高压电力电缆故障分析及诊断处理_0
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
10kV电力电缆常见故障及原因分析1、故障类型电缆故障可概括为接地、短路、断线三大类,其故障类型主要有以下几方面:(1)闪络故障。
电缆在低压电时处于良好的绝缘状态,不会存在故障。
可只要电压值升高到一定范围,或者一段时间后某一电压持续升高,那么就会瞬间击穿绝缘体,造成闪络故障。
(2)一相芯线断线或多相断线.在电缆导体连续试验中,电缆的各个导体的绝缘电阻与相关规定相符,但是在检查中发现有一相或者多相不能连续,那么就说明一相芯线断线或者多相断线.(3)三芯电缆一芯或两芯接地。
三芯电缆的一芯或者两芯导体用绝缘摇表测试出不连续,然后又进行一芯或者两芯对地绝缘电阻遥测.如果芯和芯之间存在着比正常值低许多的绝缘电阻,这种绝缘电阻值高于1000欧姆就被称之为高电阻接地故障;反之,就是低电阻接地故障.这两张故障都称为断线并接地故障。
(4)三相芯线短路。
短路时接地电阻大小是电缆的三相芯线短路故障判断的依据。
短路故障有两种:低阻短路故障、高阻短路故障.当三相芯线短路时,低于1000欧姆的接地电阻是低阻短路故障,相反则是高阻短路故障。
2、原因分析电缆故障的最直接原因就是绝缘降低而被击穿,归纳起来主要有以下几种情况:(1)外力损坏。
电缆故障中外力损坏是最为常见的故障原因。
电缆遭外力损坏以后会出现大面积的停电事故。
例如地下管线施工过程中,电缆因为施工机械牵引力太大而被拉断;电缆绝缘层、屏蔽层因电缆过度弯曲而损坏;电缆切剥时过度切割和刀痕太深.这些直接的外力因素都会对电缆造成一定的损坏。
(2)绝缘受潮。
电缆制造生产工艺不精会导致电缆的保护层破裂;电缆终端接头密封性不够;电缆保护套在电缆使用中被物体刺穿或者遭受腐蚀。
这些是电缆绝缘受潮的主要原因。
此时,绝缘电阻降低,电流增大,引发电力故障问题。
(3)化学腐蚀.长期的电流作用会让电缆绝缘产生大量的热量。
如果电缆绝缘工作长期处于不良化学环境中就会改变它的物理性能,使电缆绝缘老化甚至失去效果,电力故障会由此产生。
常见高压电力电缆故障分析及对策高压电力电缆是输送电能的重要组成部分,但由于各种因素的影响,常常出现故障。
对于这些常见的高压电力电缆故障,我们需要进行分析并采取相应的对策。
本文将从断路故障、短路故障、接地故障和绝缘故障四个方面进行分析,并提出相应的对策。
首先,我们先来分析断路故障。
高压电力电缆的断路故障可能由于电缆内部的绝缘材料老化、绝缘层损坏、接头松动等原因导致。
当发生断路时,电力无法正常传输,会导致供电中断。
为了避免断路故障,应定期检查电缆的绝缘层和接头的状态,并及时更换老化的材料和紧固松动的接头。
其次,要分析短路故障。
高压电力电缆的短路故障可能由于电缆绝缘层损坏、设备过载、鼠咬等原因导致。
短路故障会导致电流异常增大,可能造成电缆损坏和设备损坏等严重后果。
为了防止短路故障,应严格控制设备负荷,定期检查电缆的绝缘状态,并采取鼠咬防护措施。
接下来,我们来分析接地故障。
高压电力电缆的接地故障可能由于接地电阻过大、接地线路断开、设备接地不良等原因导致。
当发生接地故障时,电流会通过地面回流,可能引发电弧、火灾等安全隐患。
为了防止接地故障,应定期检查接地电阻,确保接地线路的连通性,并及时维修接地不良的设备。
最后,我们来分析绝缘故障。
高压电力电缆的绝缘故障可能由于绝缘层老化、绝缘击穿等原因导致。
绝缘故障会导致电气设备不正常工作,可能引发火灾、爆炸等严重事故。
为了避免绝缘故障,需要定期检查绝缘层的状态,使用绝缘强度测试仪等设备进行绝缘测试,并及时更换老化的绝缘材料。
综上所述,常见的高压电力电缆故障包括断路故障、短路故障、接地故障和绝缘故障。
针对这些故障,我们需要定期检查电缆的状态,及时更换老化的材料和维修损坏的设备,严格控制设备负荷,以及加强接地线路的维护。
只有这样,才能确保高压电力电缆的正常运行,保障供电的稳定与安全。
高压电力电缆护层电流在线监测及故障诊断技术摘要:在电缆的实际应用中,故障的发生可能是从理论上讲,通过深化电缆保护层电流在线监测的研究与分析,可以为解决实际故障提供参考。
在此基础上,分析了高压电力电缆护层电流的主要故障以及电流在线监测的原理进行分析,结合实际故障监测诊断技术的应用,进行了详细的探讨,希望通过这一理论研究,有助于有效地解决。
关键词:高压电力电缆;保护层电流;监测技术引言高压电力电缆使用中受多种因素影响的故障存在问题,要解决该故障,必须科学地采取重点解决故障的措施,保证故障第一时间消除。
1、高压电力电缆护层电流主要故障及原因分析1.1高压电力电缆护层电流主要故障分析高压电力电缆保护层电流故障一般具有多种类型、复杂原因等特点,除实际运行情况外,主要包括以下几个方面:(1)电缆接头松脱。
这些障碍在实际工作中更常见。
一般来说,这些障碍的原因主要在两个方面。
1)在电缆接头安装过程中,工人无法按操作规范工作,未安装到位,导致电缆接头部分松动。
(2)受外力影响,电缆接头部分松动,甚至电缆断开,无法形成闭合回路。
(2)交叉连接箱水。
这种问题在实际工作中也经常发生,影响比较大。
图1是J2连接器上的交叉连接盒被淹没的示意图。
此时导体直接接地,将正常的3个保护层电路变更为6个故障回路。
像这样的问题,如果连接盒表面发生泄漏等,降雨量频繁,降水量大,容易诱发,最终电缆保护层电流会短路,所以要充分注意。
(3)电缆连接器外部环氧预制件制动闸。
需要注意的是,这些障碍问题往往会产生更大的影响。
具体地说,这些问题会导致电缆两侧的金属保护层连接,整个交叉互连系统受到影响,同时保护层电流瞬间升高,导致连接器内环氧预制件加热,从而产生不同级别的安全风险。
