弹性模量e和泊松比实验
- 格式:pptx
- 大小:1.35 MB
- 文档页数:33
实验名称:材料弹性常数 E、μ的测定班级: 姓名: 学号: 同组者:一、实验目的测量金属材料的弹性模量E和泊松比μ;验证单向受力胡克定律;学习电测法的根本原理和电阻应变仪的根本操作。
二、实验仪器和设备1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。
三、试件中碳钢矩形截面试件,名义尺寸为bt=(166)mm;2材料的屈服极限s 360MPa。
四、实验原理和方法1、实验原理:材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:E〔1〕上式中的比例系数E称为材料的弹性模量。
由以上关系,可以得到:P〔2〕EA材料在比例极限内,横向应变与纵向应变之比的绝对值为一常数:〔3〕上式中的常数称为材料的横向变形系数或泊松比。
本实验采用增量法,即逐级加载,分别测量在各相同载荷增量P作用下,产生的应变增量i 于是式〔2〕和式〔3〕分别写为:P〔4〕EiA0ii〔5〕ii根据每级载荷得到的 E i和i,求平均值:n EiE i1〔6〕nnii1〔7〕n以上即为实验所得材料的弹性模量和泊松比。
上式中n为加载级数。
2、实验方法〔1〕、电测法电测法根本原理:电测法是以电阻应变片为传感器, 通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。
试验时,将应变片粘贴在构件外表需测应变的部位, 并使应变片的纵向沿需测应变的方向。
当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。
这时,敏感栅的电阻由初始值R变为R+ R。
在一定范围内,敏感栅的电阻变化率R/R与正应变ε成正比,即:RR k上式中,比例常数k为应变片的灵敏系数。
故只要测出敏感栅的电阻变化率,即可确定相应的应变。
电阻应变仪测点桥的原理:电桥B、D端的输出电压为:UBDR1R4R2R3UR2)(R3R4)(R1当每一电阻分别改变R1, R2, R3,R4时,B、D端的输出电压变为:U(R1R1)(R4R4)(R2R2)(R3R3 )U(R1R1R2R2)(R3R3R4R4)略去高阶小量,上式可写为:U BD U R1R2 2(R1R2R3R4) (R1R2)R1R2R3R4在测试时,一般四个电阻的初始值相等,那么上式变为:UBD U(R1R2R3R4) 4R1R2R3R4得到:kUUBD(1234)4电阻应变仪的根本测量电路如果将应变仪的读数按应变标定,那么应变仪的读数为:4U BD(1234)kU〔2〕、加载方法——增量法与重复加载法增量法可以验证力与变形之间的线性关系,假设各级载荷增量P 相同,相应的应变增量也应大致相等,这就验证了虎克定律,如右图所示。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) 试验目的1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.验证虎克定律;3.掌握电测方法的组桥原理与应用。
(二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E。
(2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:(4) 式中: ΔP——载荷增量,kN;A 0-----试件的横截面面积,cm 为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 0)(A L PL E ∆∆∆=0)(L L ∆∆=∆εε∆⋅∆=10A P E作用下试件所产生的应变增量Δε。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
材料力学性能试验报告试验组别:材料科学与工程13-1 班一组试验者姓名:赵乙凡学号:1311440123试验日期:2015年12月23日电测法测定材料弹性模量E和泊松比μ一.实验目的。
1.测定碳钢的弹性模量。
2.测定碳钢的泊松比。
二.实验设备及仪器。
1.材料力学多功能试验台一台。
2.应力&应变综合参数测试仪一台。
3.拉伸试件。
4.温度补偿块。
5.长度测量尺。
三.实验原理及方法。
四.实验步骤。
1.设计好本实验所需的各类数据表格。
2.测量试件尺寸。
3.制定加载方案。
4.根据要求选择桥接方式,调整所用仪器设备。
5.分级加载(一般分4-6级),记录不同载荷下的应变值,并随时检查应变量是否符合线性变化。
实验至少重复两次。
6.完成全部内容后,卸除载荷,关闭电源,设备及导线恢复原状。
7此实验加载时,不要过载,接线时要小心,避免损坏试件以及各种接线。
五.实验结果处理。
1.根据公式计算弹性模量。
2.根据公式计算泊松比。
式样截面积:4.99×2.92=14.5708mm 2表一:实验测量值(09~11、14 为纵向微应变12~13 为横向微应变)表二:弹性模量E 与泊松比的计算表三:方差计算:六.思考题。
1.测定金属的弹性模量为什么要用引伸计或应变片来测量。
金属弹性模量测定时,由于金属变形量微小,并且卸载后变形会恢复,无法用长度测量工具准确测出变形大小,故需要用应变片来使数值变得可测量且较准确。
应变片是由一定长度的敏感栅和引线等构成,测量应变时,将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,敏感栅也随之变形而使其电阻发生变化,再由专用仪器测得其电阻变化大小,并转换为测点的应变值。
2.分析误差原因。
1.从操作的角度分析,可能原因是读数和数据记录的偏差。
2.从实验机器的角度分析,可能原因○1是施加载荷的工作状态不是十分稳定,导致各种仪表精度上的误差。
○2由于拉伸时出现偏心,导致左右侧边的应变片测量值一个偏大一个偏小。
弹性模量E和泊松比 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】00EA A P ==εσε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。
(一) (一) 试验目的1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ;2. 2.验证虎克定律;3. 3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3)所以(2)成为:(4)式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
电测法测定材料弹性模量E 和泊松比μ一.实验目的用电阻应变片测量材料弹性模量E 和泊松比μ。
二.实验仪器和设备1.拉压实验装置一台2.YJ-4501静态数字电阻应变仪一台3.板试件一根(已粘贴好应变片)三.实验原理拉压实验装置见图1,它由座体1,蜗轮加载系统2,支承框架3,活动横梁4,传感器5和测力仪6等组成。
通过手轮调节传感器和活动横梁中间的距离,将万向接头和已粘贴好应变片的试件安装在传感器和活动横梁的中间,见图2。
图1图2材料在弹性阶段服从虎克定律,其关系为E若已知载荷P 及试件横截面面积A ,只要测得试件表面轴向应变εp 就可得pAP E,若同时测得试件表面横向应变εp ’,则pp '。
