实验一 CO2临界状态观测及p
- 格式:doc
- 大小:104.00 KB
- 文档页数:7
二氧化碳临界状态观测及p-v-T关系实验1.实验目的(1)了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
(2)加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。
(3)掌握CO2的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
(4)学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
2.实验装置(1)整个实验装置由压力台,恒温器和试验本体及其防护罩三大部分组成,(2)对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、T 之间有:F(p,v,T) = 0或 T = f (p,v), 1)本试验就是根据式1),采用定温方法来测定CO2的p-v之间的关系。
从而找出CO2的p-v-T之间的关系。
(3)实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入先装了CO2气体的承压玻璃管。
CO2被压缩,其压力和容积通过压力台上的活塞的进、退来调节,温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力由装在压力台上的压力表读出(如要提高精度可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正)。
温度由插在恒温水套中的温度计读出。
比体积首先由承压玻璃管内二氧化碳柱的高度来度量,而后再根据承压玻璃内径均匀、截面积不变等条件换算得出。
3.实验步骤(1)按图1.1装好试验设备,并开启试验本体上的日光灯。
(2)使用恒温器调定温度(3)①将蒸馏水注入恒温器内,注至离盖30~50mm为止。
检查并接通电路,开动电动泵,使水循环对流。
②旋转电接点温度计顶端的帽形磁铁调动凸轮示标使凸轮上端面与所要调定的温度一致,要将帽形磁铁用横向螺钉锁紧,以防转动。
③视水温情况,开、关加热器,当水温未达到要调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭时,说明温度已达到所需恒温。
④观察玻璃水套上两支温度计,若其读数相同且与恒温器上的温度计及电接点温度计标定的温度一致时(或基本一致)则可(近似)认为承压玻璃管内的CO2的温度处于所标定的温度。
实验一二氧化碳P-V-T关系测定及临界状态观测实验Experiment of CO2一、实验目的1、解CO2临界状态的观测方法,增加对临界状态概念的感性认识;2、加深对课堂所讲的有关工质的热力状态、凝结、汽化、饱和状态等基本概念的理解;3、掌握CO2的p-v-T关系测定方法,学会用实验测定实际气体状态变化规律方法及技巧;4、学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
二、实验内容本实验内容包括以下三个部分:1、测定CO2的p-v-T关系,在p-v图上画出低于临界温度(20t℃)及高于临界温度==t℃)、临界温度(1.31(50t℃)的三条等温线,并与标准实验曲线及理论=计算值相比较,分析产生差异的原因;2、测定CO2在低于临界温度时(=t20℃、25℃及27℃)饱和温度与饱和压力的关系;3、观测临界现象1)临界状态附近气液两相分界模糊的现象;2)气液整体相变现象;3)测定CO2的c t、c p、c v等临界参数,并将实验所得的v值与由理想气体状态方程及范德瓦尔方程所得的c理论值相比较,简述产生差异的原因。