此外,如果发生这种问题,还会影响两个保护层电流,威胁电缆线的安全使用,严重影响电力系统的正常供电,给电网的安全稳定运行带来巨大风险。
1.2高压电力电缆护层电流故障原因分析一般来说,实际导致高压电力电缆保护层电流故障的原因有多种,而其中主要原因往往集中在超负荷运行方面。
高压终端电缆头故障原因分析及对策近几年,随着莱钢生产规模的不断扩张,供配电系统的运行可靠性对安全生产的影响和制约因素暴露日益明显和突出。
通过对莱钢自2003年以来所发生的171例典型电力停电事故案例进行统计、分析和汇总,发现因终端电缆头着火、电缆头爆炸等局部异常因素而带来的电力停电事故占有非常突出的位置;为了确保电缆头的运行可靠性,从电缆头附件的选型和应用方面,公司不断加大电气投资力度,冷缩电缆头技术在莱钢各生产系统中得到了广泛的普及和应用,从电缆头附件自身的选型和使用质量方面得到了有效地保证,但实际生产中因电缆头局部故障而引发的电气停电事故仍然没有得到根本性的遏制和消除,不同程度地仍然持续威胁着莱钢各生产系统的安全生产。
1高压终端电缆头的故障原因分析与电缆本体相比,电缆终端是薄弱环节,约占电缆线路故障率的95%。
由于电缆头制作、接线施工工艺存在多个中间导体连接环节,连接点接触电阻过大,温升加快,发热大于散热促使接头的氧化膜加厚、连接松动或开焊,进而接触电阻更大,温升更快。
如此恶性循环,致使接头的绝缘层破坏,形成相间短路、对地击穿放电或着火,最终引发电缆头着火烧毁或爆炸事故等。
通过对莱钢生产系统中近几年发生的实际电缆头运行故障进行深层次原因分析,连接点接触电阻增大、接头发热是最终造成电缆头故障的主要诱因。
造成接触电阻增大的主要原因有以下几点:1.1电缆头制作过程中连接工艺不良1.1.1连接金具接触面处理不好。
无论是接线端子或连接管,由于生产或保管的条件影响,管体内壁常有杂质、毛刺和氧化层存在,这些不为人们重视的缺陷,对导体连接质量和绝缘带的缠绕质量等有着重要影响。
不严格按工艺要求操作,就会造成连接处达不到规定的电气和机械强度,甚至使绝缘带被扎伤。
实际运行证明,当压接金具与导线的接触表面愈清洁、抗金属氧化措施愈到位,在接头温度升高时,所产生的氧化膜就愈薄,接触电阻Rt就愈小,连接点部位的电气和机械强度性能就越好。
高压电力电缆接地故障诊断分析高压电力电缆接地故障是一种常见的电力设备故障,其产生的原因主要有接地电阻过大、绝缘老化、绝缘击穿等。
由于高压电力电缆所承受的电压较高,一旦发生接地故障,容易引发电弧、火灾等严重后果,因此对其进行及时的诊断分析非常重要。
对接地电阻过大的故障进行诊断分析。
当电力电缆的接地电阻过大时,会导致接地电流无法正常通过,从而引发电缆局部过热,甚至引发火灾。
此时,可以通过检测接地电阻的大小来判断是否存在接地故障。
常用的检测方法包括测量接地电阻的大小、测量相邻节点之间的电阻差异等。
如果接地电阻明显偏高,且无其他原因解释时,可以初步判断为接地电阻过大引起的故障。
对绝缘老化导致的接地故障进行诊断分析。
绝缘老化是高压电力电缆常见的故障原因之一,长期使用后会导致绝缘层强度下降,容易引发接地故障。
此时,可以通过绝缘电阻测试仪等工具对电缆的绝缘电阻进行测量。
如果绝缘电阻明显降低,且无其他引起的原因,可以初步判断为绝缘老化导致的接地故障。
对绝缘击穿引起的接地故障进行诊断分析。
绝缘击穿是高压电力电缆故障最严重的一种情况,主要是由于电缆的绝缘层被击穿导致的。
在此情况下,经常会出现火花、电弧等现象,且很容易引发火灾等严重后果。
此时,可以通过红外热像仪等仪器来对电缆进行检测,观察是否存在异常的热点,以判断是否存在绝缘击穿故障。
对高压电力电缆接地故障进行诊断分析时,可以采用多种手段进行检测,如测量接地电阻、绝缘电阻,使用红外热像仪等。
通过对故障现象的观察和分析,可以初步判断接地故障的原因,以便进行相应的维修和处理,确保电力系统的正常运行和安全性。
高压电缆故障的分析判断和故障点查找摘要:随着我国经济的迅速发展,以及社会的现代化进程,电力市场对电力的需求量越来越大,电力电缆的安全问题也越来越引起人们的重视。
与常规的电缆相比,高压电缆具有更高的安全性、更好的稳定性和更好的维护能力,是当前电力设备、电能传输、电能分配的首选电缆。
随着高压电缆的失效,电力系统的运行受到很大的影响,对高压电缆的故障进行了分析,为正确的分析和诊断、找出故障点提供了依据,以便及时、高效的解决问题,确保电力的正常供给,避免对人们生活、生产造成较大困扰。
关键词:高压电缆;故障分析;故障点查找1.高压电缆故障概述1.1电缆老化电缆在长时间的工作中,由于受到机械、电力、光、热等多种因素的影响,电缆的绝缘性能会明显下降,从而增加电缆失效的几率。
一般条件下,高压电缆在30年后会逐步老化。
但是,由于外界因素的作用,使其在较短的时期内发生老化是非常常见的。
造成电缆过早老化的原因有:①选用的电缆型号不合理,造成了长时间超负荷运行时电缆过早老化;②高压电缆线路与热源距离较近,在长时间的高温下,会导致电缆的热老化;③环境中有一种材料,它会对电缆绝缘层造成不利的化学反应。
在长时间的使用中,线缆会不断地产生化学反应,从而引起线缆的提前老化。
1.2电缆附件故障高压电缆的配件质量要求很高,生产工艺也比较复杂,因此,电缆的连接器、端子及其它附属设备都有可能发生故障。
目前,造成附件失效的主要原因有:①导线压接、导线连接管压接等,由于加工工艺和技术上的规定不符合要求,造成零件质量低劣,造成失效;②配件的制作材料选用不当,造成线缆配件与主体膨胀系数差距大,造成密封性差,造成短路失效;③在电缆接头制造时,由于环境湿度达不到要求,会严重地影响到电缆的绝缘性能,严重时会造成电缆失效。
1.3电缆护层故障为了保证线缆本体的腐蚀损伤降至最低,一般会在线缆的外层增加一层外壳。
