y x =C .C 的焦点坐标为()()3,0,3,0-D .C 可以是等轴双曲线10.下列函数中,存在数列{}n a 使得123,,a a a 和()()()123,,f a f a f a 都是公差不为0的等差数列的是()A .()tan =f x xB .()2log f x x=C .()2024f x x=D .()1lg1x f x x+=-11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A .()f x 的图象关于点()2,1对称B .()f x 是以8为周期的周期函数C .()()8g x g x +=D .20241(42)2025k f k =-=∑三、填空题12.二项式6()x y -的展开式中42x y 的系数为.13.已知函数()π2024sin 26f x x ⎛⎫=- ⎪⎝⎭在区间π,6m ⎛⎫ ⎪⎝⎭内恰有两个极值点,则实数m 的取值范围为.14.将正整数n 分解成两个正整数12k k 、的积,即12n k k =⋅,当12k k 、两数差的绝对值最小时,我们称其为最优分解.如2012021045=⨯=⨯=⨯,其中45⨯即为20的最优分解,当12,k k 是n 的最优分解时,定义()12f n k k =-,则数列(){}5n f 的前2023项和为.四、解答题15.在ABC V 中,内角A 、B 、的对边分别为a 、b 、c ,且cos sin aC C b c =+.(1)求A ;(2)若a =,且bc >,则ABC V 的面积为b 、c .16.已知直线:l x my n =+交抛物线2:4C y x =于,M N 两点,F 为C 的焦点,且FM FN ⊥.(1)证明:20m n +>;(2)求n 的取值范围.17.如图,点O 为正四棱锥P ABCD -的底面中心,四边形POBQ 为矩形,且OA =2BQ =.(1)求正四棱锥P ABCD -的体积;(2)设E 为侧棱PA 上的点,且23AE EP =,求直线BE 与平面PQC 所成角的大小(结果用反三角函数值表示).18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.定义:若对于任意*n ∈N ,数列{}{},n n x y 满足:①n n x y ≠;②()()n n f x f y =,其中()f x 的定义域为,,n n D x y D ∈,则称{}{},n n x y 关于()f x 满足性质G .(1)请写出一个定义域为R 的函数()f x ,使得{}{},n n -关于()f x 满足性质G ;(2)设()(0,0)kg x x x kx=+>>,若{}{},n n x y 关于()g x 满足性质G ,证明:n n x y +>(3)设()()ππ22eesin x x h x x x +--=+-∈R ,若{}{},n n x y 关于()h x 满足性质G ,求数列{}n n x y +的前n 项和.青岛二中2024年8月高三数学试题一、单选题1.D【分析】根据真数要大于0和集合交集的运算法则即可求解.【详解】()3{230},,{1}1,2M xx N y y ∞∞⎛⎫=->=+=>=+ ⎪⎝⎭∣∣,故3,2M N ⎛⎫=+∞ ⎪⎝⎭.2.B【分析】根据中位数定义,以及平均数公式即可求得.【详解】将样本数据从小到大排列为30,35,50,60,70,85,90.易得中位数为60,平均数为()130355060708590607⨯++++++=.3.D【分析】利用z 为实数求出1a =,再根据复数的模的公式求解.【详解】由题意可得()()()()()i 1i 1ii 11i 1i 1i 22a a a a z +--++===+++-,由z 为实数,得10a -=,即1a =,则1z =,故2i 2i z z +=+==4.C【分析】先求导,根据导数的几何意义写出切线斜率,然后利用点斜式写出方程.【详解】因为e 2cos2x y x =+',所以e sin2x y x =+在点()0,1处的切线斜率为00e 2cos03x y ==+=',所以切线方程为()130y x -=⨯-,即310x y -+=.5.A【分析】利用诱导公式以及两角差的余弦公式可得()πcos cos 2ααβ⎛⎫-=+ ⎪⎝⎭,再根据角的范围以及余弦函数单调性即可得出结论.【详解】因为sin sin sin cos cos ααβαβ+=,所以()πcos sin cos cos sin sin cos2αααβαβαβ⎛⎫-==-=+ ⎪⎝⎭,又因为,αβ为锐角,则()ππ0,,0,π22ααβ⎛⎫-∈+∈ ⎪⎝⎭,而cos y x =在()0,π上单调递减,从而π2ααβ-=+,即π22αβ+=.6.B【分析】由题知曲线()22:(2)123M x y x -+=≤≤是以()2,0M 为圆心,1为半径的半圆,结合图形,利用过两点直线的斜率和直线与圆的位置关系,即可求解.【详解】由题意易知直线l 的斜率存在且不为0,设直线()():130l y k x k =--≠,曲线()22:(2)123M x y x -+=≤≤是以()2,0M 为圆心,1为半径的半圆(如图所示),设曲线M 的下端点为()2,1N -,要使l 与曲线M 有两个交点,则l 应位于直线PN 和切线PQ 之间,所以PQ PN k k k <≤,因为(1,3)P -,易知()13221PN k ---==-,又PQ 与曲线M 1=,解得43k =,所以43PQ k =,所以直线l 斜率的取值范围为4,23⎛⎤⎥⎝⎦.7.D【分析】分别联立直线和椭圆,利用M 的坐标相等建立齐次方程,求解离心率即可.【详解】设1,1,2,2,由题意可知直线B 的方程为y x c =-,线段AB 的中点M 是直线l 与直线20x y +=的交点,联立20y x c x y =-⎧⎨+=⎩,解得2313x c y c⎧=⎪⎪⎨⎪=-⎪⎩,所以21,33M c c ⎛⎫- ⎪⎝⎭,另一方面,联立22221x y a b y x c ⎧+=⎪⎨⎪=-⎩,得()2222222220a b x a cx a c a b +-+-=.易知Δ0>,由韦达定理得21222243a c x x c ab +==+,解得222a b =,所以()2222a a c =-,故离心率2c e a ==,故D 正确.8.B【分析】利用同角三角函数的基本关系求出cos BAD BAD ∠∠==(01)BE BC λλ=<< ,表示出AE AB AD λ=+ ,()1DE AB AD λ=+- ,根据45AE DE ⋅= 建立等式求解35λ=,分别求出各边的长度,然后即可求解.【详解】由sin tan 7cos BADBAD BAD∠∠∠==,知BAD ∠为锐角,又因为22sin cos 1BAD BAD ∠∠+=,所以cos BAD BAD ∠∠==.设(01)BE BC λλ=<< ,即BE AD λ=,cos 55AB AD AB AD BAD ∠⋅=⋅=⨯AE AB BE AB AD λ=+=+ ()1DE AE AD AB AD λ=-=+- .由45AE DE ⋅=,得()()()()()221121AB AD AB AD AB AD AB ADλλλλλ+⋅+-=+-+-⋅ 2251545λλ=-+45=,又01λ<<,故35λ=.则323,2,55BE BC CE DE AB AD ====- ,因此DE == ,即DE =CDE 中,由正弦定理sin sin CE DECDE C∠=,以及sin sin C BAD ∠=,整理计算得7sin 25CDE ∠=.二、多选题9.ACD【分析】选项A ,利用双曲线的标准方程,即可求解;选项B ,根据条件,利用求双曲线渐近线的求法,即可求解;选项C ,由选项A 知焦点在x 轴上,再由2639c m m =++-=,即可求解;选项D ,利用等轴双曲线的定义,即可求解.【详解】对于选项A ,因为22:136x y C m m -=-+表示双曲线,所以()()630m m +->,解得63m -<<,所以选项A 正确;对于选项B ,当1m =时,双曲线方程为22271x y -=,其渐近线方程为2y x ==±,所以选项B 错误;对于选项C ,由选项A 得60,3m m +>->0,所以焦点在x 轴上,设C 的半焦距为(0)c c >,则2639c m m =++-=,解得3c =,故其焦点坐标为()()3,0,3,0-,所以选项C 正确;对于D ,若C 为等轴双曲线,则36m m -=+,解得()36,32m =-∈-,所以选项D 正确,10.AD【分析】转化为选项所给函数与一次函数是否存在3个交点,且其中一个交点是另外两个交点的中点,即可满足题意,A 选项,根据()tan f x x =为奇函数,过原点的直线满足要求,A 正确;BC 选项,不会有3个交点,舍去;D 选项,判断出()1lg 1xf x x+=-为奇函数,与过原点的直线会和函数有三个交点,且原点是另外两个交点的中点,D 正确.【详解】该题可转化为判断选项所给函数与一次函数是否存在3个交点,且其中一个交点是另外两个交点的中点,即可满足题意,A 选项,()tan f x x =为奇函数,过原点的直线与()tan f x x =有多个交点(包含原点),其中原点为两个对称交点的中点,满足题意,故A 正确;B 选项,由于()2log f x x =与一次函数y kx m =+最多两个交点,不可能有三个交点,故B 错误;C 选项,()2024f x x =为偶函数,且与二次函数图象形状类似,与一次函数y kx m =+最多两个交点,不可能有三个交点,故C 错误;D 选项,令101x x +>-,解得11x -<<,故()1lg 1xf x x +=-的定义域为−1,1,又()()11lg lg 11x xf x f x x x-+-==-=-+-,故()1lg 1x f x x +=-为奇函数,12111x t x x+==-+--在()1,1x ∈-上单调递增,且lg y t =在()0,t ∈+∞上单调递增,由复合函数单调性可知,在()1,1-上单调递增,且()00f =,1x →时,()1lg1xf x x+=-趋向于+∞,故过原点的直线可以与奇函数()1lg1xf x x+=-存在三个交点,其中一个为原点,且原点是另外两个交点的中点,故D 正确.【点睛】关键点点睛:数列新定义问题,主要针对于等差,等比,递推公式和求和公式等综合运用,对常见的求通项公式和求和公式要掌握牢固,同时涉及数列与函数,数列与解析几何,数列与二项式定理,数列与排列组合等知识的综合,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.11.ABC【分析】根据函数奇偶性以及表达式()()21f x g x ++-=可知满足()()222f x f x ++-=,可判断A 正确;化简可得()()8f x f x +=可知B 正确;又()()21g x f x =+-可得()()8g x g x +=,即C 正确;利用赋值法可求得20241(42)2024k f k =-=∑,可知D 错误.【详解】对于A ,由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=,所以()f x 的图象关于点()2,1对称,且()21f =,故A 正确;对于B ,由()()222f x f x ++-=,可得()()42f x f x ++-=,()()()422f x f x f x +=--=-,所以()()()()82422f x f x f x f x +=-+=--=⎡⎤⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;对于C ,由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,所以()()8g x g x +=,故C 正确;对于D ,又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()26f f +=2,令10x =,则有()()10142,f f += ,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个,所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.【点睛】方法点睛:函数性质综合问题经常利用函数的奇偶性、对称性、周期性中的两条性质去推导第三个性质,再将3个性质综合运用即可实现问题求解.三、填空题12.【分析】先写出二项式6()x y -的展开式的通项,再依题意求解.【详解】由二项式6()x y -的展开式的通项为616C ()rrr r T xy -+=-,令2r =,得其展开式中42x y 的系数为226C (1)15-=.故答案为:1513.【分析】由正弦型函数可知:两个零点之间必存在极值点,两个极值点之间必存在零点,利用正弦型函数的极值点可得3ππ5π2262m <-≤即可求解.【详解】由题意可得()π2024sin 26f x x ⎛⎫=- ⎪⎝⎭,当π,6x m ⎛⎫∈ ⎪⎝⎭时,πππ2,2666x m ⎛⎫-∈- ⎪⎝⎭,由函数()f x 在π,6m ⎛⎫⎪⎝⎭内恰有两个极值点,可知3ππ5π2262m <-≤,解得5π4π63m <≤.故答案为:5π4π,63⎛⎤⎥⎝⎦14.【分析】分n 为奇数和偶数,按照最优分解定义,求数列(){}5nf 的通项,再求和.【详解】当()*2N n k k =∈时,2555k k k =⨯,则()25550k k kf =-=,当21n k =-()*N k ∈时,211555k k k --=⨯,则()211155555k k k k k f ---=-=-,故数列(){}5nf 的前2023项和为()()()()()23210111010101210111012510550555505551-++-++-++-++-=- .故答案为:101251-.【点睛】关键点点睛:本题的关键是对新概念的理解,并对n 分奇数和偶数两种情况进行讨论,从而得到数列(){}5n f 的通项公式.四、解答题15.【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得π1sin()62A -=,进而可求A 的值;(2)由题意利用三角形的面积公式可求8bc =,由余弦定理可得6b c +=,联立方程即可求解b ,c 的值.【详解】(1)因为cos sin a C C b c +=+,由正弦定理得:sin cos sin sin sin A C A C B C =+,所以sin cos sin sin()sin A C A C A C C =++,sin cos sin sin A C A C C =+,因为sin 0C >cos 1A A =+,所以π1sin()62A -=,因为(0,π)A ∈,所以π3A =(2)因为a =,且b c >,则ABC V 的面积为sin 124bc A c ==,所以8bc =,又由余弦定理可得:222222cos ()3()2412a b c bc A b c bc b c =+-=+-=+-=,所以6b c +=,由86bc b c =⎧⎨+=⎩,解得:42b c =⎧⎨=⎩,或24b c =⎧⎨=⎩因为b c >,所以42b c =⎧⎨=⎩16.【分析】(1)联立方程消元,利用根的判别式来证明;(2)设()()1122,,,M x y N x y ,根据0FM FN ⋅= 建立等式,将12124,4y y m y y n +==-代入等式得出关于22461m n n =-+,利用偶次方的非负性解不等式即可.【详解】(1)由题意联立24,,y x x my n ⎧=⎨=+⎩得2440y my n --=,22Δ161600m n m n ∴=+>⇒+>;(2)设()()1122,,,M x y N x y ,由(1)得12124,4y y m y y n +==-,(),1,0FM FN F ⊥ ,0FM FN ∴⋅= ,即()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,整理得()()()22121211(1)0m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入并整理得,()2222461,4(1)0m n n m n n =-++=->,1n ∴≠,且2610n n -+≥,解得:3n ≥+或3n ≤-17.【分析】(1)直接求棱锥的体积即可;(2)以O 为原点,分别以OC 、OD 、OP 的方向为x 、y 与z 轴的正方向,建立空间直角坐标系,求出平面PQC 的一个法向量,利用线面角的向量求法可得答案.