三、实验原理简单可压系统处于平衡状态时,其状态参数压力p、比容v、温度T之间存在着确定的关系,即状态方程为vF(1)Tp,),(=或 ),(T v f p = (2)当保持T 不变时测定比容与压力的对应数值,可获得到等温线数据,从而可作出P-V 图。
在低于临界温度时,实际气体的等温线有气液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。
只有在临界温度以上,实际气体的等温线才逐渐接近理想气体的等温线。
所以理想气体的理论不能解释实际气体的气液两相转变及临界状态。
CO 2的临界压力为bar p c 87.73=,临界温度为1.31=C t ℃。
在低于临界温度时,等温线出现气液相变的直线段,如图1所示。
9.30=t ℃是恰好能压缩得到液体CO 2的最高温度。
在临界点附近出现气液分界模糊的现象。
实验一二氧化碳临界状态观测及P-v-t 关系一、实脸目的l 、了解CO2认临界状态的观测方法,增加对临界状态概念的感性认识。
2 、加深对课堂所讲的工质的热力状态、凝结、汽化、饱和抹态等基本概念的理解。
3 、掌握氏的P-v-t的关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4 、学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。
二、实验内容1、测定CO2的P-v-t的关系,在P-v坐标图绘出低于临界温度(t=20℃)、临界温度(t =31.1 ℃)和高干临界温度(t=20℃ 25℃)饱和温度与饱和压力之间的对应关系并与图四中绘出的t-P曲线比较。
3、观屯则临界状态(1)临界乳光(2)临界状态附近汽液两相模糊的理象(3)汽液整体相变现象(4)测定CO2的t c,P c,V c等临界参数并将实验所得的V c值与理想气体状态方程和范德瓦尔方程的理论值相比较,简述其差异原因。
三、实验原理及设备1 、整个实验装置由压力台.恒温器和试骏本体及其防护策三大部分组成,如图一所示:图一试验台系统图(1)恒温器(2)试验台本体(3)压力台CO2试验台系统图2、试验台本体如图二所示.其中1一高压容器;2一玻璃杯;3一压力油; 4 一水银;5一密封填料;6一填料压盖;7一恒温水套;8一承压玻璃管;9一CO2空间;10一温度计。
3、对简单可压缩热力系统.当工质处于平衡状态时.其状态参数P、V、t之间有:tvpF,(=),或)ft=(l)p(v,本试验就是根据式(l),采用定温方法来测定CO2-v之间的关系。
从而找出CO2的P-v-t的关系。
4 、实验中由压力台送来的压力油进人高压容器和玻璃杯上半部,迫使水银进人预图二试验台本体先装了CO2气体的承压玻璃管。
CO2被压缩,其压力和容积通过压力台上的活塞杆进、退来调节,温度由恒温器供给的水套里的水温来调节。
5、实验工质二氧化碳的压力由装在压力台上的压力表读出(如要提高精度可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正)。
室温:25℃大气压:Mpa 组别:第 组姓名:说明:2、温度为31.3℃,在第17个测量点,压力为7.25MPa(绝压)附近接近临界点出现临界现象。
实验一:二氧化碳临界状态观测及P-V-T的测定实验实验日期: 2011年 月 日1、温度为26.3℃,在第14个测量点,压力为6.5MPa附近出现第一滴液体。
饱和液体饱和气体压力= 6.0031MPa压力= 6.0031MPa温度=22℃温度=22℃密度=750.7685kg/m3密度=211.084kg/m3比容= 1.33E-03m3/kg比容= 4.74E-03m3/kg比焓= 262.9275kJ/kg比焓=403.2648kJ/kg比熵= 1.2105kJ/(kg·℃)比熵= 1.686kJ/(kg·℃)定容比热= 1.0279kJ/(kg·℃)定容比热= 1.109kJ/(kg·℃)定压比热= 4.8464kJ/(kg·℃)定压比热= 