为了保证电缆外壳的工作性能,电缆外壳必须具备很好的绝缘能力。
高压电力电缆接地故障诊断分析
高压电力电缆接地故障是电力系统中常见的一种故障类型,其出现会对系统的安全运行产生重大影响。
对高压电力电缆接地故障进行准确、快速的诊断分析是保障电力系统正常运行的关键。
高压电力电缆接地故障主要表现为电缆两端之间或电缆与地之间发生短路,导致电流异常。
其主要原因包括电缆绝缘损坏、接地电阻过高、绝缘材料老化等。
针对高压电力电缆接地故障的诊断分析,主要包括故障的定位和故障的类型判断。
对于高压电力电缆接地故障的定位,可以通过以下步骤进行:
1. 检查电缆两端的接地情况:检查是否存在接地线路松动、过载等情况,同时确保接地电阻在合理范围内。
2. 测量接地电阻:通过对接地电阻进行测量,可以初步判断高压电力电缆接地故障的位置。
当测量到的接地电阻较低时,很可能故障发生在电缆两端之间,需要进一步检查电缆绝缘;当接地电阻较高时,很可能故障发生在电缆与地之间,需要进一步检查绝缘材料和接地电阻。
3. 高压试验:对于怀疑电缆绝缘老化或损坏的情况,可以进行高压试验,通过施加一定的电压和时间,来检测电缆的绝缘强度是否能够满足要求。
如果绝缘强度不足,表明存在绝缘老化或损坏的可能,需要及时更换绝缘材料。
1. 电压波形测量:通过对电压波形的测量,可以初步判断高压电力电缆接地故障的类型。
当波形呈现较为规律的正弦形状时,很可能是电缆绝缘老化或损坏导致的故障;当波形呈现不规则或波动较大时,很可能是接地电阻过高导致的故障。
高压电力电缆接地故障诊断分析是保障电力系统安全运行的重要工作。
通过对故障的定位和类型的判断,可以有效地进行故障排查和维修工作,提高电力系统的可靠性和稳定性。
高压电缆常见故障的分析及预防措施高压电缆是电力输送系统中不可或缺的重要部分,而在使用过程中,可能会出现各种各样的故障问题。
为了确保高压电缆系统的可靠性和安全性,需要对常见故障进行分析,并采取相应的预防措施,以减少故障发生的可能性,并提高系统的稳定性和可靠性。
一、高压电缆常见故障的分析1. 绝缘老化高压电缆绝缘老化是指绝缘材料在长期电压、电流、温度等外部环境的作用下,发生物理、化学或结构性变化,导致其绝缘性能下降,甚至失去绝缘效果。
绝缘老化通常会导致电缆绝缘击穿、短路等故障。
2. 绝缘击穿绝缘击穿是指绝缘材料在电场作用下发生局部或全部击穿而失去绝缘性能的现象。
绝缘击穿通常是由于电压超过绝缘材料的承受能力,或者是绝缘材料本身存在缺陷引起的。
3. 电缆接头故障电缆接头是电力系统中容易出现故障的地方之一,其主要故障包括接头接触不良、接头密封不严导致水分渗入、连接件松动或断裂等情况,都可能导致电缆系统的不稳定性和故障发生。
4. 电缆外部损伤电缆在铺设和使用过程中容易受到外部损伤,比如机械划伤、挤压等,这些损伤会导致绝缘层破损,甚至击穿,从而引发电缆故障。
5. 电缆敷设不当电缆的敷设不当可能导致电缆过度受力、弯曲半径不足、绝缘被挤压等问题,从而影响电缆的正常使用。
二、预防措施1. 选用优质的绝缘材料对于高压电缆系统,尤其是在恶劣环境下使用的电缆,应选用优质的绝缘材料,提高其抗老化能力和耐电压能力,以延长电缆的使用寿命。
2. 定期检测绝缘状态定期对高压电缆的绝缘状态进行检测和评估,及时发现并处理绝缘老化、击穿等问题,确保电缆的可靠性和安全性。
3. 注意电缆接头质量在接头制作和安装过程中,应确保接头质量合格,接头连接牢固,接触良好,封闭严密,以防止水分和杂质进入接头,导致接头故障。
4. 加强电缆的保护在电缆敷设和使用过程中,应加强对电缆的保护,避免机械损伤、挤压等外部因素对电缆造成损害。
5. 合理规划电缆敷设在电缆敷设过程中,应合理规划敷设方案,保证电缆不受过度受力和弯曲,避免因敷设不当引发故障。
高压电力电缆故障分析与处理方案高压电力电缆故障分析与处理方案高压电力电缆是输送电能的重要设备之一,如果发生故障可能导致电力系统短路甚至损坏电缆本身。
因此,对高压电力电缆的故障进行分析和处理是非常重要的。
下面是一种基于逐步思考的高压电力电缆故障分析与处理方案。
第一步:确保安全在开始任何故障分析和处理之前,必须确保自己和周围环境的安全。
如果电缆出现明显的破损或电弧放电,应立即采取措施切断电源,并通知相关专业人员进行处理。
第二步:检查电缆绝缘状况故障的首要原因通常是电缆绝缘破损,因此需要检查电缆绝缘的状况。
可以通过外观检查,例如是否有明显的划痕、裂纹或破损来判断绝缘是否受损。
另外,还可以使用绝缘电阻测试仪来测量电缆绝缘电阻,以确定绝缘是否完好。
第三步:检查接头和终端如果电缆绝缘完好,但仍然存在故障,那么需要检查电缆接头和终端。
可以检查接头和终端是否有松动、氧化或腐蚀等问题。
此外,还需要检查连接螺栓是否紧固,并使用红外热像仪来检测是否存在异常的热点。
第四步:测量电缆参数如果仍然无法确定故障的原因,可以通过测量电缆参数来判断。
可以使用电缆测试仪来测量电缆的电阻、电容和电感等参数。
与正常情况下的数值进行比较,以确定是否存在异常。
第五步:故障定位如果以上步骤无法找到故障原因,需要进行故障定位。
可以使用故障定位仪来确定故障点的位置。
通过在电缆上施加高频信号,然后使用接收装置来检测信号的强度变化,从而确定故障点的位置。
第六步:修复或更换故障部件一旦确定了故障的原因和位置,就可以采取相应的措施进行修复或更换故障部件。
可能需要修复绝缘、重新连接接头或更换损坏的电缆段等。
在进行修复或更换之前,应确保切断电源,并遵循相关安全操作规程。
第七步:测试和重启系统在完成修复或更换后,需要进行测试以确保故障已经解决。
可以使用相关测试仪器来测量电缆的参数,并验证系统的正常运行。
在确认一切正常后,可以重新启动电力系统。
总结:高压电力电缆的故障分析与处理需要经过一系列的步骤。