【详解】(1)由已知可得2OP BQ ==,OA =,故底面正方形ABCD 的边长2AB =,所以正四棱锥P ABCD -的体积为211822333ABCD P ABCD V S PO -=⋅=⨯⨯=;(2)以O 为原点,分别以OC 、OD 、OP 的方向为x 、y 与z 轴的正方向,建立如图所示的空间直角坐标系,易得()0,0,2P 、()A 、(0,B 、)C 、()0,2Q .设平面PQC 的一个法向量为(),,n a b c = ,则n QP n CP ⎧⊥⎪⎨⊥⎪⎩,所以00n QP n CP ⎧⋅=⎪⎨⋅=⎪⎩ .又()QP =,()2CP = ,即020c =+=⎪⎩,解得0a b ⎧=⎪⎨=⎪⎩,可取)n =,依题意可得24555AE AP ⎛⎫== ⎪ ⎪⎝⎭ ,设(),,E x y z,则(),AE x y z =,则有()4,55x y z ⎛⎫= ⎪ ⎪⎝⎭,故5045x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,故45E ⎛⎫ ⎪ ⎪⎝⎭,从而45BE ⎛⎫= ⎪ ⎪⎝⎭ ,设直线BE 和平面PQC 所成角为θ,则sin cos ,BE n BE n BE n θ⋅==⋅ 因为π0,2θ⎡⎤∈⎢⎥⎣⎦,所以arcsin θ=,故直线BE 和平面PQC所成角的大小为arcsin 21.18.【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【详解】(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.(2)(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.【分析】(1)设()2f x x =,得到任意*n ∈N ,n n -≠,且()()()22f n n n f n -=-==,故()2f x x =满足要求;(2)因为()()n n g x g y =,所以n n n nk k x y x y +=+,变形得到n n x y k =,利用基本不等式得到结论;(3)求导,结合基本不等式,求出导数恒大于0,故()h x '在上单调递增,而π02h ⎛⎫-= ⎪⎝⎭',故ℎ在π,2∞⎛⎫-- ⎪⎝⎭上单调递减,在π,2∞⎛⎫-+ ⎪⎝⎭上单调递增,不妨设<n n x y ,因为()()n n h x h y =,结合性质G ,得到πn n x y +=-,求出数列{}n n x y +的前n 项和.【详解】(1)令()2f x x =,定义域为R ,显然任意*n ∈N ,n n -≠,且()()()22f n n n f n -=-==,故()2f x x =满足要求,(注:所有的定义域为的偶函数均符合题意)(2)因为()()n n g x g y =,所以n n n n k k x y x y +=+,移项得()n n n n n n n nk x y k k x y y x x y --=-=,因为n n x y ≠,所以0n n x y -≠,故1,n n n n k x y k x y ==,由基本不等式2n n x y +≥n n x y =时取到等号,而n n x y ≠,故2n n x y +>n n x y +>(3)由题意,()ππ22e e sin x x h x x +--=+-,故()ππ22e e cos x x h x x +--=--',设()ππ22e e cos x x x x ϕ+--=--,则()ππ22e e sin sin 2sin 10x x x x x x ϕ+-'=++≥=+≥>,故()h x '在上单调递增,而π02h ⎛⎫-= ⎪⎝⎭',故π2x >-时,()π0,2h x x >'<-时,ℎ′<0,因此ℎ在π,2∞⎛⎫-- ⎪⎝⎭上单调递减,在π,2∞⎛⎫-+ ⎪⎝⎭上单调递增.不妨设<n n x y ,因为()()n n h x h y =,所以当n n x x y <<时,()()n h x h x <,当n x x <或n x y >时,()()n h x h x >,且x →+∞时,(),h x x ∞∞→+→-时,()h x ∞→+,故对于任意π2M h ⎛⎫>- ⎪⎝⎭,方程()h x M =有且只有两个不同的根,n n x y ,又ππ22h x h x ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,故ℎ的图象关于π2x =-对称,故πn n x y +=-,因此数列{}n n x y +的前n 项和为πn -.【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.。
山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.除去下列各物质中的少量杂质,所用方法不可行的是()A.A B.B C.C D.D2.用含杂质(杂质不与酸反应,也不溶于水)的铁10g与50g稀硫酸恰好完全反应后,滤去杂质,所得溶液的质量为55.4g,则杂质的质量为()A.4.6 B.4.4g C.2.8g D.5.6g3.一定质量的Mg、Al、Fe的混合物,与足量稀硫酸反应,生成0.4g的H2。
则该金属混合物的质量可能是A.2.4gB.3.6gC.4.8gD.11.2g4.下列鉴别两种不同物质的方法,不正确的是()A.A B.B C.C D.D5.下列所示的四个图像,能正确反映对应变化关系的是A.向一定量的硝酸铜和硝酸镁的混合溶液中加入铁粉B.向pH=2的盐酸中加水稀释C.向一定量的含有盐酸的氯化铜溶液中滴加氢氧化钠溶液D.等质量的镁和铁分别与等质量、等浓度足量的稀硫酸反应6.下列各组转化中,一定条件下均能一步实现的组合是A.①②B.①③C.②③D.①②③7.已知FeCl3也可以催化H2O2的分解,现向一定量的H2O2溶液中滴入几滴一定溶质质量分数的FeCl3溶液,充分反应(忽略水的挥发).下列图象正确的是( )A.B.C.D.8.往硫酸和硫酸铜的混合溶液中,逐滴加入氢氧化钠溶液直至过量,根据实验实施绘制如图所示曲线,下列说法正确的是()A.a至b段有蓝色沉淀生成B.d点溶质种类为三种C.c至d段,溶液pH不断减少D.c点所含的溶质种类最少9.除去物质中的少量杂质,选用的试剂和操作均正确的是物质(括号内为杂质)试剂和操作A氢氧化钠溶液(氢氧化钙)加入过量碳酸钠溶液、过滤B CaCl2溶液(稀盐酸)加入过量碳酸钙、过滤C HCl气体(水蒸气)通过足量生石灰D C(CuO)通入氢气并加热A.A B.B C.C D.D10.下列有关生产生活中的化学知识整理有错误的是A ①一氧化碳会与血红蛋白结合,使人中毒②煤炉上放一壶水能防止煤气中毒B①人体含量最多的金属元素是Ca②缺Ca会引起骨质疏松C ①灌装汽水时加压,是为了增加气体溶解的量②碎鸡蛋壳加入食醋,会产生二氧化碳气体D①明矾具有净水作用②活性炭能吸附水中的色素和异味A.A B.B C.C D.D11.有一包白色粉末可能由氯化钠、硫酸钠、硫酸铜、碳酸钠、碳酸钙中的一种或几种组成,为确定其组成,进行如下实验:①称取一定质量的该白色粉末加足量水溶解,得无色溶液A;②在无色溶液A中加入过量氯化钡溶液,充分反应后过滤,分别得无色溶液B和白色沉淀C;将白色沉淀C洗涤,烘干后称得质量为19g;③在19g白色沉淀C中加入足量的稀硝酸,沉淀部分消失,并有气泡冒出;④在无色溶液B中滴加硝酸银溶液和稀硝酸,产生白色沉淀;根据上述实验现象判断,下列说法不正确的是()A.白色粉末中一定含有氯化钠B.实验①可以确定白色粉末中不含碳酸钙、硫酸铜C.无色溶液B中一定含有两种溶质D.步骤③生成的气体质量不可能是4.4g 12.下列各组物质的溶液,不用其他试剂没,仅通过观察和用组内溶液相互混合的方法,不能将其逐一鉴别出来的是()A.NaOH Ca(OH)2HCl Na2CO3B.KCl Ba(NO3)2CuSO4NaOH C.AgNO3HCl Na2CO3CaCl2D.Ba(OH)2KCl Na2SO4Na2CO3 13.一包固体粉末可能含有NaNO3、CaCO3、NaOH、CuCl2、NaCI和Ca(NO3)2中的一种或几种.为确定其组成,某同学设计了如下实验方案.下列判断正确的是A.该混合物中一定含有CaCO3、NaOH、CuCl2、Ca(NO3)2B.蓝色溶液B的溶质有2种C.无色溶液A呈中性D.该混合物中一定含有NaCI可能含有NaNO314.有一包白色固体样品,可能由CaCO3、NaOH、MgCl2、Na2SO4和BaCl2中的一种或几种物质组成,为探究该样品的组成,某小组取适量样品按下列流程进行实验。
青岛二中2023-2024学年第一学期12月份阶段练习高二试题(数学)时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若直线1l :210x my ++=与直线2l:2102m x y -+=垂直,则实数m 的值为( )A. 0B. 12-或0 C. 0或12D.122. 与椭圆C :221156x y +=共焦点且过点(P 的双曲线的标准方程为( )A. 221167x y -=B. 22163x y -=C. 22136x y -= D. 221916x y -=3. 设等比数列{}n a 的前n 项和为n S ,若22a =,且2a ,3a ,42a -成等差数列,则5S =( )A. 7B. 12C. 15D. 314. 求圆心在直线210x y +-=上,且与直线20x y ++=相切于点(0,2)-的圆的方程是( )A. ()()22112x y -++= B. ()2212x y +-=C. ()()22114x y -++= D. ()2214x y +-=5. 已知等差数列{}n a 的前n 项和为n S ,34132160a a a ++=,则1165S a -=( )A. 240B. 180C. 120D. 606. 若数列{}n a 满足()()()1112n n n a n a n --=+≥,12a =,则满足不等式930n a <的最大正整数n 为( )A. 28B. 29C. 30D. 317. 细心的观众发现,2023亚运会开幕式运动员出场的地屏展示的是8副团扇,分别是梅兰竹菊松柳荷桂.“梅兰竹菊,迎八方君子;松柳荷桂,展大国风范“.团扇是中国传统文化中的一个重要组成部分,象征着团结友善.花瓣型团扇,造型别致,扇作十二葵瓣形,即有12个相同形状的弧形花瓣组成,花瓣的圆心角为120︒,花瓣端点也在同一圆上,12个弧形花瓣也内切于同一个大圆,圆心记为O ,若其中一片花瓣所在圆圆心记为C ,两个花瓣端点记为A 、B ,切点记为D ,则不正确的是( )A. ,,O C D 在同一直线上B. 12个弧形所在圆的圆心落在同一圆上C. 30AOB ∠=︒D. 弧形所在圆的半径BC 变化时,存在OC BC=8. 双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线C 左支交于点P ,原点O 到直线l 的距离为a ,且122F PO S a =△,则双曲线C 的离心率为( )AB.C. 2D.二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知首项为正数等比数列{}n a 的公比为q ,曲线:n C 2211++=n n x y a a ,则下列叙述正确的有( )A. 若n C 为圆,则1q =B. 若1q =-,则n C 离心率为2C. 01,n q C <<D. 0,n q C <是双曲线且其渐近线方程为y =10. 已知各项均为正数的等比数列{}n a 的前n 项积为n T ,且满足101a <<,202320242a a +<,()()20232024110a a --<,则()A. 01q << B. 202320251a a >C. 对任意的正整数n ,有4047n T T ≥ D. 使得1n T >的最小正整数n 为404711. 欧拉函数()()*n n ϕ∈N的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数(公约数只有1.的的两个正整数称为互质整数),例如:()32ϕ=,()42ϕ=,则( )A. ()()()4610ϕϕϕ⋅= B. 当n 奇数时,()1n n ϕ=-C. 数列(){}2nϕ为等比数列D. 数列()()23nn ϕϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于3212. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过F 的一条直线与C 交于A ,B 两点,若点M 在l 上运动,则( )A. 当AM AF =时,AM l⊥B. 当AM AF MF ==时,2AF BF =C. 当M A M B ⊥时,,,A M B 三点的纵坐标成等差数列D 当M A M B ⊥时,2AM BM AF BF⋅⋅≥三、填空题:本题共4小题,每小题5分,共20分13. 在数列{}n a 中,若12a =,11n n a a n +=++,则{}n a 的通项公式为______.14. 已知圆C :()()221225x y ++-=,直线()():311420l m x m y m +++--=,直线l 与圆C 交于,A B 两点,最短弦长AB =______________.15. 英国数学家亚历山大·艾利斯提出用音分来精确度量音程,音分是度量不同乐音频率比的单位,也可以称为度量音程的对数标度单位.一个八度音程为1200音分,它们的频率值构成一个等比数列.八度音程的冠音与根音的频率比为2,因此这1200个音的频率值构成一个公比为的等比数列.已知音M 的频率为m ,音分值为k ,音N 的频率为n ,音分值为l .若m =,则k l -=_________16. 已知1F ,2F 分别为双曲线C :()222210,0x y a b a b-=>>的左右焦点,过点1F 且斜率存在的直线l 与双曲线C 的渐近线相交于,A B 两点,且点A 、B 在x 轴的上方,A 、B 两个点到x 轴的距离之和为85c,若22AF BF =,则双曲线的渐近线方程是_____________________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. 已知ABC 顶点()3,3A ,边AC 上的高BH 所在直线方程为60x y -+=,边AB 上的中线CM 所在的直线方程为53140x y --=.为.(1)求直线AC 的方程:(2)求ABC 的面积.18. 已知等差数列{}n a 的前n 项和为n S ,490S =-,1015a =.(1)求{}n a 的通项公式;(2)求n S 的最小值,并指出n 取何时n S 取得最小值.19. 数列{}n a 的前n 项和为n S ,1323n n S n +=+-.(1)求数列{}n a 的通项公式;(2)()()*2N 2n n n a c n -=∈,求数列{}n c 的前n 项和n T .20. 已知抛物线()2:20C y px p =>上的一点()2,M a 到抛物线的焦点F 的距离是3.(1)求抛物线C 的方程;(2)已知过点F 直线与C 交于A ,B 两点,线段AB 的中垂线与C 的准线l 交于点D ,且线段AB 的中点为NAB λ,求实数λ的取值范围.21. 已知数列{}n a 中,15a =,且122n n a a +=+.(1)求证:数列{}2n a -是等比数列,并求{}n a 的通项公式;(2)设()223m b m λ=-+,12433n n n a c n λ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,其中0λ>,若对任意*,m n ∈N ,总有73m n b c ->成立,求λ的取值范围.22. 设椭圆()222210x y a b a b+=>>的上顶点()0,2K ,左焦点()12,0F -,右焦点()22,0F ,左、右顶点分别为1A 、2A .的(1)求椭圆方程;(2)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是22A F P △面积的(2倍,求直线2A P 的方程;(3)如图过椭圆的上顶点K 作动圆1F 的切线分别交椭圆于M 、N 两点,是否存在圆1F 使得KMN △为直角三角形?若存在,求出圆1F 的半径r ;若不存在,请说明理由.