5.5186kJ/(kg·℃)内能= 254.9316kJ/kg内能=374.8255kJ/kg音速= 314.0765m/s音速=193.6393m/s导热系数= 0.0834W/(m·℃)导热系数=0.0375W/(m·℃)动力粘度= 6.27E-05Pa·s运动粘度= 1.88E-05Pa·s运动粘度= 8.35E-08m2/s动力粘度=8.93E-08m2/s介电常数= 1.4522介电常数= 1.113室温:℃大气压:Mpa 组别:第 组姓名:说明:2、温度为31.3℃,在第26个测量点,压力为8.00MPa(绝压)附近接近临界点出现临界现象。
实验一:二氧化碳临界状态观测及P-V-T的测定实验实验日期: 2011年 月 日1、温度为22℃,在第16个测量点,压力为6.0MPa附近出现第一滴液体。
饱和液体饱和气体压力= 6.0031MPa压力= 6.0031MPa标准比容温度=22℃温度=22℃0.002139密度=750.7685kg/m3密度=211.084kg/m3比容= 1.33E-03m3/kg比容= 4.74E-03m3/kg比焓= 262.9275kJ/kg比焓=403.2648kJ/kg比熵= 1.2105kJ/(kg·℃)比熵= 1.686kJ/(kg·℃)定容比热= 1.0279kJ/(kg·℃)定容比热= 1.109kJ/(kg·℃)定压比热= 4.8464kJ/(kg·℃)定压比热= 5.5186kJ/(kg·℃)内能= 254.9316kJ/kg内能=374.8255kJ/kg音速= 314.0765m/s音速=193.6393m/s导热系数= 0.0834W/(m·℃)导热系数=0.0375W/(m·℃)动力粘度= 6.27E-05Pa·s运动粘度= 1.88E-05Pa·s运动粘度= 8.35E-08m2/s动力粘度=8.93E-08m2/s介电常数= 1.4522介电常数= 1.113。
二氧化碳临界状态观测及pvt关系测定概述二氧化碳(CO2)是一种广泛应用于许多领域的重要工业气体。
为了深入了解其行为和特性,需要进行相应的实验研究。
本文旨在介绍CO2的临界状态观测和PVT(压力、容积、温度)关系测定的方法及其结果。
实验设计实验的首要部分是测定CO2的临界状态。
临界点是物理学和化学学中的基本概念之一,指的是物质在特定温度和压力下变成气相或液相的条件下的状态。
在CO2的临界状态下,液体和气体之间的界面将消失,即液体和气体将具有相同的密度和折射率。
CO2的临界状态可以通过变压法或变温法两种方法来测定。
变压法:首先将CO2装入一个加热器中,然后使用恒定的体积发生器将空气推出。
当CO2的压力高于临界点压力时,CO2的压缩率将减少。
当压力低于临界点时,CO2的压缩率将增加。
通过不断改变压力,直到找到压力等于临界点压力的点,记录相应的体积和温度。
随着压力逐渐逼近临界点,CO2的密度将不断增加,因此固定的体积将能够容纳更多的物质。
同时,CO2的均压率也会随着温度的升高而下降。
变温法:在该方法中,CO2的压力将保持不变。
随着温度逐渐升高,CO2的密度将不断减小,因此具有相同体积的CO2气体将占据更大的空间。
当温度达到临界点时,CO2的密度将达到其最小值,并且液体和气体阶段不再区分。
此时,测定相应的体积和温度。
第二个实验目的是测定CO2的PVT关系。
这被认为是将实验测量的温度、压力和容积数据和理论计算之间的比较。
通过这些测量,可以确定物质的状态方程和其他要素,这可以用于预测物质的特性和行为。
测量过程为了进行实验,使用石英玻璃管作为高压容器,该容器可以在高达300个大气压的压力下工作,并且具有胶带衬里以确保材料的完整性。
之后将必要量的CO2注入其中,并通过自然升温达到目标温度。
然后,通过记录压力和容积的变化来跟踪CO2的状态。
结果和讨论CO2的临界点压力被测定为7.4 MPa,临界温度为31.2℃。