高压电缆常见故障的分析及预防措施高压电缆是输送高压电能的重要组成部分,其可靠性直接影响着电力系统的稳定运行。
然而,由于环境因素、材料老化、设备缺陷等原因,高压电缆常常会出现故障。
为了确保高压电缆运行的稳定可靠,需要对常见的故障进行分析并采取相应的预防措施。
一、绝缘老化绝缘老化是高压电缆常见的故障原因之一。
电缆的绝缘材料通常采用橡胶或塑料等材料,由于长期受到高温、潮湿和电场等环境因素的影响,绝缘材料容易老化、劣化,失去绝缘能力,导致电缆短路或击穿。
预防措施:首先,要加强电缆的维护管理,定期检测电缆的绝缘电阻、介质损耗因数等指标,及时发现问题并进行维修。
同时,应在安装电缆时采取避免损伤绝缘的措施,如避免绞曲、弯折、拉伸过度等。
二、接头故障高压电缆的接头是电缆线路中最脆弱的部分,也是电缆中出现故障的最常见的部分。
因为接头处连接过程中可能被损坏,以及如图中所示的线头长成所造成的缺陷和塞紧力不足,电压梯度超过绝缘材料顶限时易发生击穿故障等。
预防措施:在设计和制造时要严格按照规范,确保接头质量达标。
在接头装配时要注意工艺,保证塞紧力、螺纹尺寸和方向正确。
此外,需要经常对接头进行检查,及时发现和处理接头的故障。
三、电缆破损电缆破损是指电缆护套被损坏,外界物体或机械作用力导致电缆外皮裂开、穿孔或磨损,显露出冷缩管和塑料绝缘体,导致电缆老化或绝缘能力下降,引发故障。
预防措施:一般情况下是在电缆的护套上设置保护层或草帘,以避免外部机械作用力导致的损坏。
此外,应定期对电缆进行外观检查,发现电缆破损及时更换。
四、杂散放电杂散放电是指电缆中由于导体间距离、绝缘材料损伤或针孔等原因,电极之间的电场中产生气体放电产生的噪声、热量和化学腐蚀。
长时间杂散放电会影响绝缘材料的使用寿命,甚至引发电缆火灾等严重后果。
预防措施:应选择合适的绝缘材料、合理设计电缆间的间距和尺寸,以及有效减小电缆电场,避免产生杂散放电。
同时还应对电缆进行定期绝缘测试,及时发现和处理问题。
高压电缆故障原因分析及对策措施摘要:一旦高压电缆运行出现了故障,所造成的影响不仅仅是电力企业本身,同时它还会对人民日常生活的正常进行造成影响,对国家经济的发展带来阻碍,通过对高压电缆运行故障进行分析,并制定出相应的预防措施和应对措施加以实施,可以将高压电缆运行故障带来的损失降到最低。
关键词:高压电缆;故障;对策1 引言高压电缆发生故障主要是由于人为或自然灾害等的破坏导致绝缘损坏,使相与相或相与地之间发生短接。
这种短接会使电流急剧增大,电压大幅度下降并进一步造成电缆损坏等严重的后果。
高压电缆的故障主要包括单相接地故障(约占80%)和相间短路故障(约占15%),其他故障(约占5%)。
当发生这些故障时线路中的保护元件会迅速切断线路以保证安全。
此时检修人员应及时查找、处理故障,尽快恢复正常供电,保证生产的正常进行。
2 对高压电缆运行故障进行分析的重要性随着我国经济的发展和改革开放的不断深入,电力企业作为一个具有社会公用事业性质的行业,在近年来也得到了迅猛的发展,为人民的日常生活提供了电力资源,使人民的生活更加丰富多彩,同时也为国家的经济发展做出了重大的贡献,使我国的经济得以快速发展。
然而,伴随着电力企业的发展,却还是存在着一些问题,比如说电力生产安全问题、高压电缆运行问题等。
高压电缆运行故障的存在,对人民而言,不仅会使人民的日常生活的正常进行受到影响,同时也会给国家的经济发展带来阻碍。
一旦高压电缆的运行出现故障,那么将给电力企业为人民、为社会的电力传输造成影响,使人民、使社会的供电得不到正常供应,因而也就给人民的日常生活的正常进行造成了影响;同时,由于电力企业为人民、为社会的供电不能够正常进行,将使得社会的企业不能够正常运转,这就给国家的经济发展带来了阻碍。
此外,由于高压电缆运行出现了故障,这也将给电力企业的正常发展造成阻碍,降低了电力企业本身的竞争力,难以在如今竞争激烈的经济市场下生存下来。
而通过对高压电缆运行故障进行分析,可以预先预防高压电缆运行故障的出现。
电力电缆的故障分析及检测方法电力电缆作为电力传输和分配重要的组成部分,在运行过程中由于各种原因可能会出现各种故障,如导体断线、短路、漏电、绝缘老化,这些故障如果不及时发现和处理将会对电力系统的运行造成很大的影响,甚至会对人身安全构成威胁。
为了提高电力系统的可靠性和安全性,必须采取有效的故障检测和维护方法。
一、电力电缆故障的原因及表现1.导体断线故障导体断线是一种常见的电力电缆故障,其主要原因是导体材料的疲劳破裂和外力的损伤。
导体断线故障的表现主要有两种情况:(1)开路故障:电缆无法传输电力信号,导线电阻变大,电压下降,表现为电缆故障段附近的负荷失去供电。
(2)闪断故障:电缆的电路断开后又自行复位,导致电缆的电阻变化,使得电力系统的电压波动,可能引起灯泡闪烁或设备频繁重启。
2.电缆绝缘老化故障电缆绝缘老化故障是由于长期使用和环境因素等原因导致绝缘材料失效,绝缘性能下降,电场强度大,发生局部放电而造成的故障。
电缆绝缘老化故障的表现主要有:(1)漏电:因绝缘材料的老化和损伤导致电缆表面或内部出现漏电现象,可能引起安全事故。
(2)局部放电:由于绝缘材料老化,导致电场强度集中,局部电阻变大,电容增加,导致局部放电,可能会产生较高的电压和热量,对电缆绝缘材料造成损害。
3.电缆短路故障电缆短路故障是由于电线之间的接触或缠绕引起的,其表现为电路出现短路故障,会引起电源线路短路保护器动作断电。
电缆短路故障可以分为一次短路和二次短路两种情况。
电缆漏水故障通常是由电缆保护层的损伤和绝缘层内部结构被破坏导致的,如果不及时处理,有可能会导致绝缘层失效,产生较大的电气火灾隐患。
1.绝缘电阻测试绝缘电阻是指导线和导体之间的电阻值,可以反映电缆的绝缘状况。