青岛二中2023-2024学年第一学期12月份阶段练习高二试题(数学)时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若直线1l :210x my ++=与直线2l:2102m x y -+=垂直,则实数m 的值为( )A. 0B. 12-或0 C. 0或12D.12【答案】C 【解析】【分析】根据直线垂直列方程,从而求得m 的值.【详解】由于12l l ⊥,所以()()22212210m m m m m m ⨯+⨯-=-=-=,解得0m =或12m =.故选:C2. 与椭圆C :221156x y +=共焦点且过点(P 的双曲线的标准方程为( )A. 221167x y -=B. 22163x y -=C. 22136x y -= D. 221916x y -=【答案】C 【解析】【分析】首先设出双曲线方程,求出c 的值即焦点坐标,然后根据双曲线的定义、平方关系求出,a b 的值即可求解.【详解】由题意不妨设所求双曲线的标准方程为22221x y a b-=,则3c ==,即椭圆与所求双曲线的公共焦点为()()12,,,0330F F -,由双曲线的定义可知12226a c F F==<==,所以3,a c b ====,所以所求双曲线的标准方程为22136x y -=.故选:C.3. 设等比数列{}n a 的前n 项和为n S ,若22a =,且2a ,3a ,42a -成等差数列,则5S =( )A. 7 B. 12C. 15D. 31【答案】D 【解析】【分析】根据等比数列,等差中项等知识求得等比数列{}n a 的首项和公比,从而求得5S .【详解】设等比数列{}n a 的公比为q ,0q ≠,依题意2324222a a a a =⎧⎨=+-⎩,则123111222a q a q a q a q =⎧⎨=+-⎩,()()211122a q q a q a q q ⋅=+⋅-,224222,240q q q q ⋅=+⋅--=,解得2q =,则11a =,所以()551123112S ⨯-==-.故选:D4. 求圆心在直线210x y +-=上,且与直线20x y ++=相切于点(0,2)-的圆的方程是( )A. ()()22112x y -++= B. ()2212x y +-=C. ()()22114x y -++= D. ()2214x y +-=【答案】A 【解析】【分析】首先由题意可知圆心也在直线20x y --=上,联立即可得圆心坐标,进而得半径,从而即可得解.【详解】由题意圆心也在过点(0,2)-且与直线20x y ++=垂直的直线上,而该直线方程为()()020x y ----=⎡⎤⎣⎦,即20x y --=,联立20210x yx y--=⎧⎨+-=⎩,解得1,1x y==-,即圆心坐标为()1,1-,半径为点(0,2)-与圆心()1,1-的距离=,故所求圆的方程为()()22112x y-++=.故选:A.5. 已知等差数列{}n a的前n项和为n S,34132160a a a++=,则1165S a-=()A. 240B. 180C. 120D. 60【答案】A【解析】【分析】根据等差数列通项公式以及前n项和公式的基本量计算来求得正确答案.【详解】设等差数列{}n a的公差为d,311143422160,540a a a da d a++=+==+,()()1161111511555563065640240S a a d a d a d a d-=+-+=+=+=⨯=.故选:A6. 若数列{}n a满足()()()1112n nn a n a n--=+≥,12a=,则满足不等式930na<的最大正整数n为()A. 28B. 29C. 30D. 31【答案】B【解析】【分析】利用累乘法求得n a,由此解不等式930na<,求得正确答案.【详解】依题意,数列{}n a满足()()()1112n nn a n a n--=+≥,12a=,()1121nna nna n-+=≥-,所以3211213451212321nnna aa n na aa a a n n-+=⋅⋅⋅⋅=⨯⨯⨯⨯⨯⨯--()1n n=+,1a也符合,所以()1na n n=+,{}n a是单调递增数列,由()()()930,301310na nn n n<+-=<+,解得3130n-<<,所以n的最大值为29.故选:B7. 细心的观众发现,2023亚运会开幕式运动员出场的地屏展示的是8副团扇,分别是梅兰竹菊松柳荷桂.“梅兰竹菊,迎八方君子;松柳荷桂,展大国风范“.团扇是中国传统文化中的一个重要组成部分,象征着团结友善.花瓣型团扇,造型别致,扇作十二葵瓣形,即有12个相同形状的弧形花瓣组成,花瓣的圆心角为120︒,花瓣端点也在同一圆上,12个弧形花瓣也内切于同一个大圆,圆心记为O ,若其中一片花瓣所在圆圆心记为C ,两个花瓣端点记为A 、B ,切点记为D ,则不正确的是( )A. ,,O C D 在同一直线上B. 12个弧形所在圆的圆心落在同一圆上C. 30AOB ∠=︒D. 弧形所在圆的半径BC 变化时,存在OC BC=【答案】D 【解析】【分析】根据两个圆的位置关系逐个判断即可.【详解】已知外圈两个圆的圆心都为O ,令最外面圆半径为R ,花瓣所在圆半径为r ,对于A :因为大圆与小圆内切且切点为D ,所以切点与两个圆心共线,即,,O C D 在同一条直线上,A 正确;对于B :由两圆内切可知OC R r =-为定值,所以12个弧形的圆心在同一圆上,B 正确;对于C :因为12个弧形花瓣也内切于同一个大圆,所以3603012AOB ︒∠==︒,C 正确;对于D :由CA CB OC OC OA OB =⎧⎪=⎨⎪=⎩得OAC OAB ≅△△,所以130152COB ∠=⨯︒=︒,又120ACB ∠=︒,所以()13601201202OCB ∠=︒-︒=︒,所以45OBC COB ∠=︒≠∠,所以OC BC ≠恒成立,D 错误,故选:D8. 双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线C左支交于点P ,原点O 到直线l 的距离为a ,且122F PO S a =△,则双曲线C 的离心率为( )A.B.C. 2D.【答案】D 【解析】【分析】由题意首先根据对称性得出2122F PO F PO S S a ==△△,又OA a =,所以可依次求得12,PF PF ,又2OF c =,再由平方关系可得2AF b =,又122FF c =,所以结合直角三角形中锐角三角函数的定义以及余弦定理可得方程()()()222422242a c a b a cc+-=⨯⨯,结合平方关系离心率公式运算即可求解.【详解】如图所示:2OA PF ⊥,垂足为点A ,由题意OA a =,又2OF c =,所以2AF b ==,21cos b PF F c∠=,又因为原点O 是12F F 的中点,所以212221222F PO F PO aPF OA PF S S a ⋅====△△,解得2124,2422PF a PF PF a a a a ==-=-=,又122FF c =,所以由余弦定理()()()22221422cos 242a c a b PF F a cc+-∠==⨯⨯,整理得2234a c ab +=,又222c a b =+,所以22440a b ab +-=,即2440b b a a ⎛⎫+-= ⎪⎝⎭,解得2b a =,从而所求离心率为e ==故选:D【点睛】关键点睛:本题的关键是画出图形,通过数学结合、双曲线的定义以及解三角形知识即可顺利求解,综合性比较强.二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知首项为正数的等比数列{}n a 的公比为q ,曲线:n C 2211++=n n x y a a ,则下列叙述正确的有( )A. 若n C 为圆,则1q =B. 若1q =-,则n C 离心率为2C. 01,n q C <<D. 0,n q C <是双曲线且其渐近线方程为y =【答案】AC 【解析】【分析】对于A ,若n C 为圆,则11n n a a a +==,求出q 得出结果;对于B ,n C 为等轴双曲线,求其离心率即可;对于C ,当01q <<时,曲线n C 是焦点在x 轴上的椭圆,求其离心率即可;对于D ,故曲线n C 为双曲线,求其渐近线方程.【详解】对于A ,首项为正数的等比数列{}n a 的公比为q ,曲线221:1n n n x y C a a ++=,若n C 为圆,则11n n a a a +==,所以221:0n C x y a +=>,所以1q =,即曲线n C 为圆心为()0,0A 正确;对于B ,当1q =-时,11(1)n n a a -=-,所以n a 与1n a +互为相反数且不为0,故221:1n n n x y C a a ++=为等轴双曲线,故曲线n C,故B 错误;对于C ,01q <<,数列为递减数列,10n n a a +<<,所以曲线221:1n n n x y C a a ++=焦点在x 轴上的椭圆,.=,故C 正确;对于D ,当0q <时,n a 与1n a +异号,故曲线221:1n n n x y C a a ++=为双曲线,其渐近线为2210n n x y a a ++=,即=y ,故D 错误.故选:AC .10. 已知各项均为正数的等比数列{}n a 的前n 项积为n T ,且满足101a <<,202320242a a +<,()()20232024110a a --<,则()A. 01q << B. 202320251a a >C. 对任意的正整数n ,有4047n T T ≥ D. 使得1n T >的最小正整数n 为4047【答案】BD 【解析】【分析】根据等比数列的知识对选项进行分析,从而确定正确答案.【详解】依题意,10,0,01n a q a >><<,由于()()20232024110a a --<,所以20232024011a a <<⎧⎨>⎩或20242023011a a <<⎧⎨>⎩.若20242023011a a <<⎧⎨>⎩,则01q <<,则202212023011a qa <<⇒<矛盾,所以20232024011a a <<⎧⎨>⎩,则1q >,所以A 选项错误.()20232025220241a a a =>,B 选项正确.由于20232024011a a <<⎧⎨>⎩,所以n T 的最小值为2023T ,即2023n T T ≥,所以C 选项错误.()()()()40474047140472404620232025202420241T a a a a a a a a =⨯⋅⨯⋅⋅⨯⋅=> ,由于202320242a a +<,所以202320242a a +>>,所以202320241a a <⋅,所以()()20232023404614046202320241T a a a a =⨯=⨯<,由于1q >,且20232024011a a <<⎧⎨>⎩,所以当4046n ≤时,40461n T T ≤<,综上所述,使得1n T >的最小正整数n 为4047,所以D 选项正确.故选:BD11. 欧拉函数()()*n n ϕ∈N的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数(公约数只有1的两个正整数称为互质整数),例如:()32ϕ=,()42ϕ=,则( )A. ()()()4610ϕϕϕ⋅= B. 当n 为奇数时,()1n n ϕ=-C. 数列(){}2nϕ为等比数列D. 数列()()23nnϕϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于32【答案】ACD 【解析】【分析】根据“欧拉函数()()*n n ϕ∈N ”的定义对选项进行分析,从而确定正确答案.【详解】n不超过正整数n ,且与n 互质的正整数()n ϕ21131,2241,3251,2,3,4461,5271,2,3,4,5,6681,3,5,7491,2,4,5,7,86101,3,7,94161,3,5,7,9,11,13,158271,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,2618A 选项,()()()4622410ϕϕϕ⋅=⨯==,A 选项正确.B 选项,()9691ϕ=≠-,B 选项错误.C 选项,由列表分析可知,对于2n ,“不超过正整数2n ,且与2n 互质的正整数”为:不超过2n的奇数,则()12222n nn ϕ-==,则()112222n n n ϕ++==,()()1222n nϕϕ+=,所以(){}2nϕ 是等比数列,所以C 选项正确.D 选项,有列表分析可知,对于3n ,“不超过正整数2n ,且与2n 互质的正整数”为:从1到3n中,除掉3的倍数,则()1333233nn nn ϕ-=-=⨯,则()()111221223233n n n n n ϕϕ---⎛⎫==⨯ ⎪⨯⎝⎭,12312231223nn -⎛⎫⨯ ⎪⎝⎭⎛⎫⨯⎪⎭= ⎝,所以()()23n n ϕϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是等比数列,前n 项和为112123332323222323213nn n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=-⨯=-< ⎪ ⎪⎝⎭⎝⎭-,所以D 选项正确.故选:ACD12. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过F 的一条直线与C 交于A ,B 两点,若点M 在l 上运动,则( )A. 当AM AF =时,AM l⊥B. 当AM AF MF ==时,2AF BF =C. 当M A M B ⊥时,,,A M B 三点的纵坐标成等差数列D. 当M A M B ⊥时,2AM BM AF BF⋅⋅≥【答案】ACD 【解析】【分析】由抛物线的定义可判断A 项,联立直线AB 方程与抛物线方程求得1y 、2y ,进而可求得12AF y BFy =可判断B 项,由直角三角形性质及抛物线的定义可判断C 项,设出点M 坐标,计算可得1MF AB k k ⨯=-,可得MF AB ⊥,运用等面积法、直角三角形性质及基本不等式可判断D 项.【详解】对于选项A :如图所示,由抛物线定义可知,若AM AF =,则AM l ⊥,故选项A 正确;对于选项B :如图所示,当AM AF MF ==时,AMF 为正三角形,所以直线AB 的倾斜角为π3,设直线AB的方程为()()1122,,,,2p y x A x y B x y ⎫=-⎪⎭,由222p y x y px⎧⎫=-⎪⎪⎭⎨⎪=⎩可得220y y p --=,12,y y ==,所以123AF yBF y ==,故选项B 错误;对于选项C :过点,A B 作直线垂直于l ,垂足分别为,A B '',作AB 的中点N ,如图所示,由选项B 可知12,,,22p p A y B y ⎛⎫⎛⎫-- ⎪ ⎪'⎝⎭⎝⎭',又因为M A M B ⊥,所以12MN AB =,由抛物线定义可知AB AF BF AA BB '=++'=,所以()12MN AA BB =+'',所以M 为A B ''的中点,所以,,A M B 三点的纵坐标成等差数列,故选项C 正确;对于选项D :如图所示,设0,2p M y ⎛⎫- ⎪⎝⎭,直线MF 的斜率为1k ,直线AB 的斜率为2k ,则00122y yk p p p ==---,由B 项可知1212222121212222y y y y pk y y x x y y p p--===-+-,由选项C 可知1202y y y +=,所以21202p pk y y y ==+,所以01201y pk k p y =-⋅=-,所以MF AB ⊥,又因M A M B ⊥,所以AM BM MF AB ⋅=⋅,且2||MF AF BF =⋅,由基本不等式可得()2AM BM MF AB AF BF AF BF ⋅=⋅=+⋅⋅,当且仅当||||AF BF =时等号成立.故选项D 正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分13. 在数列{}n a 中,若12a =,11n n a a n +=++,则{}n a 的通项公式为______.【答案】222n n n a ++=【解析】【分析】将11n n a a n +=++变为11n n a a n +-=+,利用累加法即可求得答案.【详解】由题意可知数列{}n a 中,12a =,11n n a a n +=++,故11n n a a n +-=+,所以()()()121321n n n a a a a a a a a -=+-+-++- 2(1)(222)22322n n n n n -+=++=+=++++ ,为故答案为:222n n n a ++=14. 