二氧化碳临界状态观测及p-v-t关系测定一.实验目的1.测定二氧化碳的P-V-T关系,观察临界现象,测定其临界参数(P_C、V_C、T_C);2.测定二氧化碳在不同压力下饱和蒸汽和饱和液体的比容;3.测定二氧化碳饱和温度和饱和压力的对应关系。
二.技术参数1.高压容器用45号钢一次性加工成型,表面采用镀铬处理,内部装有玻璃容器;2.白色透明有机玻璃保护罩,35cm×35cm×70.5cm;3.照明日光灯:节能灯管,功率:15W色调RR;4.压力校验仪:配有压力表、油杯、检验压力范围0-60MPa,基本误差:实际测量值的±0.05%,可设定最高压力,比容:0.001~0.012m^3⁄kg;5.精密压力表:型号DAYOUU-150,表盘同时显示MPa测量范围0-16MPa和kgf/cm²测量范围0-160kgf/cm²基本误差±0.4%;6.恒温水箱:白色12mm厚PP板制作而成,外形尺寸:33cm×22cm ×32cm,内设两根1000W的加热棒和铜-康铜的热电偶,温度显示分辨率0.1℃,恒温水箱可调节控温,控温精度±1℃;7.温度传感器:铜-康铜的热电偶,测温范围-40~133℃,Ⅰ级精度,数显温度表温度显示分辨率0.1℃;8.制冷系统:实验台配备压缩机制冷系统,可提供0-50℃实验所需水温,制冷机组可快速降温,降温温度可以自行设定低于环境的实时温度。
制冷系统配备1HP制冷压缩机,环保氟利昂/R134a,制冷剂压力表、高低压断路器、毛细管、制冷系统铜管、钛合金蒸发器盘管、风冷冷凝器;9.循环水泵:供恒温水循环用,交流220V、流量:600L/H 扬程7M,电机功率28.8W;10.温控仪:输出规格采用4~20mA;11.刻度管最小分度值:1mm;12.装置外形尺寸:1180×630×1590mm。
二氧化碳临界状态观测及P-V-T 关系测定实验————————————————————————————————作者: ————————————————————————————————日期:ﻩ实 验 报 告评分13系 07级 第二大组 实验室力一楼 日期2010-03-24姓名 钟伟PB07013076实验题目:二氧化碳临界状态观测及P-V-T 关系测定实验实验目的:了解2CO 临界状态的观测方法,增加对临界状态概念的感性认识加深对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解掌握2CO 的p-v -t 关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧 学会活塞式压力计、恒温器等热工仪器的正确使用方法。
实验原理和装置:整个实验装置由压力台、恒温器和试验台本体及其防护罩等三大部分组成(如图所示)。
试验台本体如图所示。
对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p 、v 、t 之间有: ()0,,=t v p E 或 ()v p f t ,=(1)本试验就是根据式(1),采用定温方法来测定2CO 的p-v 之间的关系,从而找出2CO 的p -v -t 关系。
实验中,由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了2CO 气体的承压玻璃管,2CO 被压缩,其压力和容积通过压力台上的活塞杆的进、退来调节。
温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力,由装图 21 – 高压容器2 – 玻璃杯3 – 压力油4 – 水银5 – 密封填料6 – 填料压盖恒温水恒温水在压力台上的压力表读出。
温度由插在恒温水套中的温度计读出。
比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径均匀、截面不变等条件换算得出。
实验步骤:1. 按图1装好试验设备,并开启试验本体上的日光灯2. 恒温器准备及温度调定① 将蒸镏水注入恒温器内,注至离盖30~50mm 。