绝缘电阻越大,绝缘性能越好。
绝缘电阻测试可以使用万用表等测试设备进行,当绝缘电阻低于一定值时,意味着电缆出现了绝缘老化或损伤。
此时需要对电缆进行维修或更换。
2.局部放电检测局部放电检测是指通过传感器采集电缆内部的局部放电信号,并通过信号分析来判断电缆绝缘状况的检测方法。
高压电力电缆接地故障诊断分析高压电力电缆接地故障是电力系统中常见的一种故障。
当电力电缆出现接地故障时,会导致电缆承受过电压而发生瞬时断电,影响电力系统的安全稳定运行。
本文将对高压电力电缆接地故障的诊断分析进行探讨。
在高压电力电缆接地故障中,主要有以下几种类型:1.单相接地故障:这种故障是指电缆中只有一根导体与地面接触,另外两相导体没接触地面。
1.绝缘电阻测量法绝缘电阻测试是常用的故障检测方法,可用于检测电缆是否有接地故障。
测试通常使用标称电压的稳定直流电源作为测试电压。
在测试时,测试端和接地端必须要能够同时接触到电缆的两端,然后切断电缆正常电源,通电到电缆上,测量绝缘阻抗,可以清楚地了解电缆的绝缘状况,以确定是否出现接地现象。
2.低阻测试法低阻测试法即低电阻测量法,是针对接地故障的一种测试方法。
测试时,用万用表或低电阻表在两端测量接地电阻。
它能直接检测电缆中的故障电流和故障点的位置,但测试方法比较简单,测试过程不稳定。
在此方法不够有效的情况下,可使用高压电子束摄影等高级技术来确定故障点的位置。
1.使用绝缘导线当发生接地故障时,可以使用绝缘导线转换接地方式,这将使电缆重新加入不同的地系统。
或者将导线纠正到原来锥形绝缘支架中无故障力线下的地点,这可以使故障电缆得到修理,保证电力系统的正常运行。
2.更换故障电缆一旦确认故障点,必须更换故障电缆。
需要注意的是,在更换电缆时切断电源,确保电缆绝缘状态,应遵循相应的安全操作规程。
3.扩大绝缘检测在提高电缆绝缘水平的基础上,通过加大绝缘电阻的级别和原材料的质量,对接地故障进行排查和修复。
这可以减少接地故障发生的概率,同时为电力系统的正常运行提供更加可靠的保障。
综上所述,高压电力电缆接地故障是一个需要高度重视的问题。
为了保障电力系统的正常运行,我们必须采取有效的故障诊断方法和科学的处理方法,在确保安全的前提下彻底解决问题。
高压电缆故障原因分析及试验措施摘要:高压电缆在我们的生活生产中得以广泛的应用,但是电缆故障的事故的发生也十分频繁。
本文主要就高压电缆发生故障的原因进行分析,并对电缆线路施工管理的相关措施进行探讨。
关键词:高压电缆;故障;原因;试验措施0.引言随着我国社会经济的不断发展,高压电缆在电网建设中得到了广泛的应用,但是电缆故障的事故的发生也十分频繁。
然而高压电缆线路故障点的排查没有架空线路那么容易,其故障的处理相对复杂、繁琐,因此对电缆故障进行预防是我们工作的重点所在。
1.高压电缆故障的原因分析常见的电缆故障主要有3类:1.1外部因素因为外部因素所造成的,比如外界火源所导致的电缆火灾事故、外力破坏、内部过电压或者雷电过电压等;第二类:是由于电缆其本身的质量问题所导致的,由于近几年来原材料的价格增长得很快,一些电缆的制造商在实际进行生产的过程中按照国家生产电缆标准的下限(有的甚至低于下限)进行生产,如果在生产的过程中,在工艺上稍不留意,电缆故障就很容易发生,并且这类事故是难以进行界定的;第三类:是由于在进行电缆施工的过程当中,由于相关管理制度的不完善,队工艺的把关要求相对不严格,所以给生产运行带来了很大的隐患,这种情况所导致的电缆故障在电缆事故中所占的比例是很大的。
第一类故障发生的客观因素很多,在现实中相对来说进行预防是比较困难的;而后两类的故障则需要相关的工程技术人员在实际工程的实施过程中要主动去进行控制,处理得当,可以在很大程度上减少这两类故障的发生。
1.2铜价高企因为铜价高企,电缆制造商为了追求更加高额的利润,从而降低电缆中铜的含量,甚至有的制造生产商明目张胆地电缆的铜截径进行减少,而这些问题在进行后续的交流耐压试验中也不能够进行反应。
而对于电力企业来说,如果在进行施工之前电缆得不到把关,一旦不合格的电缆投入到电网中使用,这样会留下很大的安全隐患,一旦事故发生其造成的危害是十分大的。
对此,电力企业的物资管理部门要对电缆的质量进行严格的把关,坚持做好抽检、监造、送验等工作,对进入电网的电缆产品质量的合格进行保证。
电力电缆的故障分析及检测方法电力电缆是输送电能的重要设备,但在运行中难免会出现故障。
电力电缆的故障一般分为三类:绝缘故障、电缆接头故障和电缆外包层故障。
处理故障需要实施合适的检测方法,据此本文将就电力电缆故障的检测方法进行探讨。
一、绝缘故障检测方法1、绝缘电阻测试法绝缘电阻测试法是比较常用的一种绝缘故障检测法。
它主要是利用高压直流放电器将试验电缆的一端接地,另一端接通500V或1000V直流电压(也可以根据实际情况对电压进行调整),并记录电流与电压。
如果读书在在50MΩ以上,说明绝缘没有问题。
此法的优点是简单易行,缺点在于只能检测到大面积的绝缘故障,不能检测到局部绝缘故障。
2、局部放电检测法局部放电检测法是一种常用的局部绝缘故障检测方法。
它的原理是利用放电电流产生信号,通过放大和滤波等处理得到故障信号,然后再通过分析断层发生的时间、位置、大小等综合条件来定位故障。
局部放电检测法主要适用于高压交流电缆及其附件的检测,检测结果更为可靠,但仪器昂贵,操作比较麻烦。
二、电缆接头故障检测方法电缆接头故障比较常见,如果及时发现故障,不仅可以延长电缆的使用寿命,而且可以提高电缆系统的可靠性。
电缆接头故障的检测方法包括如下:1、分接箱可视检查法通过检查分接箱外观,连接方式、接线端子、连接盘上的引线及连接板上的引线等情况来判断电缆接头的质量。
2、分接箱绝缘电阻测试法通过对接头进行高压试验,测量其绝缘阻值,从而判断接头质量。