已知圆C :()()221225x y ++-=,直线()():311420l m x m y m +++--=,直线l 与圆C 交于,A B 两点,最短弦长AB =______________.【答案】【解析】【分析】先求得直线l 所过定点,然后根据圆的几何性质求得最短弦长.【详解】直线()():311420l m x m y m +++--=,即()3420x y m x y +-++-=,由34020x y x y +-=⎧⎨+-=⎩,解得1x y ==,设()1,1D ,由于()()221112525++-=<,所以D 在圆C 内,圆()()22:1225C x y ++-=的圆心为()1,2C -,半径=5r ,当CD AB ⊥时,AB 最短,CD ==,所以AB 的最小值为=.故答案为:15. 英国数学家亚历山大·艾利斯提出用音分来精确度量音程,音分是度量不同乐音频率比的单位,也可以称为度量音程的对数标度单位.一个八度音程为1200音分,它们的频率值构成一个等比数列.八度音程的冠音与根音的频率比为2,因此这1200个音的频率值构成一个公比为的等比数列.已知音M的频率为m,音分值为k,音N的频率为n,音分值为l.若m=,则k l-=_________【答案】400【解析】【分析】根据等比数列的通项即可由指数运算求解.【详解】由题意可知,1200个音的频率值构成一个公比为的等比数列,设第一个音频率为1a,所以(11nna a-=,故((1111,k lm a n a--==,因为m=,所以(31120022kk llmn--====,所以112003k l -=,解得400k l -=.故答案为:400.16. 已知1F ,2F 分别为双曲线C :()222210,0x y a b a b-=>>的左右焦点,过点1F 且斜率存在的直线l 与双曲线C 的渐近线相交于,A B 两点,且点A 、B 在x 轴的上方,A 、B 两个点到x 轴的距离之和为85c,若22AF BF =,则双曲线的渐近线方程是_____________________.【答案】y x =【解析】【分析】设()0,Mx y 是AB 的中点,先求得M 点的坐标,然后利用点差法求得b a,进而求得正确答案.【详解】设()()1122,,,A x y B x y ,依题意120,0y y >>,设AB 的中点为()000,,0M x y y >,由于22AF BF =,所以2⊥MF AB ,所以1212OM F F c ==,22OM c =,由于12y y +=,所以120425y y c y +==,所以035c x ==,所以34,55c c M ⎛⎫ ⎪⎝⎭或34,55c c M ⎛⎫- ⎪⎝⎭,由于()()1122,,,A x y B x y 在双曲线的渐近线上,所以22112222222200x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减并化简得22012122121201AB OM MFy y y y y b k k a x x x x x k ⎛⎫+-=⋅=⋅=⋅- ⎪ ⎪+-⎝⎭,()2,0F c ,若34,55c c M ⎛⎫- ⎪⎝⎭,则224184330535b c a cc ⎛⎫⎪ ⎪ ⎪⎪=-⋅-=- ⎪- ⎪ ⎪ ⎪--⎝⎭不符合题意,舍去.若34,55c c M ⎛⎫⎪⎝⎭,则224124330535b c a cc ⎛⎫ ⎪ ⎪⎪ ⎪=⋅-= ⎪- ⎪ ⎪ ⎪-⎝⎭,所以b a =,所以渐近线方程为y x =.故答案为:y x =±【点睛】本题解题的关键点有两个,一个是22AF BF =,则2F 在线段AB 的垂直平分线上,由此可以构建中点和斜率的关系式;另一个关键点是点差法,利用点差法可以减少运算量,可以快速求得问题的答案.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. 已知ABC 顶点()3,3A ,边AC 上的高BH 所在直线方程为60x y -+=,边AB 上的中线CM 所在的直线方程为53140x y --=.(1)求直线AC 方程:(2)求ABC 的面积.【答案】(1)60x y +-= (2)20【解析】【分析】(1)利用点斜式求得直线AC 的方程.(2)先求得,C B 两点的坐标,结合点到直线的距离公式、两点间的距离公式求得三角形ABC 的面积.【小问1详解】边AC 上的高BH 所在直线方程为60x y -+=,的直线60x y -+=的斜率为1,所以直线AC 的斜率为1-,所以直线AC 的方程为()33,60y x x y -=--+-=.【小问2详解】边AB 上中线CM 所在的直线方程为53140x y --=,由6053140x y x y +-=⎧⎨--=⎩解得42x y =⎧⎨=⎩,即()4,2C .设(),B a b ,则33,22a b M ++⎛⎫⎪⎝⎭,所以60335314022a b a b -+=⎧⎪⎨++⨯-⨯-=⎪⎩,解得2026a b =⎧⎨=⎩,即()20,26B.AC ==B 到60x y +-==,所以三角形ABC的面积为1202=.的18. 已知等差数列{}n a 的前n 项和为n S ,490S =-,1015a =.(1)求{}n a 的通项公式;(2)求n S 的最小值,并指出n 取何时n S 取得最小值.【答案】(1)535n a n =-(2)n S 的最小值为105-,对应6n =或7【解析】【分析】(1)根据已知条件求得等差数列{}n a 的首项和公差,从而求得n a .(2)利用0n a ≤,求得n S 取得最小值时对应n 的值,进而求得n S 的最小值.【小问1详解】设等差数列{}n a 的公差为d ,依题意,4109015S a =-⎧⎨=⎩,114690915a d a d +=-⎧⎨+=⎩,解得130,5a d =-=,所以()3015535n a n n =-+-⨯=-.【小问2详解】由5350n a n =-≤,解得*17,≤≤∈n n N ,所以当6n =或7n =时n S 取得最小值,且n S 的最小值为6161518075105S a d =+=-+=-.19. 数列{}n a 的前n 项和为n S ,1323n n S n +=+-.(1)求数列{}n a 的通项公式;(2)()()*2N 2n n n a c n -=∈,求数列{}n c 的前n 项和n T .【答案】(1)()*22N ,3nn a n ⋅∈=+(2)()*6333,44N n n n T n =+∈-⋅【解析】【分析】(1)由题意直接由11a S =以及*2,N n n ≥∈时,1n n n a S S -=-即可求解.(2)发现数列{}n c 是“差比数列之积”的形式,所以直接选择用错位相减法、等边数列求和公式法运算即可求解.【小问1详解】由题意111132138a S +==+⨯-=,当*2,N n n ≥∈时,()()11323322523n n n n n n a S S n n +-=+-+-=-=⋅+-,当1n =时,也有118322a ⨯=+=成立,综上所述,数列{}n a 的通项公式为()*22N,3nn a n ⋅∈=+.【小问2详解】由(1)可知()*22N,3nn a n ⋅∈=+,所以由题意()()*23N 2n n nn a cn n -==⋅∈,所以1213233nn T n =⨯+⨯++⨯ ,231313233n n T n +=⨯+⨯++⨯ ,两式相减得()121131323333313n n n n n T n n ++⨯--=+++-⋅=-⋅- ,所以数列{}n c 的前n 项和为()*6333,44N n n n T n =+∈-⋅.20. 已知抛物线()2:20C y px p =>上的一点()2,M a 到抛物线的焦点F 的距离是3.(1)求抛物线C 的方程;(2)已知过点F 的直线与C 交于A ,B 两点,线段AB 的中垂线与C 的准线l 交于点D ,且线段AB 的中点为N ,设DN AB λ=,求实数λ的取值范围.【答案】(1)24y x = (2)12λ≥【解析】【分析】(1)根据抛物线的定义求得p ,进而求得抛物线的方程.(2)设出直线AB 的方程并与抛物线方程联立,化简写出根与系数关系,求得直线DN 的方程并与准线方程求得D ,根据两点间的距离公式、弦长公式、对钩函数等知识来求得实数λ的取值范围.【小问1详解】根据抛物线的定义有23,22pMF p =+==,所以抛物线C 的方程为24y x =.【小问2详解】()1,0F ,抛物线准线为=1x -,依题意可知直线AB 与x 轴不重合,设直线AB 的方程为1x my =+,由214x my y x=+⎧⎨=⎩消去x 并化简得2440y my --=,216160m ∆=+>,设()()1122,,,A x y B x y ,则()2121212124,4,242y y m y y x x m y y m +==-+=++=+,()21212116y y x x ==,所以()221,2N m m +,由于DN 垂直平分AB ,所以直线DN 的方程为()23221,230y m m x m mx y m m -=---+--=,令=1x -得33230,24m y m m y m m -+--==+,则()31,24D m m -+,DN AB λ=,()()()22223222122222m m m DN x x p ABλ+++==++()()()()()()22222322222222222414144161m m m m m m m m ++++++==++()22111114444m m =+=+≥,所以12λ≥.21. 已知数列{}n a 中,15a =,且122n n a a +=+.(1)求证:数列{}2n a -是等比数列,并求{}n a 的通项公式;(2)设()223m b m λ=-+,12433n n n a c n λ--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,其中0λ>,若对任意*,m n ∈N ,总有的73m n b c ->成立,求λ的取值范围.【答案】(1)证明详见解析,11232n n a -⎛⎫=+⨯ ⎪⎝⎭(2)7,3⎛⎫+∞⎪⎝⎭【解析】【分析】(1)利用构造法,结合等比数列的定义证得数列{}2n a -是等比数列,先求得2n a -,进而求得n a .(2)利用二次函数的性质求得m b 的最小值,利用商比较法求得n c 的最大值,从而列不等式来求得λ的取值范围.【小问1详解】依题意,15a =,且122n n a a +=+,所以1112n n a a +=+,则()11121222n n n a a a +-=-=-,所以12122n n a a +-=-,所以数列{}2n a -是首项为123a -=,公比为12的等比数列,所以111123,2322n n n n a a --⎛⎫⎛⎫-=⨯=+⨯ ⎪⎪⎝⎭⎝⎭.【小问2详解】1111244331323323n n n n n n a c n n n λλλ-----⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯ ⎪⎛⎫⎝⎭⨯= ⎪⎝⎭,依题意,0λ>,且对任意*,m n ∈N ,总有73m n b c ->成立,所以()()min max 73m n b c ->,()()222min ,3m m b m b λλ-+==,当3m =时取得最小值.12344,,33c c c λλλ===,当2n ≥时,()11223223121332n n n n c n n n n c n n n λλ---⎛⎫ ⎪⎝⎭⎛⎫- ⎪⎝⎭==⨯=-+-,当2n =时,2143c c =,当3n ≥时,11n n c c -≤,所以()max 43n c λ=,则24733λλ->,解得73λ>或1λ<-(舍去),综上所述,λ的取值范围是7,3⎛⎫+∞⎪⎝⎭.【点睛】本题的关键点在于“转化”,将不等式恒成立问题,转化为()()min max 73m n b c ->来进行求解.要求数列的最大值,可以根据数列的单调性、函数的性质、商比较法等知识来进行求解.根据递推关系式求数列的通项公式,可考虑利用构造法来进行求解.22. 设椭圆()222210x y a b a b+=>>的上顶点()0,2K ,左焦点()12,0F -,右焦点()22,0F ,左、右顶点分别为1A 、2A .(1)求椭圆方程;(2)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是22A F P △面积的(2倍,求直线2A P 的方程;(3)如图过椭圆的上顶点K 作动圆1F 的切线分别交椭圆于M 、N 两点,是否存在圆1F 使得KMN △为直角三角形?若存在,求出圆1F 的半径r ;若不存在,请说明理由.【答案】(1)22184x y +=(2)0x y +-=(3)不存在,理由见解析【解析】【分析】(1)根据题意求,,a b c ,进而可得方程;(2)由题意结合面积关系分析可知:22=A P PQ ,设()()0,0Q m m >,可得23m P ⎫⎪⎪⎭,代入椭圆方程运算求解即可;(3)分别设切线方程求点,M N 的坐标,进而根据垂直关系整理可得21211⋅-=k k k ,结合直线与圆的位置关系可得121k k ⋅=,解方程分析判断即可.【小问1详解】设椭圆的半焦距为0c >,由题意可得:2c b ==,则a ==,所以椭圆方程为22184x y +=.【小问2详解】由题意可知:1222==-A A F ,可知点12,A F 到直线2A P 的距离之比122221=A A A h F h ,由题意可知:2211122222212212⋅===⋅△A PQ A F Ph PQ S A A PQ S A F A P h A P △,可得22=A P PQ ,设()()0,0Q m m >,且()2A,则23m P ⎫⎪⎪⎭,可得28499184m +=,解得m =(0,Q ,所以直线2A P1+=,即0x y +-=.【小问3详解】由题意可知切线KM KN ,的斜率存在且均不为0,且MKN ∠不是直角,设切线1:2=+KM y k x ,联立方程1222184y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得()22111280k x k x ++=,解得0x =或121812=-+k x k ,当121812=-+k x k 时,2111221182421212⎛⎫-=-+= ⎪++⎝⎭k k y k k k ,即2112211824,1212⎛⎫-- ⎪++⎝⎭k k M k k ,同理可设切线2:2=+KN y k x ,可得2222222824,1212⎛⎫-- ⎪++⎝⎭k k N k k ,则直线MN 的斜率2212221212121222122424121288121212---+++==-⋅-+++MNk k k k k k k k k k k k k ,不妨设MN PM ⊥,则121112112+⋅=⋅=--⋅MN k k k k k k k ,整理得21211⋅-=k k k ,设圆()()2221:20++=>F x y r r ,若过K 的直线20kx y -+=与圆1F2r ,整理得()2224840r k k r -++-=,可知12,k k 即为方程()2224840r k k r -++-=的两根,则121k k ⋅=,可得2111-=k ,即10k =,与题意相矛盾,所以不存在.【点睛】方法点睛:存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在;(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.。