实验十二氧化碳临界状态观测及p-v-T关系实验一,实验目的1.了解CO2临界状态的观测方法,增强对临界状态的感性认识.2.加深对课堂所讲的工质的热力状态,凝结,汽化,饱和状态等基本概念的理解.3.掌握CO2的p-v-T的关系的测定方法,学会用实验测量气体状态及状态变化规律的方法和技巧.4.学会活塞式压力计,恒温器等部分热工仪器的正确使用方法.二,实验内容1.测定CO2的p-v-T关系.在p-v坐标图中绘出低于临界温度(t=20℃),临界温度(t=℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,分析差异原因.2.测定CO2在低于临界温度时(t=20℃和t=25℃)饱和温度与饱和压力之间的对应关系,并与图中绘出的ts - ps曲线比较.3.观测临界状态(1)临界乳光.(2)临界状态附近汽液两相模糊的现象.(3)汽液整体相变现象.(4)测定CO2的临界参数tc,pc,vc,并将实验所得的vc 值与理想气体状态方程和范德瓦尔方程的理论值相比较,简述其差异原因.三,实验设备及原理1.整个实验装置由压力台,恒温器和实验台本体及其防护罩三大部分组成,如图10-1所示.图10-1 CO2实验台系统图2.实验台本体如图10-2所示,其中1—高压容器;2—玻璃杯;3—压力油;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃管;9—CO2空间;10—温度计.3.对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p,v,T有:F(p, v, T)=0或 t=f(p, v) (10-1)本实验就是根据式(10-1),采用定温方法来测定CO2的p-v关系,从而找出CO2的p-v-T关系.4.实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管.CO2被压缩,其压力和容积通过压台上的活塞杆的进,退来调节,温度由恒温器供给的水套里的水温来调节.5.实验工质二氧化碳的压力由装在压力台上的压力表读出(如果提高精度可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正).温度由插在恒温水套中的温度计读出.比体积首先由承压玻璃管内二氧化碳柱的高度来度量,然后再根据承压玻璃管内径均匀,截面积不变等条件换算得出.四,实验步骤1.按图装好实验设备,并开启实验台本体上的日光灯.2.使用恒温器调定温度(1)将蒸镏水注入恒温器内,注至离盖3-5cm为止,检查并接通电路,开动电动泵,使水循环对流.(2)旋转电接点温度计顶端的帽形磁铁调动凸轮示标,使凸标上端面与所要确定的温度一致,要将帽形磁铁用横向螺钉锁紧,以防转动.(3)视水温情况,开关加热器,当水温未达到要调定的温度时,恒温器指标灯是亮的,当指标灯时亮时暗闪动时,说明温度已达到所需恒温.(4)观察玻璃水套上两支温度计,若其读数相同且与恒温器上的温度计及电接点温度计标定的温度一致时(或基本一致)则可(近似)认为承压玻璃管内CO2的温度处于所标定的温度.(5)当需要改变试验温度时,重复(2)-(4)即可.3. 加压前的准备:因为压力台的油缸容量比主容器容量小,需要多次从油杯里抽油,再向主容器充油,才能在压力表上显示压力读数.压力台抽油,充油的操作过程非常重要,若操作失误,不但加不上压力还会损坏实验设备,所以务必认真掌握其步骤如下:(1)关闭压力表及进入本体油路的两个阀门,开启压力台上油杯的进油阀.图10-2 实验台本体(2)摇退压力台上的活塞螺杆,直至螺杆全部退出,这时压力台油缸中抽满了油.(3)先关闭油杯前期门,然后开启压力表和进入本体油路的两阀门.(4)摇进活塞螺杆,经本体充油,如此交复,直至压力表上有压力读数为止.(5)再次检查油杯阀门是否关好,压力表及本体油路阀门是否开启,即可进行实验.4.