3、分接箱局部放电检测法通过检测接头所产生的局部放电信号,来定位接头故障位置。
三、电缆外包层故障检测方法电缆外包层故障往往不易发现,如果长期不修复,很容易引起电缆系统故障。
这类故障的检测方法有以下几种:1、有线检测法通过检测电极间导通状态的变化来定位电缆外包层故障点的位置。
该方法精度高,定位准确,但是在大功率电缆上的实用性不足。
2、雷电冲击测试法利用冲击波法产生的电磁场,通过定位电缆故障处反射回来的信号来寻找故障点。
常见电力电缆故障原因分析及处理方法本文结合实际,通过对工作中常见的电力电缆故障进行总结分析,得到故障产生的原因,并且有针对性地提出了故障处理的方法及防范措施,为今后的工作和学习提供了经验性保障,有利于提高工作中分析和处理电缆故障的能力。
标签:电力电缆故障原因分析处理方法1.电缆故障的分类和原因分析1.1常见电缆故障分类通过近年来我们对所遇到的电缆故障进行分类总结,发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。
1.2电缆故障产生的原因电缆故障产生的最直接原因是绝缘降低而被击穿。
导致绝缘降低的因素很多,归纳一下不外乎以下几种情况:1.2.1外力损伤根据近年来的运行分析来看,由于装置扩容迅速,地面施工较多,造成相当多的电缆故障是由于机械损伤引起的。
比如:加制氢进线电缆在敷设安装时由于不规范施工,造成了机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤。
有时如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,有时破坏严重的可能发生短路故障,直接影响用电单位的安全生产,2.20大停电事故,正是由于这个原因造成的。
1.2.2绝缘受潮这种情况也很常见,一般发生在直埋或排管里的电缆接头处。
比如:电缆接头制作不合格和在潮湿的气候条件下做接头,都会使接头进水或混入水蒸气,时间久了在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。
1.2.3化学腐蚀电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。
特别是像我厂这样的化工单位电缆腐蚀情况就相当严重。
1.2.4长期过负荷运行。
超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产生附加热量,从而使电缆温度升高。
高压电力电缆接地故障诊断分析电力系统中的接地故障是一种严重的安全隐患,特别是对于高压电力电缆来说更为重要。
接地故障可由接地电流引起,从而导致电缆系统中产生过电压、短路和断路等故障。
因此,及时诊断电缆系统中的接地故障对于保证电力系统的安全运行至关重要。
一般情况下,高压电力电缆接地故障主要表现为外屏绝缘破损、内屏绝缘老化、端头接头松动、接地线接触不良等。
基于以上表现形式,我们可以进行如下分析和诊断:1. 外屏绝缘破损外屏绝缘破损主要是由于外力刮擦、挤压、尖锐物刺穿等原因引起的。
当电缆系统中出现三相电流不平衡或高频信号时,接地故障容易出现。
此时,需要使用噪声分析技术对电缆系统进行分析和监测,以确定故障出现的具体位置。
2. 内屏绝缘老化内屏绝缘老化是由于高温长期作用和电场应力导致的。
当电缆系统中传输的电流或电压超过额定值时,电缆内屏可能会老化。
此时,需要使用高压测试仪对电缆系统进行测试,以确定故障的具体位置。
3. 端头接头松动端头接头松动主要是由于连接不当或材料老化引起的。
当电缆系统中出现过电压或高温时,端头接头容易发生松动,从而导致接地故障。
此时,需要使用检测工具对电缆端头进行检测和维修。
4. 接地线接触不良接地线接触不良主要是由于接触部分氧化或连接不良导致的。
当接地线接触不良时,会引起电容电流的流动,从而导致电缆系统中产生过电压。
此时,需要使用接触电阻测试仪对接地线进行测试,以判断是否接触不良。
总之,高压电力电缆接地故障诊断需要使用多种技术手段和测试仪器进行分析和检测,以确定故障出现的具体位置和原因。
对于电力系统的安全运行,我们需要密切监测电缆系统中的接地情况,并及时处理接地故障。
电力电缆的带电诊断与故障处理技术分析
电力电缆是输送电力能量的重要设备,因其在使用过程中受到侵蚀、老化和损坏等多种因素的影响,容易发生故障。
因此,对电力电缆进行带电诊断和故障处理就显得尤为重要。
电力电缆的带电诊断技术可以采用多种手段,包括高压耦合检测、无损检测、热红外检测、声波检测等。
其中,高压耦合检测是常用的一种方法,通过在电缆头或接线头加入高压脉冲信号来检测电缆的绝缘状况。
无损检测则可以利用非接触式电容耦合检测技术,通过检测电缆表面电场分布来分析电缆绝缘的损伤情况。
热红外检测技术则可以通过红外相机来捕捉电缆表面温度分布图像,进而分析电缆的热异常情况。
声波检测则可以利用声波探头在电缆表面扫描来检测电缆的内部绝缘层的损伤情况,从而判断故障类型。
除了带电诊断技术外,电力电缆的故障处理技术也是至关重要的。
常用的处理方法包括电缆维修、电缆部分更换和电缆全线更换等三种。
其中,电缆维修是一种较为简单的方法,可以根据电缆故障的具体情况进行相应的维修处理。
电缆部分更换则是对电缆的局部故障进行处理,将故障部位的电缆进行更换。
电缆全线更换则是指对整条电缆线路进行更换,对更换的电缆进行必要的检测和试验,确保新电缆的质量和安全性能。
需要注意的是,对于带电诊断和故障处理技术的应用,需要遵守相关的安全规范和操作规程,确保人身安全和设备的操作安全。
同时,根据电力电缆的实际情况,选择适合的带电诊断和故障处理方法,保证电力电缆的安全运行和可靠性。