山东省青岛市第二中学数列多选题试题含答案一、数列多选题1.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确. 故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.2.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +为等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确. ()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.3.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确;D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.4.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( ) A .19919S a =B .数列{}22n a是公比为8的等比数列C .若()1nn n b a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22n a是公比为82的等比数列,故B 错误;若()()()1141n nn n b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD .【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.5.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.6.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.7.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.8.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( )A .等差数列一定是等差比数列B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.二、平面向量多选题9.已知向量(2,1),(3,1)a b ==-,则( ) A .()a b a +⊥B .|2|5a b +=C .向量a 在向量bD .向量a的单位向量是55⎛⎝⎭【答案】ABD 【分析】多项选择题需要要对选项一一验证: 对于A:利用向量垂直的条件判断; 对于B:利用模的计算公式; 对于C:利用投影的计算公式; 对于D:直接求单位向量即可.【详解】(2,1),(3,1)a b ==-对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确;对于B:222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;对于C: 向量a 在向量b 上的投影是||(3)a b b ⋅==-,故C 错误;对于D: 向量a 的单位向量是⎝⎭,故D 正确.故选:ABD . 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.10.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 【答案】AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.。
高中自主招生试题数学一.选择题(共12小题)1.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C. D.22.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.13.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个4.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<87.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b9.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.10.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D 的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.11.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.46512.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15 B.30 C.45 D.60题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.选择题(共6小题)第13题第14题第15题第17题13.如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.14.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)15.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.16.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA 的距离之和的最小值是.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是.三.解答题(共7小题)19.先化简,再求值:÷•,其中a=2016.20.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.21.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y 件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?22.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)23.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.24.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F 点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.25.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x 轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.参考答案与试题解析一.选择题(共12小题)1.(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.【点评】本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.2.(2016•玉林)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A .B .C .D.1【考点】扇形面积的计算;正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B.【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.(2016•桂林)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B 的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x ﹣)2+4中y=0,则﹣(x ﹣)2+4=0,解得:x=﹣,或x=3.∴点E 的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.【点评】本题考查了二次函数与坐标轴的交点坐标、等腰三角形的判定、一次函数与坐标轴的交点坐标以及等边三角形的判定定理,解题的关键是依照题意画出图形,利用数形结合来解决问题.本题属于中档题,难度不小,本题不需要求出P点坐标,但在寻找点P的过程中会出现多次点的重合问题,由此给解题带来了难度.4.(2016•桂林)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB . C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.5.(2016•桂林)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.6.(2016•上海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.7.(2016•潍坊)若关于x 的方程+=3的解为正数,则m的取值范围是()A.m <B.m <且m ≠C.m >﹣ D.m >﹣且m ≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x 的方程+=3的解为正数,∴﹣2m+9>0,解得:m <,当x=3时,x==3,解得:m=,故m的取值范围是:m <且m ≠.故选:B.【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.8.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a |+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a |+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.9.(2016•衡阳)如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y 轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P 作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A .B .C .D .【考点】动点问题的函数图象.【专题】反比例函数及其应用.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP 面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM 的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.【点评】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.10.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A .B .C .D .【考点】动点问题的函数图象.【专题】动点型;函数思想.【分析】根据题意分1<x ≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x ≤),当P 在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.11.(2016•日照)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【考点】规律型:数字的变化类.【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).【点评】本题属于类比推理的问题,类比推理的一般方法是:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想.解决问题的关键是认真观察、仔细思考、善用联想,探寻变化规律.12.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N 为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二.选择题(共6小题)13.(2016•广安)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为21.【考点】三角形的面积.【分析】根据正方形的性质来判定△ABE∽△ADG,再根据相似三角形的对应线段成比例求得BE的值;同理,求得△ACF∽△ADG,AC:AD=CF:DG,即CF=5;然后再来求梯形的面积即可.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;∴S梯形IHEF=(IF+HE)•HI=×(2+5)×6=21;所以,则图中阴影部分的面积为21.【点评】本题主要考查的是相似三角形的判定及性质、以及梯形面积的计算,解决本题的关键是利用三角形的性质定理与判定定理.14.(2016•玉林)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF 的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是①②③.(写出所有正确结论的序号)【考点】四边形综合题.【专题】综合题.【分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连结EF、AC,它们相交于点H ,如图,利用Rt△ABE≌Rt△ADF得到BE=DF ,则CE=CF,接着判断AC 垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1﹣x,利用等腰直角三角形的性质得到2x=(1﹣x),解得x=﹣1,则可对④进行判断.【解答】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF、AC,它们相交于点H,如图,∵Rt△ABE≌Rt△ADF,∴BE=DF,而BC=DC,∴CE=CF,而AE=AF,∴AC垂直平分EF,AH平分∠EAF,∴EB=EH,FD=FH,∴BE+DF=EH+HF=EF,所以④错误;∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x,则EF=2x,CE=1﹣x,∵△CEF为等腰直角三角形,∴EF=CE,即2x=(1﹣x),解得x=﹣1,∴EF=2(﹣1),∴CH=EF=﹣1,所以②正确.故答案为①②③.【点评】本题考查了四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解决本题的关键是证明AC垂直平分EF.15.(2016•毕节市)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1.【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分的面积=4(S半圆O﹣S△ABP),求出值,即可解决问题.【解答】解:如图,连接PA、PB、OP;则S半圆O==,S△ABP=AB•OP=×1×=,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(﹣)=π﹣1,故答案为:π﹣1.【点评】该题主要考查了正方形的性质、圆的面积公式、三角形的面积公式等知识点及其应用问题;解题的关键是作辅助线,将阴影部分的面积转化为规则图形的面积和或差.16.(2016•潍坊)已知∠AOB=60°,点P 是∠AOB 的平分线OC 上的动点,点M 在边OA 上,且OM=4,则点P 到点M 与到边OA 的距离之和的最小值是 2 .【考点】轴对称﹣最短路线问题.【分析】过M 作MN′⊥OB 于N′,交OC 于P ,即MN′的长度等于点P 到点M 与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M 作MN′⊥OB 于N′,交OC 于P , 则MN′的长度等于PM +PN 的最小值,即MN′的长度等于点P 到点M 与到边OA 的距离之和的最小值, ∵∠ON′M=90°,OM=4, ∴MN′=OM•sin60°=2,∴点P 到点M 与到边OA 的距离之和的最小值为2.【点评】本题考查了轴对称﹣最短路线问题,解直角三角形,正确的作出图形是解题的关键. 17.(2016•烟台)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为π cm 2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B′OC′=60°,△BCO=△B′C′O , ∴∠B′OC=60°,∠C′B′O=30°, ∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=, ∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∵∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;故答案为:π.