做实验的原始记录及注意事项(1)设备数据记录:仪器:仪表的名称,型号,规格,量程,精度.(2)常规数据记录:室温,大气压,实验环境情况等.(3)测定承压玻璃管内CO2的质面比常数K值.由于充进承压管内的CO2质量不便测量,而玻璃管内径或截面积A又不易测准,因而实验中是采用间接办法来确定CO2的比体积,认为CO2比体积v与其高度是一种线性关系,具体如下:a)已知CO2溶液在20℃,10MPa时的比体积v(20℃,10MPa)=kgb)如前操作,实测本CO2在20℃,10MPa时的CO2液柱高度 h(m)(注意玻璃水套上刻度的标记方法).c)由a)可知:∵v(20℃, 10 MPa)mhA= = kgm/∴)/(3mkgKhAm==故任意温度,压力下CO2的比体积为)/(/3kgmKhAmhv==式中: 0hhh =h —任意温度,压力下的水银柱高度h0 —承压玻璃管内径顶端刻度(4)实验中应注意以下几点:a)做各条定温线时,实验压力p≤10MPa实验温度t≤50 (℃).b)一般,取h时压力间隔可取但在接近饱的状态时和临界状态时,压力间隔应取为 MPa.c)在实验中读取水银柱液面高度的读数时要注意使视线与水银柱半圆型液面的中部相齐.5.测定低于临界温度t=20℃时的定温线(1)将恒温器调到t=20℃并保持恒温.(2)压力记录从开始,当玻璃管内水银升起来后,应缓慢地摇进活塞螺杆,保证定温条件,否则来不及平衡,读数不准.(3)按照适当的压力间隔取h值直至压力p=10MPa.(4)注意加压后,CO2的变化,特别是注意饱和压力与饱和温度的对应关系,液化,汽化等现象,要将测得的实验数据观察到的现象一并填入表1.(5)测定t=25℃,t=27℃下饱和温度与饱和压力的对应关系.6.测定临界等温线和临界参数,临界现象观察(1)仿照5的方法测出临界等温线,并在该曲线的零点处找出临界压力pc和临界比体积vc,将数据填入表1.(2)临界现象观察a)临界乳光现象保持临界温度不变,摇进活塞杆使压力升至附近处,然后突然摇退活塞杆(注意勿使实验台本体晃动)降压,在此瞬间玻璃管内将出现圆锥状的乳白色的闪光现象,这就是临界乳光现象,这是由于CO2分子受重力场作用沿高度分布不均和光的散射所造成的,可以反复几次,来观察这一现象.b)整体相变现象由于在临界点时,汽化潜热为零,饱的汽线和饱和液线合于一点,所以此时汽液的相互转变不是象临界温度以下时那样表现为一个渐变的过程,而是当压力稍有变化,汽,液即以突变的形式相互转化.c)汽,液两相模糊不清现象处于临界点时CO2是气态还是液态的如果说它是气体,那么这个气体是接近于液态的气态;如果说它是液体,那么这个液体又是接近气态的液体.下面就用实验来证明这个结论.因为这时是处于临界温度下,如果按等温线过程进行来使CO2压缩或膨胀,那么管内是什么也看不到的.现在我们按绝热过程来进行.首先在压力等于附近,突然降压,CO2状态点由等温线沿绝热线降到液区,管内CO2出现了明显的液面,这就说明,如果这时管内的CO2是气体的话,那么这种气体离液区很接近,可以说是接近液态的气体;当我们在膨胀之后,突然压缩CO2时,这个液面又立即消失了,这就告诉我们这时CO2液体离气区也是非常近的,可以说是接近气态的液体,即此时的CO2既接近气态又接近液态,处于临界点附近.可以这样说:临界状态下饱和汽,液分不清.这就是临界点附近饱和汽液模糊不清的现象.7.测定高于临界温度t=50℃时的等温线,要将数据填入表1.表1 CO2等温实验原始记录t=20℃ t=℃(临界) t=50℃p(MPa) hKhv=现象 p(MPa) hKhv=现象p(MPa) hKhv=现象5…10做出各条等温线所需时间分钟分钟分钟五,绘制等温曲线并比较1.按表1的数据,仿照图10-3在p-v 图上绘出三条等温线.2.将实验测得的等温线与图10-3所示的标准等温线比较;并分析之间的差异及原因.3.将实验测得的饱和温度与饱和压力的对应值与图10-4绘出的ts-ps曲线相比较.4.将实验测定的临界比体积vc与理论计算值一并填入表2并分析其间的差异及原因.图10-3表2 临界比体积vc[m3/kg]标准值实验值cccpRTv=cccpRTv83=图10-4 CO2饱和温度与饱和压力关系曲线六,实验报告1.简述实验原理及过程.2.各种数据的原始记录.3.实验结果整理后的图表.4.分析比较等温曲线的实验值与标准值之间的差异及原因,分析比较临界比体积的实验值与标准值及理论计算之间的差异及原因.5.实验收获及改进意见.。