电力电缆的带电诊断与故障处理技术分析随着电力行业的快速发展,电力电缆作为电力传输的重要组成部分,在城市建设和电气设备中得到了广泛的应用。
由于电力电缆长期工作在复杂的环境条件下,以及受到外部因素的影响,容易出现各种故障。
及时发现和处理电力电缆的故障对保障电网的安全稳定运行至关重要。
本文将就电力电缆的带电诊断与故障处理技术进行分析,以期为电力行业的从业人员提供一些有益的参考。
一、电力电缆带电诊断技术1. 绝缘电阻测试绝缘电阻测试是一种常见的电力电缆带电诊断技术,通过测试电缆的绝缘电阻情况,来判断电力电缆的绝缘状况是否良好。
当电力电缆的绝缘电阻下降到一定程度时,就会导致电缆的漏电现象,进而引发电缆故障。
定期对电力电缆进行绝缘电阻测试,可以有效地及时发现电缆的绝缘故障。
2. 前向故障定位技术前向故障定位技术是利用高压放电探测仪等设备,对电力电缆进行带电检测,通过测量电缆局部放电的异常情况,来定位电力电缆的故障位置。
采用前向故障定位技术可以快速、准确地发现电缆的故障位置,为故障处理提供准确的参考。
3. 红外热成像技术红外热成像技术是一种非接触式的电力电缆带电诊断技术,通过红外热成像仪对电力电缆进行扫描,测量电缆的热量分布情况,来判断电缆的热量异常情况,从而发现电缆的潜在故障。
红外热成像技术能够在不停电的情况下对电缆进行带电检测,具有很高的安全性和实用性。
二、电力电缆故障处理技术1. 绝缘电阻提升技术在电力电缆出现绝缘故障时,可以采用绝缘电阻提升技术进行处理。
该技术通过对电缆进行绝缘电阻提升处理,从而修复电缆的绝缘状况,延长电缆的使用寿命。
绝缘电阻提升技术需要配合专业的绝缘电阻提升设备,具有一定的复杂性和技术要求。
2. 局部放电消除技术对于电力电缆的局部放电故障,可以采用局部放电消除技术进行处理。
该技术通过对电缆的故障部位施加高压脉冲电流,使故障部位的局部放电现象得以消除,从而修复电缆的局部放电故障。
局部放电消除技术需要具备一定的安全防护措施,以保障操作人员的安全。
高压电力电缆运行典型故障分析摘要:当前在社会发展过程中,电力能源的重要性逐渐突出,直接影响到人们日常生活和生产工作的便利性。
电力电缆线路的正常运行才能保障电力的输送和有线通信的畅通,一旦电力电缆发生故障,就会造成电力以及通信的中断,如能及时查出电缆故障原因并迅速予以排除,可避免造成重大的经济损失和不良的社会影响。
因此,电力电缆运行的可靠性对我国配电网系统来说至关重要。
本文主要针对配网电缆日常存在的故障问题进行分析,然后提出相应的预防措施。
关键词:高压;电力电缆;典型故障引言电缆作为重要的通信和电能传输基础性部件被誉为国家经济的“神经”和“血管”。
为保证电缆运行安全可靠、安装更换方便,以及市容美观,电缆大多采用直埋敷设的方式。
地下恶劣的环境、过负荷的使用,以及自然老化都容易导致电缆发生故障。
电缆所具有的隐蔽性导致故障难以被直接观测,因此,电缆故障的精确定位对于保障国家和社会安全运行至关重要。
1电力电缆线路的特征电缆、接头等零部件构成了电力电缆线路,主要是用来输送电力能源。
电力电缆线路在运行过程中不受极端天气的影响。
电力电缆线路运行过程中不会伤害绿化植物。
能够为构建美丽城市做出贡献。
处于地下的电缆在一个管道中可以容纳数量庞大的线路。
发生安全意外的概率小。
维修成本低。
但是从实际情况来看,电力电缆线路也存在一定问题。
只能够输送有限的截面积电流。
需要消耗大量的建设成本,且运行质量与电压息息相关。
一旦在运行过程中出现故障,需要花费较长的时间进行维修。
2电缆本体典型故障分析2.1制造工艺电缆装盘运输的过程中,受原材料及制造工艺影响,电缆外护套可能会因挤压发生变形,甚至开裂。
在电缆线路工程,敷设前开盘检查电缆时,发现外护套明显偏心受挤压。
与生产商联合检查时,发现同批次电缆多处外护套横向开裂。
经检验分析,电缆运输过程防护到位,排除外力破坏,确认为工艺不达标导致此缺陷。
2.2绝缘老化选型不当、运行环境不佳是导致电缆绝缘非正常老化的主要原因。
高压电力电缆故障分析及诊断处理
在新经济常态下,城市和农村对用电的需求越来越大,因此高压电力电缆在城乡电网输变电中得到了广泛运用。
如果高压电力电缆在试验、生产、施工等环节质量有问题,那么在投入使用中,受运行环境、化学、机械等因素的影响,将造成绝缘老化等问题,最终造成电缆运行发生故障。
标签:高压电力电缆;故障;诊断
1 高压电力电缆故障主要类型
高压电力电缆故障类型多种多样,其中经常见到的故障有如下5种。
第一,接地故障。
导体和地面连接在一起,此过程中若电阻不存在统计意义,那么就属于安全接地。
还有种情况为电阻不能被忽略,此时就可以产生低电阻或高电阻接地的情况。
第二,断线故障。
高压电力电缆在实际运行的过程中,在外力的作用下会出现各类突发状况,如被大风刮断等,电缆断开之后,电力输送也会中断,该区域中的电能供应就会出现瘫痪的情况。
第三,绝缘故障。
电缆绝缘在产生问题之后,会出现漏电事故。
第四,短路。
电力电缆短路后,可以会造成火灾,亦或是烧毁电力设备。
第五,闪络故障。
电流值异常升高,监控电力表针存在闪络摆动的情况,电压下降之后此情况会消失,但电缆绝缘阻值居高不下,表明高压电缆存在故障。
2 高压电缆故障的分析判断
2.1 高压电缆故障原因
高压电力电缆故障原因较多:电缆敷设过程中,施工人员技能水平不足使本体外护套受损或架设时牵引力太大引起电缆损伤,导致潮气进入电缆,使得电缆在投运前就存在严重缺陷;选择的电缆质量不过关,绝缘达不到相关的标准,导致出现风化、裂口、受潮等情况;随着人们用电需求的不断增加,电缆长期持久输送电能,有些处于超负荷运行状态;城市基建项目为了赶工期,往往不能及时清楚辨析电缆的走向就施工,导致直埋电缆遭到外力破坏;电缆在输送电能的过程中会产生热量,这些热量不能有效排解,就会加速电缆的老化。