【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.18.(2016•丽水)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m . (1)b= m + (用含m 的代数式表示); (2)若S △OAF +S 四边形EFBC =4,则m 的值是.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法点A 的纵坐标相等列出等式即可解决问题.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),所以S △ADM =2S △OEF ,推出EF=AM=NB ,得B (2m ,)代入直线解析式即可解决问题.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,且点A 的横坐标为m , ∴点A 的纵坐标为,即点A 的坐标为(m ,). 令一次函数y=﹣x +b 中x=m ,则y=﹣m +b , ∴﹣m +b= 即b=m +. 故答案为:m +.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y=,一次函数y=﹣x +b 都是关于直线y=x 对称, ∴AD=BC ,OD=OC ,DM=AM=BN=CN ,记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ), ∴S △ADM =2S △OEF ,由对称性可知AD=BC ,OD=OC ,∠ODC=∠OCD=45°,△AOM ≌△BON ,AM=NB=DM=NC , ∴EF=AM=NB , ∴EF 是△OBN 的中位线, ∴N (2m ,0),∴点B 坐标(2m ,)代入直线y=﹣x +m +, ∴=﹣2m +m +,整理得到m 2=2, ∵m >0, ∴m=.故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题. 三.选择题(共7小题)19.(2016•黄石)先化简,再求值:÷•,其中a=2016.【考点】分式的化简求值.【分析】先算除法,再算乘法,把分式化为最简形式,最后把a=2016代入进行计算即可. 【解答】解:原式=••=(a ﹣1)•=a +1,当a=2016时,原式=2017.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值. 20.(2016•毕节市)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:组别 成绩x (分) 频数(人数) 频率 一 50≤x <60 2 0.04 二60≤x <70100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【考点】频数(率)分布直方图;频数(率)分布表.【专题】探究型;统计与概率.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.【点评】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.21.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【考点】二次函数的应用;一元二次不等式.【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【点评】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,学会利用图象法解一元二次不等式,属于中考常考题型.22.(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)。
青岛二中2024-2025学年第一学期期中考试—高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{21,x A y y B x y ==-==∣∣,则A B =U ( )A. (1,)-+¥B. [1,)-+¥ C. (]1,1- D. [1,1]-【答案】B 【解析】【分析】根据指数函数性质和一元二次不等式的解法求出集合,A B ,然后由集合的并集运算可得.【详解】由指数函数的值域可得()1,A =-+¥,解不等式210x -³得[]1,1B =-,所以[1,)A B =-+¥U .故选:B .2. 已知圆锥的底面半径为2,其侧面展开图是一个圆心角为4π3的扇形,则该圆锥的侧面积为( )A. 6π B. 8π C. 10πD. 12π【答案】A 【解析】【分析】根据半径求底面周长,由弧长公式可得母线长,然后可得侧面积.【详解】因为底面半径2r =,所以底面周长2π4πL r ==,又圆锥母线长34π3L l ==,所以圆锥侧面积π6πS rl ==.故选:A .3. 已知复数z 满足2z z z z -=+,则复数z 在复平面内对应点的轨迹为( )A. 圆 B. 椭圆C. 双曲线D. 抛物线【答案】D 【解析】【分析】设i z x y =+(),R x y Î,运用复数加、减运算及复数模的公式计算即可.【详解】设i z x y =+(),R x y Î,则i z x y =-,所以i+i 2z z x y x y x +=+-=,(i)(i)2i z z x y x y y -=+--=,所以22||4z z y -=,又2||z z z z -=+,所以242y x =,即212y x =,所以复数z 在复平面内对应点的轨迹为抛物线.故选:D.4. 设n S 为数列{}n a 的前n 项和,若21n n S a =-,则6936a a a a +=+( )A. 4B. 8C.18D.14【答案】B 【解析】【分析】根据,n n a S 的关系可得递推公式12n n a a -=,利用递推公式可得.【详解】当2n ³时,1121n n S a --=-,所以112121n n n n n a S S a a --=-=--+,整理得12n n a a -=,所以6936a a a a +=+()3363628a a a a +=+.故选:B .5. 已知e lg3a =,()lg ln3b =,1ln 3c =,则a ,b ,c 的大小关系是( )A. c b a <<B. a c b <<C. c a b <<D. b c a<<【答案】C 【解析】【分析】根据题意结合对数函数单调性分析判断即可.【详解】因为e lg3a =,可得()ln lg3a =,且3lg3lg271=>,则1lg33>,可得()1ln lg3ln 3>,所以a c >;又因为ln31lg30>>>,则()()lg ln30ln lg3>>,所以b a >;综上所述:c a b <<.故选:C6. 已知角a b ,满足tan 2a =,2sin cos()sin b a b a =+,则tan b =( )A.13B.17C.16D. 2【答案】B 【解析】【分析】利用正弦和角公式,同角三角函数关系得到2tan()3tan a b a +=,故3tan()tan 32a b a +==,利用正切和角公式得到方程,求出1tan 7b =.【详解】因为()sin sin sin()cos cos()sin b a b a a b a a b a =+-=+-+,2sin cos()sin b a b a =+,所以2sin()cos 2cos()sin cos()sin a b a a b a a b a +-+=+,即2sin()cos 3cos()sin a b a a b a +=+,则2tan()3tan a b a +=,因为tan 2a =,所以3tan()tan 32a b a +==,其中tan tan 2tan tan()31tan tan 12tan a b ba b a b b+++===--,故2tan 36tan b b +=-,解得1tan 7b =.故选:B.7. 已知球O的直径为PC A B =、是球面上两点,且π3PA PB APB ==Ð=,则三棱锥P ABC -的体积( )A.B.C.D.【答案】C 【解析】【分析】利用球体的性质先计算球心到平面APB 的距离,再根据棱锥的体积公式计算即可.【详解】由题意可知APB △为正三角形,设其外接圆圆心为M ,半径为r ,则21πsin 3PAr PM r =Þ==,且OM ^平面APB ,所以OM ==,故C 到平面APB的距离为所以三棱锥P ABC -的体积为213´=故选:C8. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右顶点分别为12,,A A P 是双曲线上不同于1A ,2A 的一点,设直线12,A P A P 的斜率分别为12,k k ,则当()12ln ak k b+取得最小值时,双曲线C 的离心率为( )A.B.C.D. 2【答案】A 【解析】【分析】先根据双曲线的方程,得到212b k k a æö=ç÷èø,再设b x a =,通过求导,判断函数()12ln f x x x =+的极小值点,得到ba的值,再根据,,a b c 的关系求双曲线的离心率.【详解】设P (x,y )为双曲线C 上异于1A 、2A 两点的任意一点,则22221x ya b-=,又()1,0A a -,()2,0A a ,所以:2222212222221x b a y y y b k k x a x a x a x a aæö-ç÷èø=×===+---所以2ln 2ln a b a b b a b a æö+=+ç÷èø,设b x a=,则()12ln f x x x =+(0x >),因为()2221210x f x x x x -=-=>¢Þ12x >,所以()f x 在10,2æöç÷èø上单调递减,在1,2¥æö+ç÷èø上单调递增,所以当12x =时,函数取得最小值.即12b a =时,12ln a k k b+取得最小值.此时:2a b =Þ()222244a b c a ==-Þ2254a c =Þ2225e 4c a ==Þe =故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 关于函数()cos2sin f x x x =,下列说法中正确的是( )A. ()f x 图象关于直线π4x =对称B. 曲线()f x 在点ππ,66f æöæöç÷ç÷èøèø处的切线方程为1π4y x =++C. D. π为()f x 的周期【答案】BC 【解析】【分析】利用轴对称的条件,验证()π2f x f x æö-=ç÷èø成立与否判断A ,利用导数的几何意义判断B ,利用导数研究函数的单调性与最值判断C ,利用周期定义验证D ,【详解】对于A ,()()ππcos π2sin cos2cos 22f x x x x x f x æöæö-=--=-¹ç÷ç÷èøèø,故A 错误;对于B ,由()cos2sin f x x x =,可得()2sin 2sin cos 2cos f x x x x x =-+¢所以πππππ2sin sin cos cos 63636f æö=-+=ç÷è¢ø,又πππ1cos sin 6364f æö==ç÷èø,所以切线方程为:1π46y x ö-=-÷ø,即14y x =+,故B 正确;对于C ,()()()()2πcos 24πsin 2πcos2sin f x x x x x f x +=++==,所以2π是()f x 的一个周期,又()()()()πcos 2π2sin πcos2sin f x x x x x f x -=--==,所以()f x 图象关于直线π2x =对称,所以()f x 的最大值即()f x 在ππ,22éù-êúëû上的最大值,()()22sin 2sin cos 2cos cos 16sin f x x x x x x x=-+=-¢令()0f x ¢=,得21sin 6x =,令00πsin 02x x ö=<<÷ø,则()00πsin 02x x ö-=-<-<÷ø,所以当0π,2x x éùÎ--êúëû时,f ′(x )<0,当()00,x x x Î-时,f ′(x )>0,当0π,2x x éùÎêúëû时,f ′(x )<0,则()f x 在0π,2x éù--êúëû上单减,在()00,x x -上单增,在0π,2x éùêúëû上单减,所以()f x 在0x 处取得最大值,()()200000cos2sin 12sin sin f x x x x x ==-=,故C 正确,对于D ,()()()()πcos 22πsin πcos2sin f x x x x x f x +=++=-¹,故π不是()f x 的周期,故D 错误;故选:BC10. 在棱长为2的正方体1111ABCD A B C D -中,点M 在侧面11BCC B (包含边界)内运动,点H 为正方形ABCD 的中心,则下列说法正确的是( )A. 不存在M ,使得^MH 平面1ACD B. 若点M 在1BC 上,则1D ACM V -为定值C. 若1A C MH ^,则点M 的轨迹为线段D. 若M 为侧面11BCC B 的中心,则二面角11M A B B --【答案】BCD 【解析】【分析】当M 为1BB 中点时,^MH 平面1ACD ,可得选项A 错误;利用线面平行转化三棱锥体积可得选项B 正确;根据分析可得点M 在两平面的交线上,结合题目条件可知选项C 正确;求两平面的法向量,利用二面角的向量求法可知选项D 正确.【详解】由题意得,H 为,AC BD 中点.以D 为原点,分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(1,1,0)H ,1(2,0,2)A ,1(2,2,2)B ,1(0,2,2)C ,1(0,0,2)D .A.由题意得,11(2,2,0),(2,0,2),(2,2,2)AC AD DB =-=-=uuu r uuuu r uuuu r,∴1110,0AC DB AD DB ×=×=uuu r uuuu r uuuu r uuuu r,∴111,AC DB AD DB ^^,∵AC Ì平面1ACD ,1AD Ì平面1ACD ,1AC AD A =I , ∴1DB ^平面1ACD ,当M 为1BB 中点时,1MH DB ∥,^MH 平面1ACD ,选项A 错误.B.由题意得,11BC AD ∥,∵1AD Ì平面1ACD ,1BC Ë平面1ACD ,∴1BC ∥平面1ACD ,若点M 在1BC 上,则点M 到平面1ACD 距离等于点B 到平面1ACD 的距离,∴111D ACM M ACD B ACD V V V ---==,故1D ACM V -定值,选项B 正确.的为C.由题意得,11(2,2,2),(2,2,0),(0,2,2)A C DB DC =--==uuur uuu r uuuu r,∴1110,0A C DB A C DC ×=×=uuur uuu r uuur uuuu r,∴111,A C DB A C DC ^^,∵DB Ì平面1BDC ,1DC Ì平面1BDC ,1DB DC D =I ,∴1A C ^平面1BDC ,由H Î平面1BDC ,1A C MH ^得,MH Ì平面1BDC ,故点M 在平面1BDC 与平面11BCC B 的交线上,即点M 在直线1BC 上,由点M 在侧面11BCC B (包含边界)内运动,故点M 的轨迹为线段1BC ,选项C 正确.D.由题意得,(1,2,1)M ,平面11A BB 的法向量为(1,0,0)m =u r∴1(0,2,2)A B =-uuur ,(1,0,1)BM =-uuuu r,设平面1MA B 的法向量为(,,)n x y z =r ,则220y z x z -=ìí-+=î,可取(1,1,1)n =r ,设二面角11M A B B --的平面角为q ,则cos cos q ==,∴sin q==,故选项D正确.故选:BCD11. 设数列{}n a满足21159,5n n na a a a+=-+=,记数列12naìüíý-îþ的前n项和为n S,则()A. 1n na a+> B.51118061807a<×C.202520255522aæö£+ç÷èøD.12nS<【答案】ABD【解析】【分析】()221693n n n n na a a a a+-=-+=-结合二次函数的性质可判断A;由放缩法可得()()11123n n na a a+<--即可判断B;由放缩法可得15ln225ln2nnaa+æö-ç÷èø>æö-ç÷èø,再由累乘法可得2025202555+22aæö>ç÷èø,可判断C;由累加法可得11123nnSa+=--,即可判断D.