二氧化碳临界状态观测及pvt关系
二氧化碳(CO2)的临界状态是指在一定的温度和压力下,液体和气体之间的界限消失,无法区分为液体或气体状态的状态。
临界状态的温度和压力被称为临界温度和临界压力。
观测二氧化碳的临界状态可以通过实验测量来完成。
一种常用的方法是使用高压容器和温度控制设备,逐渐增加二氧化碳的压力和温度,同时观察二氧化碳的物态变化。
当达到临界温度和临界压力时,液体和气体之间的界限消失,二氧化碳呈现出一种特殊的状态。
PVT关系是指压力(Pressure)、体积(Volume)和温度(Temperature)之间的关系。
在临界状态下,PVT关系发生明显的变化。
例如,在临界温度和临界压力下,二氧化碳的体积会急剧增大,接近无限大,压力也会急剧下降。
此时,二氧化碳的物理性质与液体和气体都有所不同,称为超临界流体。
研究二氧化碳的临界状态和PVT关系对于理解和应用超临界流体具有重要意义。
超临界流体在化学工业、材料科学、环境保护等领域有广泛的应用,例如超临界流体萃取、超临界干燥等。
二氧化碳临界状态观测及p-υ-t 关系实验报告任课教师:王荣姓名:舒小华学号:061800313一、实验原理及过程简述实验原理:1、对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p,v,t 之间有:F( p,v,t) = 0或t = f ( p,v) (1)本试验就是根据(1),采用定温方法测定CO2 的的p-υ之间的关系,从而找出CO2 的p-υ-t 的关系。
2、实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装入CO2 气体的玻璃管。
CO2 被压缩,其压力和容积通过压力台上的活塞杆的进、退来调节,温度由恒温器供给的水套里的水温来调节。
3、实验工质CO2 的压力由装在压力台上的压力表读出(如果提高精度,还须考虑水银柱高的修正等)。
温度由插在恒温水浴中的温度传感器读出。
比容首先由承压玻璃管内CO2 柱的高度来度量,而后再根据承压玻璃管内径均匀、截面积不变等条件换算得出。
实验过程:1、按图一安装好试验设备,使用定温器设定需要温度。
2、加压前的准备(1)关压力表及其进入本体油路的两个阀门,开启压力台上油杯的进油阀。
(2)摇退压力台上的活塞螺杆,直至螺杆全部退出,这时压力台油缸中抽满了油。
(3)关闭油杯阀门,然后开启压力表和进入本体油路的两阀门。
(4)摇进活塞螺杆,向本体充油,如此反复,至压力表有读数时为止。
3、实验的原始纪录及注意事项(1)测定承压玻璃管内的CO2的质量比常数k值:a)已知CO2液体在20℃、9.8MPa时的比容为b)如前操作,测出本试验台CO 2在20℃,9.8MPa 时的CO 2的液体高度(注意玻璃水套上刻度的标记方法)c) ∵ ∵那么任意温度、压力下CO 2的比容为:4、测定t=20℃时的定温线(1)使用定温器调定t=20℃,并保持恒温。
(2)压力记录从4.41MPa 开始,当玻璃管内水银开始起来后,就缓慢地摇进活塞螺杆,以保证定温条件,否则来不及平衡,读数不准确。
二氧化碳临界状态观测及pvt关系实验报告一、实验目的二氧化碳的临界状态观测以及PVT(压力-体积-温度)关系实验。
二、实验原理1. 临界状态:当物质处于一定温度下,经过逐渐升高的压力,最终达到一定值时,物质的液态和气态将无法区分,这个状态被称为临界状态。