2.2 高压电缆故障的分析
电力电缆故障分析和处理一般都是事后进行调查维修,主要包括以下步骤:首先进行故障检测,检测故障是否依然存在,辨别正常和故障的电缆芯线,同时确定故障类型;然后进行故障测距,确定故障发生的大概距离,为精准定位故障点提供准确的相关信息;最后进行精测定位,在故障测距的基础上,实现故障点精准定位,以便及时开展检修。
目前的测距方法有电桥法、低压脉冲反射法、脉冲电压法、脉冲电流法、直流高压闪络法、冲击高压闪络法、二次脉冲法等,这些方法根据不同的原理都可粗略测定故障距离;精确定位方法有声测定点法、音
频定点法和声磁传播时间测量定点法。
国内目前使用最广泛的定位方法是声测法定点,即给故障电缆施加高幅度脉冲信号使故障点出现闪络放电,从而产生声音信号,再利用高灵敏的微音器、接收机和放大器进行侦测,以实现故障点的精准定位,但无法完成电缆相间或相对地短路时的定位;音频定点法通过音频信号产生器向被测电缆中加入音频电流,分析故障点前后电缆电流所产生的磁通变化实现故障点的精准定位,但结果受很多因素影响,实现准确定位存在一定难度;声磁传播时间测量定点法是利用脉冲放电时,在电缆铺设路径所处地面测量声波从故障点到测量点的传播时间,计算出该点到故障点的距离,是一种理想的故障精确定位方法,可有效避免听觉上判断的误差。
3高压电缆实时监测诊断技术
3.1 泛在电力物联网介绍
我国目前对电缆故障的处理一般是故障事后维修或定期维修,所有的故障分析都是事后收集一些运行数据进行总结分析,存在时效性差,故障不能得到及时处理的问题,因此实现高压电缆运行数据的实时监测及故障位置精确查找就显得很有必要。
国家电网公司提出的“三型两网”战略目标中,两网分别是坚强智能电网和泛在电力物联网。
泛在电力物联网就是将物联网技术应用到电力系统中,即电源侧企业及其设备、电网侧企业及其设备、电力相关用户和设备还有电力供应商及供应设备之间的资源信息都是开放共享的,都可进行信息互联与交互。
泛在电力物联网含感知层、网络层、平台层、应用层四层结构,可分为内部需求和外部需求两个层面,如图1所示。
内部需求的定位是“以我为主”,融合所有部门实现“数据一个源、电网一张图、业务一条线”,即一网通办、全程透明;外部需求的定位是“我为主导”,拉动整个产业,连接内外、上下游资源和需求,打造一个互联网生态圈,实现资源共享。
泛在电力物联网主要包含几大功能:对海量的电力数据进行收集、传输、一体化管理与智能分析;使终端智能化;将电力信息整合进行综合应用。
3.2 实时监测诊断技术
利用泛在电力物联网结构及思想,借助智能传感技术、5G无线网络传输和分析算法等手段,完成电力电缆数据的收集、传输、一体化管理与智能分析,對高压电缆的运行状态进行实时监测,准确查找故障点。
电网的各种终端都可应用物联网技术,而且在不断的发展过程中,终端并不仅局限在计算机上,而是转向嵌入式计算机及其匹配的传感器。
本文的思路是将大量的小型化、微型化传感器有规律地放置在高压电缆上,这些传感器有影像传感器、压力传感器、位置传感器、温度传感器等,可实时采集高压电缆的运行数据;利用5G无线网络传输相关数据,网络传输直接决定了传感器的反馈能否有效送达智能终端,最后通过智能终端进行综合研判分析,定位故障点。
高压电缆故障定位示意图如图2所示,将每种传感器归为一组,将每组互感器放置在高压电缆a、b、c、d点上,设置每组互感器实时上传检测的相关数据。
当某个时刻k1点由于某种原因出现缺陷或故障时,b、c点上传数据会明显异常,智能终端通过分析以及b、c点影像传感器数据综合研判,准确定位k1缺陷点或故障点,然后反馈研判结果并通知运维
人员及时处理故障。
4 高压电力电缆故障的防范措施
4.1 落实好交接班管理工作
落实好高压电力电缆故障防范措施十分的重要。
通常,电力电缆事故出现于交接班时,因此本班值班人员在快要下班时,应做好对各项工作的交接处理。
例如,检查设备和器具,详细记录运行情况,对运行资料进行整理,并做好工作岗位卫生清洁工作。
然后将工作情况提供给接班人员。
同时,在交接班的过程中,需积极的提出指导意见,尤其是设备运行状况,交接班时应详细的进行说明,将工作处理完善后才能下班。
4.2 规范状态检修管理方法
操作变压器的过程中,工作人员需结合电力电缆的状态检修管理规章制度,对具体操作予以落实,并注重电力电缆的空载变压,确保能够将电压偏差控制在科学的范围中,进而让变压器在空载的状态中,依然能够维持稳定的电压输出[4]。
在直流回路操作方面,对电力电缆予以状态检修的过程中,由于安全风险较高,工作人员应严格按照有关规定开展各项操作,不能因为电力电缆系统中存在直流保护系统而随意的进行操作,同时还需增强自身责任意识,确保直流回路操作的规范性,进而让系统维持在安全、稳定的运行状态。
倒闸属于较为常规的状态检修环节,在具体操作中,工作人员需对倒闸操作票予以正确的填写,并落实好设备状态检修管理工作,确保电网稳定、安全的运行。
此外,需落实好对接电线装设管理工作。
5 结语
通过对目前高压电缆故障原因分析及检测方法的介绍,从泛在电力物联网角度着手,提出泛在电力物联网在高压电缆实时监测的应用探讨,根据目前高压电缆运行及故障经验提出预防措施,对高压电缆故障的快速、准确查找及预防有一定参考价值和指导意义。
参考文献
[1]李梦泽.10kV电缆故障的检测系统设计及故障后处理研究[D].东北农业大学硕士论文,2016.
[2]吕永明.利用暂态行波的10kV电缆单环网故障定位系统研究[J].山东理工大学硕士学位论文,2014.
[3]顾晓璐.电力电缆的运行维护与故障探测[J].设备管理与维修,2017,(10):17-18.
[4]李雪松,姚孟.电力电缆线路检修危险点分析与防护[J].科技创新与应用,2017,(24):178-179.。