【详解】对于A,()221693n n n n na a a a a+-=-+=-,因为15a=,根据二次函数的性质,所以5na³,所以1n na a+->,故A正确;对于B,22221111115951155124224n n nn n na a aa a a+==<<-+æöæöæö-+---ç÷ç÷ç÷èøèøèø()()2211156235124n n n nna a a aa==-+--æö--ç÷èø,所以()()11123n n na a a+<--,15a=,22349,45,4545591809a a a===-×+=,所以51118061807a<×,故B正确;.对于C ,22155152242n n n a a a +æöæö-=-+>-ç÷ç÷èøèø,21555ln ln 2ln 222n n n a a a +æöæöæö->-=-ç÷ç÷ç÷èøèøèø,所以15ln 225ln 2n n a a +æö-ç÷èø>æö-ç÷èø,累乘可得:202520242202520252024202420231155555ln ln ln ln ln 22222255555ln ln ln ln ln 22222a a a a a a a a a æöæöæöæöæö-----ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø×==>æöæöæöæö----ç÷ç÷ç÷ç÷èøèøèøèø,所以2024220242025555ln 2ln ln 222a æöæö->×=ç÷ç÷èøèø,所以20242202520255555++2222a æöæö>>ç÷ç÷èøèø,故C 错误;对于D ,因为()()1233n n n a a a +=--+,所以()()1323n n n a a a +-=--,所以()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----,数列12n a ìüíý-îþ的前n 项和为n S ,所以12311112222n n S a a a a =++++----L 12233411111111133333233n n a a a a a a a a +=-+-+-++---------L 1111111133232n n a a a ++=-=-<---,故D 正确.故选:ABD .【点睛】关键点睛:本题C 选项的关键是通过由放缩法得到215522n n a a +æö->-ç÷èø,对不等式两边取对数。
山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.下列各组物质的溶液,不用其他试剂,不能鉴别出来的是()A.Na2CO3、HCl、BaCl2、NaCl B.FeCl3、HCl、NaCl、NaOHC.H2SO4、NaOH、BaCl2、CuCl2D.NaOH、Ba(NO3)2、NaCl、MgSO42.如图是甲、乙、丙三种物质的溶解度曲线,下列说法正确的是A.将丙的饱和溶液变为不饱和溶液,可采用升温的方法B.t1℃时,可以制得溶质质量分数为8%的丙溶液C.t2℃时,甲、乙两种物质的饱和溶液降温至20℃,析出甲的质量比析出乙的质量大D.t1℃时甲、乙、丙三种物质的饱和溶液升高到t2℃时,溶质质量分数为甲>乙>丙3.用数形结合的方法表示某些化学知识直观、简明、易记.下列用数轴表示正确的是()A.不同物质的着火点:B.硫及其化合物与化合价的关系:C.50g19.6%的稀硫酸与足量的金属反应产生氢气的质量:D.物质形成溶液的pH:4.下列各物质中,不能满足下图物质一步转化关系的选项是()A.X:Cu Y:CuO Z:CuSO4B.X:CO2 Y:O2 Z:COC.X:CaCO3 Y:CaO Z:Ca(OH)2D.X:NaOH Y:NaCl Z:Na2CO35.下列四个图象,分别对应四种操作过程,其中正确的是()A.向pH=2的酸溶液中不断加水B.向NaOH溶液中逐滴加入稀盐酸C.向一定量的水中持续加入食盐(m表示食盐的质量,A%表示溶质质量分数)D.等质量的锌、铁与足量的稀硫酸反应,产生氢气的质量随反应时间t的变化6.A~H是初中常见的物质,已知A~G七种物质均含有同一种元素, D的相对分子质量为100,可用作建筑材料。
它们之间的转化关系如图所示,图中“一”表示两端物质间能发生化学反应,“→”表示物质间存在转化关系;反应条件、部分反应物和生成物已略去。
下列说法中不正确的是A.A为一种单质,D为碳酸钙B.可能涉及四种基本反应类型C.E、F的物质类别可能相同,也可能不同D.H的浓溶液具有挥发性7.下列各组物质在溶液中能大量共存,且溶液呈无色的是()A.Na2CO3、NH4NO3、Ca(OH)2B.Fe2(SO4)3、Na2SO4、Mg(NO3)2C.AlCl3、Ba(NO3)2、CaCl2D.Na2CO3、AgNO3、BaCl28.某同学将mgMg、A1、Zn、Fe 的混合物放入足量的稀盐酸中,充分反应后,将所得溶液小心蒸干,得到(m+7.1) g不含结晶水的固体,则m的取值范围是A.2.4≤m≤6.5B.2.4<m<6.5C.1.8≤m≤6.5D.1.8<m<6.59.将Mg和Ag的混合物放入Zn(NO3)2和Cu(NO3)2的混合溶液中,预测其充分反应后所得滤渣和滤液的组成成分如下,其中不合理的是()A.若滤液为蓝色,则滤渣中含有2种固体B.若滤液为无色,则滤渣中可能含有3种固体C.若滤渣中加入稀盐酸,产生气泡,则滤液中最多含有2种溶质D.若滤渣中加入稀盐酸,无气泡,则滤液中至少含有1种溶质10.下列图象正确的是A.表示KMnO4加热制O2生成的MnO2的质量与时间的关系图B.表示CO还原CuO的实验中,试管内固体质量与时间关系图C.表示向Ca(NO3)2(含少量 HCl)溶液中滴加K2CO3溶液,沉淀量与K2CO3的加入量的关系图D.表示向足量的稀HCl中加入少量Fe,溶液质量与时间的关系图A.A B.B C.C D.D11.下列说法正确的是()A.根据质量守恒定律,2gH2跟8gO2完全反应,可得到10gH2OB.用含Fe2O385%的赤铁矿160t,理论上可生产100t含杂质4. 8%的生铁C.各取10g镁粉和锌粉,分别与足量的盐酸完全反应,镁粉产生的H2多,说明镁的金属活动性比锌强D.将l0gCuSO4·5H2O与90gH2O混合,固体完全溶解,可得100g溶质的质量分数为10%的CuSO4溶液12.将一定质量的碳酸钙和铜粉的混合物在空气中煅烧使其完全反应,若反应前后固体的质量保持不变,则铜和碳酸钙的质量比为()A.44:25 B.22:5 C.4:1 D.44:3213.有NaHCO3与NaCl的混合物20.0g,加热一段时间,得剩余固体16.9g。
山东省青岛市青岛二中数列多选题试题含答案一、数列多选题1.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( )A .19919S a =B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22na 是公比为82的等比数列,故B 错误;若()()()1141nnnn b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.2.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.3.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依次类推…,第n 项记为n a ,数列{}n a 的前n 项和为n S ,则( )A .6016a =B .18128S =C .2122k k k a -+=D .2221kk k S k +=--【答案】AC 【分析】对于AC 两项,可将数列进行分组,计算出前k 组一共有()12k k +个数,第k 组第k 个数即12k -,可得到选项C由C 得到9552a =,60a 则为第11组第5个数,可得60a 对于BD 项,可先算得22k kS +,即前k 组数之和18S 即为前5组数之和加上第6组前3个数,由21222k k kS k ++=--结论计算即可. 【详解】A.由题可将数列分组第一组:02 第二组:012,2, 第三组:0122,2,2,则前k 组一共有12++…()12k k k ++=个数 第k 组第k 个数即12k -,故2122k k k a -+=,C 对又()10101552+=,故9552a = 又()11111662+=, 60a 则为第11组第5个数第11组有数:0123456789102,2,2,2,2,2,2,2,2,2,2 故460216a ==,A 对对于D. 每一组的和为0122++ (1)2122121k k k --+==-- 故前k 组之和为1222++…()122122221k k k k k k +-+-=-=---21222k k k S k ++=--故D 错. 对于B.由D 可知,615252S =--()551152+=,()661212+=01261815222252764S S =+++=--+=故B 错 故选:AC 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.4.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.5.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.6.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b bc+++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b b S S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--, 又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.7.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( ) A .2n S n = B .122310*********a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310*********a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确;而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值; (3)利用裂项相消法,对12231011111a a a a a a ++⋅⋅⋅+求和; (4)对选项逐个判断正误,得到结果.8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题.等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )A .0AC BD ⋅=B .0OA OE ⋅=C .34OA OB OC ++= D .ED 在BA 方向上的正射影的数量为712【答案】BCD 【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅,||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,3A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,136D ⎛ ⎝⎭,解得3O ⎛ ⎝⎭,O 为AE 的中点,所以,0OA OE +=正确,故B 正确;132,,,2233AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,AC BD ⋅=121=023236⨯--≠,故A 错误; 32OA OB OC OA OE OE ++=+==,故C 正确;1,63ED ⎛⎫= ⎪ ⎪⎝⎭,1,22BA ⎛= ⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD. 【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b⋅进行求解.10.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥C .//FG BCD .FG EF ⊥【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.。
一、等比数列选择题1.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .482.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .23.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20074.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-5.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列6.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( )A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24- B .3-C .3D .88.12与12的等比中项是( )A .-1B .1C .2D .2±9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-11.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-12.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-B .2-或1C .1D .213.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .414.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±15.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N,且0nS>,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .1116.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .255317.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定18.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99219.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .620.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101aa -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .205二、多选题21.题目文件丢失! 22.题目文件丢失!23.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1425.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列26.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2827.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9SD .n T 的最大值为7T29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T30.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍31.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+32.