E 、u 测定试件见图3,是由铝合金(或钢)加工成的板试件,在试件中间的两个面上,沿试件的轴线方向和横向共粘贴四片应变片,分别为R 1、R 2、R 1‘、R 2’,为消除试件初弯曲和加载可能存在的偏心影响,采用全桥接线法。
由轴向应变测量桥和横向应变测量桥可分别测得εP 和εP ‘,也就可计算得到弹性模量E 和泊松比u 。
四.实验步骤1.试件横截面尺寸为:铝合金材料,宽15mm ,厚 2.5mm 或钢材料,宽15mm ,厚2mm 。
2.接通测力仪电源, 将测力仪开关置开。
3.将应变片按图3全桥接线法接至应变仪通道上(应变仪操作可参考应变仪使用说明书)。
4.检查应变仪灵敏系数是否与应变片一致,若不一致,重新设置。
5.实验:a .本实验取初始载荷P 0=0.5KN (500N ),P max =4.5KN (4500N ),ΔP=0.5KN (500N ),共分8次加载;b .加初始载荷0.5KN (500N ),通道置零;c .逐级加载,记录各级载荷作用下的读数应变。
实验数据记录可参考下面记录表。
图3五.实验结果处理1.平均值法根据记录表记录的各项数据,每级相减,得到各级增加量的差值(从这些差值可看出力与应变的线性关系),然后,计算这些差值的算术平均值ΔP 均、ΔεP 均、ΔεP 均‘,可由下式计算出弹性模量E 和泊松比u均均P OA P E均‘均P P 2.最小二乘法ni pini iPiE121ni Pini PiPi121‘六.思考题1.试件尺寸、形状对测定弹性模量E和泊松比u有无影响?为什么?2.试件上应变片粘贴时与试件轴线出现平移或角度差,对试验结果有无影响?3.本实验为什么采用全桥接线法?4.比较本实验的数据处理方法。
(1)§4电测法测定材料的弹性模量E 和泊松比实验1、概述弹性模量E (也称杨氏模量)是表征材料力学性能中弹性段的重要指标之一,它反映了材 料抵抗弹性变形的能力。
泊松比反映了材料在弹性范围内,由纵向变形引起的横向变形的大小。
在对构件进行刚度稳定和振动计算、研究构件的应力和变形时,要经常用到E 和这两个弹性常 数。
而弹性模量E 和泊松比只能通过实验来测定。
2、实验目的验证胡克定律;了解电阻应变片的工作原理及贴片方式; 了解应变测试的接线方式。
3、实验原理 弹性模量E 和泊松比是反映材料弹性阶段力学性能的两个重要指标,在弹性阶段,给一个确定截而形状的试件施加轴向拉力,在截面上便产生了轴向拉应力,试件轴向伸 长,单位长度的 伸长量称之为应变,同样,当施加轴向压力时,试件轴向缩短。
在弹性阶 段,拉伸时的应力与应 变的比值等于压缩时的应力与应变的比值,且为一定值,称之为弹性模量E ,L/L在试件轴向拉伸仲长的同时,其横向会缩短,同样,在试件受压轴向缩短的同时,其横向会伸长,在弹性阶段,确定材质的试件拉仲时的横向应变与试件的纵向应变的比值等于 压缩时横向 应变与试件的 纵向应变的比值,且同样为一定值,称之为泊 松比,横纵L 横/ L0 压力的测量原理同拉、压实验,应变的测量采用电阻应变片电测法原理。
电阻应变片可形彖地理解为按一定规律排列有一定长度的电阻丝,实验前通过胶粘的 方式 将电阻应变片粘贴在试件的表而,试件受力变形时,电阻应变片中的电阻丝的长度也随 之发生相 应的变化,应变片的阻值也就发生了变化。
实验中我们采用的应变片是由两个单向应变片组成的 十字形应变花,所谓单向应变片,就是应变片的电阻值对沿某一个方向的变形最为敏感,称此 方向为应变片的纵向,而对垂直于该方向的变形阻值变化可忽略,称此方向为应变片的横向。
利用应变片的这个特性,在进行应变测试时,我们所测到只是试件沿应变 片纵向的应变,其不 包含试件垂直方向变形所引起的影响。
弹性模量E和泊松比Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT00EA A P ==εσε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。
(一) (一) 试验目的1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ;2. 2.验证虎克定律;3. 3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:00EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
拉伸试验中得到的屈服极限бb和强度极限бS,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。
由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E和泊松比µ。
(一)(一)试验目的1.1.用电测方法测定低碳钢的弹性模量E及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二)(二)试验原理1.测定材料弹性模量E一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:(1)若已知载荷ΔP及试件尺寸,只要测得试件伸长ΔL即可得出弹性模量E。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3)所以(2)成为:(4)式中:ΔP——载荷增量,kN;A0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量ΔP 作用下试件所产生的应变增量Δε。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。
00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度表达出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。
一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。
由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。
在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。
纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。
横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。
因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最根本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。
(一) (一〕 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。
(二) (二〕 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ 〔1〕假设载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。
〔2〕由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即〔3〕 所以〔2〕成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε〔4〕 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。