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413n na a a -+++= D .m n +为定值33.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=34.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 35.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==,故选:C. 2.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 3.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 4.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列,∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 5.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3nn n S =+-=,所以13n S n=,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 6.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.D 【分析】利用等比中项定义得解. 【详解】2311()((2-==,的等比中项是 故选:D 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 11.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 12.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 13.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 14.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C. 15.B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n n n n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 16.A 【分析】由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】根据题意,由于{}n a 是各项均为正数的等比数列,121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q则()()456781234161480a a a a q a a a a +++=+++=+=.故选:A 17.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值.【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 18.C 【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 19.C 【分析】根据等比数列的通项公式求解即可. 【详解】由题意可得等比数列通项5111122n n n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 20.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
青岛数学自主练习题一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x + 3 = 5x + 1C. 2x + 3 = 5x - 2D. 2x + 3 = 5x + 22. 计算下列哪个表达式的值等于10?A. 3x - 2B. 2x + 4C. 4x - 3D. 5x + 13. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 3x^3 - 2D. y = 1/x4. 已知等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 175. 一个圆的半径为5,求其面积。
A. 25πC. 75πD. 100π6. 计算下列哪个表达式的值等于-1?A. 3x - 4B. 2x + 1C. x - 3D. 4x - 77. 以下哪个函数是二次函数?A. y = x^2 + 3x - 4B. y = x^3 - 2x + 1C. y = 2x + 3D. y = 1/x^28. 已知等比数列的首项为2,公比为3,求第4项的值。
A. 162B. 486C. 1458D. 43749. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 9D. 1110. 计算下列哪个表达式的值等于0?A. 2x - 4B. 3x + 6D. 4x - 8二、填空题(每题4分,共20分)11. 已知一个等差数列的第3项为7,第5项为11,求公差d。
12. 计算函数y = 2x - 3在x = 2时的值。
13. 一个圆的直径为10,求其周长。
14. 计算函数y = x^2 - 4x + 4在x = 1时的值。
15. 已知一个等比数列的第2项为6,第4项为36,求首项a。
三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 2x + 7。
17. 证明:对于任意实数x,x^2 - 4x + 4 ≥ 0。
青岛二中2016年自主招生(数学)试题初中学校 姓名 考号1.化简201620151431321211++++++++ .2.二中学生气象小组预测:“五一”假期中,三天的降水概率依次为%30,%40,%60.请问这三天不经历降水的概率是多少?3.一次函数的图象过抛物线1222--=x x y 与772-+-=x x y 的两交点,求一次函数的解析式. 4.二中3D 实验室加工一圆柱体,从其内部挖掉一个等高的小圆柱,得到一个新的几何体,其三视图如图所示,俯视图中⊙2O 与⊙1O 的弦AB 相切,且,//21AB O O (如右图),若该几何体的体积为π160,求弦AB 的长.5.解方程23||2||+=-+x x x .6.自行车选手甲、乙、丙三人同时从A 点出发沿着AB ,BC ,CA 三条直线段行进,选手甲在这三条直线上行进的速度分别为12,10,15(h km /),选手乙在这三条直线上行进的速度分别为15,15,10(h km /),选手丙在这三条直线上行进的速度分别为10,20,12(h km /).若三名选手同时到达终点A ,求ABC ∠的大小.7.若干学生参加二中模联测试,参加测试学生得分均为60到100的整数(含60和100).已知此次测试平均分为80分,其中恰有5人得分为100分.试计算参加测试学生人数的最小值.(阅读预备知识,完成相应题目) 第8题预备知识:二次函数c bx ax y ++=2的图象与x 轴交点的横坐标分别为)(,2121x x x x <.0>a 时,则00221221<++<<>++><c bx ax x x x c bx ax x x x x 时,;当时,或; 0<a 时,则.00221221>++<<<++><c bx ax x x x c bx ax x x x x 时,;当时,或8.求使得242222+--+x x x x 为正整数k 的所有实数x 的值.第9题预备知识:圆的切线与过切点的弦所形成的角(弦切角),等于其所夹弧对的圆周角(如图21∠=∠).9.在ABC∆Rt 中,AB 为斜边,其内切圆分别与边BC ,AB ,CA 切于1A ,1B ,1C ,线段F C 1是111CB A ∆的高.(1)求111C A B ∠与BAC ∠的关系;(2)求111C B A ∠的度数;(3)证明:点F 在BAC ∠的平分线上.10.已知边长为1的正方形ABCD ,将AB 边)2(≥n n 等分,点M 是离点A 最近的一个分点,正方形ABCD 截去以AM 为边长的正方形后,余下部分的面积记为n S ,记n S S S S ⋅⋅⋅= 32.(1)当2016=n 时,求S 的值;(2)若函数)0(≠=k kx y 的图象与点)21,(-S n 所在反比例函数图象交于B A ,两点,过点A 作x 轴平行线与过点B 作y 轴平行线交于点P ,则ABP ∆的面积是否为定值,若是,请求出该定值;若不是,请说明理由.11.ABC ∆中,C B A ∠∠∠,,的对边分别为c b a ,,,函数)(212)(2c b a x ab x c b a y -++-++=的最小值为0,且B A cos ,cos 是关于x 的方程08)52()5(2=-+--+m x m x m 的两根.(1)求证:ABC ∆是直角三角形;(2)求实数m 的值;(3)若此三角形外接圆面积为425π,求ABC ∆内接正方形的边长. 12.已知点)3,2(--A ,)0,1(B ,)3,0(-CC 1A 1B 1FC BA2110俯视图主视图(1)求经过A 、B 、C 三点的抛物线顶点D 和抛物线与x 轴另一交点E 的坐标;(2)若在线段OC 上有一动点M (不在端点),分别以点O 、C 为圆心,OM 、MC 为半径作圆,在⊙O 与⊙C 上各有一动点P 、Q ,求EQ EP +的范围;(3)若从点D 向y 轴上某点G 出发,再从点G 向x 轴上某点H 出发,再由点H 到达点A ,求所走路径长度的最小值.2016自主招生考试(数学)评分标准1.(本题满分6分)解:原式=)()()()(2015-20163-42-31-2++++1-14121-2016==2.(本题满分6分)解: 三天的降雨概率依次为6.0,4.0,3.0 ∴三天不降雨的概率依次为4.0,6.0,7.0∴168.04.06.07.0=⨯⨯=P3.(本题满分6分)解:设抛物线交点分别为),(11y x A 、),(22y x B⎩⎨⎧⇒-+-=--=7712222x x y x x y ⎩⎨⎧-==1111y x 或⎩⎨⎧==3222y x 设一次函数解析式为)0(≠+=k b kx y ,则⇒⎩⎨⎧=+-=+321b k b k ⎩⎨⎧-==54b k ∴一次函数的解析式为54-=x y4.(本题满分6分)解:设大圆半径为R ,小圆半径为r底S V 10160==π , πππ1622=-=∴r R S 底,即1622=-r R8222=-=∴r R AB5.(本题满分10分)解:当x<-2时,23|22|23|2|23||2||+=+⇔+=---⇔+=-+x x x x x x x x 2572322->-=⇔+=--⇔x x x ,无解.当x ≥-2时,232+=x .1=x ;故原方程解为1=x .6.(本题满分10分)解:设c AB =,a BC =,b CA =,由题意可知122010101515151012ba cb ac b a c ++=++=++ 化简得⎪⎩⎪⎨⎧==⇒⎩⎨⎧=-+=+-c b c a c b a c b a 454302022 则222b c a =+, 090=∠∴ABC .7.(本题满分10分)解:设n 名学生参加测试,恰有5人得100分,n -5人最少每人60分,总分最少20060)5(601005+=-+⨯n n ,平均分最少802006020060≤+=+n n n 得10≥n . 当5人得100分, 5人每人得60分时,平均分=801080010605500==⨯+.故n 最小=10.8.(本题满分12分)解: k x x x x =+--+242222为正整数,得042)2()2(2=+++--k x k x k , 若2=k ,则2=x ,2≠k ,则2,103647)4(8)2(222=⇔≥++-=--+=∆k k k k k ,当1=k 时,解0632=-+x x 得2333±-=x .综上得2,2333±-=x . 9.(本题满分12分)解:(1)设α=∠111C A B ,β=∠BAC ,在11C AB ∆中,因为11AC AB =, 所以︒=∠+180211C AB β,又α=∠11C AB ,所以︒=+1802αβ (2)由预备知识可知,11111C B A A CC ∠=∠ 因为11CA CC =,且︒=∠9011CA C 所以︒=∠4511A CC ,即︒=∠45111C B A (3)由(2)知︒=∠45111C B A ,且F B F C 11⊥ 所以11C FB ∆为等腰直角三角形,所以F B F C 11= 又11AB AC =,AF AF =,所以F AC 1∆≌F AB 1∆ 所以AF B AF C 11∠=∠,所以点F 在BAC ∠的平分线上.10.(本题满分14分)解:(1)由题意,得2222)1()1(111nn n n n n S n +⋅-=-=-= 22222232)1()1(342231)11()311()211(nn n n S S S S n +⋅-⋅⋅⋅⋅⋅=-⋅⋅-⋅-=⋅⋅⋅= nn n 212121+=+=当2016=n 时,4032201720162121=⋅+=S . (2)由题意,得点)21,(-S n 所在的反比例函数表达式为xy 21=,图象在第一、三象限,且关于原点对称,函数)0(≠=k kx y 图象过原点,也关于原点对称,若函数图象有交点,则0>k ,不妨设在第一象限的交点为),(00y x A ,则第三象限交点为),(00y x B --,),(00y x P -,所以02y AP =,02x BP =,00221y x BP AP S ABP ⋅=⋅=∆,又因为点),(00y x A 在xy 21=图象上,所以0021x y =,即1200=⋅y x ,所以ABP ∆的面积为定值1. 11.(本题满分14分)解:(1)因为0>++c b a ,所以二次函数的图象开口向上,又最小值为0,所以0=∆,即0)(21)(4)2(2=-+⋅++-c b a c b a ab0])[(2422=-+-c b a ab ,0)2(24222=-++-c b ab a ab222c b a =+,所以ABC ∆为直角三角形.(2)依题意,得⎪⎩⎪⎨⎧+-=⋅+-=+58cos cos 552cos cos m m B A m m B A 由︒=∠+∠90B A ,所以A B sin cos =所以⎪⎩⎪⎨⎧+-=⋅+-=+58sin cos 552sin cos m m A A m m A A 又因为cbA c a A ==cos ,sin ,所以1cos sin 22=+A A故有1cos sin 2)cos (sin 2=⋅-+A A A A所以1)58(2)552(2=+--+-m m m m所以080242=+-m m ,解得201=m ,42=m又因为058cos cos >+-=⋅m m B A ,所以4=m 舍去,所以20=m . (3)因为0,4252>=R R ππ,所以25=R ,52==R c ,当20=m 时,01235252=+-x x ,解得541=x ,532=x 不妨设54cos =A ,53cos =B ,则5,4,3===c b a ①AC AD BC DE =,解得712=DE②过C 作高CH 交AB 于H ,则512=⋅=AB BC AC CH因为CDE ∆∽CBA ∆CH CK AB DE =,解得3760=DE 所以ABC ∆内接正方形边长为712或3760.12.(本题满分14分)解:(1)设二次函数解析式为)0(2≠++=a c bx ax y ,由题意得:⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-===⇒-==++-=+-32130324c b a c c b a c b a 322-+=∴x x y可得:)4,1(--D ,)0,3(-E(2)做直线EC EO ,,按照与点E 的近远分别交⊙O 于21,A A ,交⊙C 于21,B B 点2211EB EA EQ EP EB EA +≤+≤+∴,又OC EO EC EB EA -+=+11,OC EO EC EB EA ++=+1162323+≤+≤∴EQ EP(3)过点D 作关于y 轴的对称点)4,1(/-D ,过A 点作关于x 轴的对称点)3,2(/-A .连接//D A 交x 轴于点H ,交y 轴于点G ,此时线段//D A 的长度即为所求路径最小值.即58//=D AA。