2. PVT关系:在一定温度下,物质的体积随着压力的增加而减小。
当压力达到一定值时,物质会发生相变。
通过测量不同压力下物质的体积和温度来得出PVT关系。
三、实验步骤1. 实验前准备:清洁装置并检查设备是否正常。
2. 将二氧化碳加热至50℃并保持恒温。
3. 逐渐提高二氧化碳的压力,直到观察到液态和气态无法区分。
4. 记录此时的温度和压力,并计算出二氧化碳的临界密度。
5. 测量不同压力下二氧化碳在50℃时的体积,并记录数据。
6. 根据测量数据绘制PVT图。
四、实验结果与分析1. 二氧化碳的临界状态观测:在实验中,当二氧化碳的压力逐渐升高时,我们观察到液态和气态无法区分,此时记录下的温度为31.1℃,压力为7.38MPa。
通过计算,得出二氧化碳的临界密度为0.469g/cm^3。
2. PVT关系实验:根据测量数据绘制PVT图后,我们发现在50℃下,随着压力的增加,二氧化碳的体积逐渐减小。
当压力达到7.38MPa时,二氧化碳发生相变。
在相变前后,体积和压力之间存在明显的非线性关系。
五、实验结论与思考1. 二氧化碳在31.1℃下的临界状态为7.38MPa和0.469g/cm^3。
2. 在50℃下测量得到的PVT关系表明,在一定温度下,物质的体积随着压力增加而减小,并且存在相变点。
3. 实验中可能存在误差来源包括仪器精度、环境条件等因素。
在以后的实验中需要注意这些误差来源并尽可能减小其影响。
4. 通过本次实验,我们深入了解了二氧化碳的临界状态和PVT关系,这对于我们研究物质的性质和应用具有重要意义。
实验1二氧化碳临界状态观测及P-V-T关系实验1.实验目的1)观察凝结和气化过程;2)观察临界台附近的气液两相模糊现象;3)观察超临界压力下加热或冷却时的气液两相连续变化过程;4)测定某温度下CO2的饱和蒸汽压及饱和气、液两相的密度;5)测定CO2的临界参数Pc、Vc和Tc;6)测定CO2的P-V-T关系,在P-V图上绘出等温线。
2.实验设备与原理1)整个装置有压力台、恒温器和本体三部分组成,如图1-1所示。
图1-1CO2P-V-T关系测定实验系统图1-2实验台本体2)实验台本体构成如图1-2所示。
3)实验时,由压力台送来高压压力油,进入高压容器和玻璃杯的上半部,压迫水银进入预先装有CO2气体的承压玻璃管,使CO2被压缩,其压力和容积通过压力台上的活塞杆前进或后退进行调节。
温度由恒温器給水套的水温来控制。
4)CO2的压力又装在压力台上的压力表读出,如果要提高精度,可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度进行修正。
温度由插在恒温水套中的温度计读数,容积则由玻璃管内CO2的高度来衡量。
由于灌进玻璃管内的CO2质量G不便测量,而且玻璃管的内径或截面积A也不易测准(但玻璃管内径是均匀的),所以采用间接法测定CO2的比容ν(m3/kg)。
已知CO2液体在27℃,9MPa时的比容为0.00128m3/kg,实际测出玻璃管内的CO2在27℃,9MPa时的液柱高度为h1(m),则可列出如下关系式:kg m GAh MPa C /00128.0)9,27((310==ν 所以:常数===)/(00128.031m kg h A G k 即可以把k 作为仪器常数。
在任意温度和压力下CO 2比容则可以用下式计算:khA G h ==/ν 3.实验步骤1)先将恒温器调节到一定温度,使本体维持一定温度。
2)利用活塞式压力计对玻璃容器中的CO 2进行加压,加压时要缓慢转动手轮,使活塞杆缓慢推进压力油进入本体。
玻璃容器内的CO 2受压缩后体积逐渐减小,在此过程中随时记录各个不同压力下的CO 2体积数据。
实验十二氧化碳临界状态观测及p-v-T关系实验一,实验目的1.了解CO2临界状态的观测方法,增强对临界状态的感性认识.2.加深对课堂所讲的工质的热力状态,凝结,汽化,饱和状态等基本概念的理解.3.掌握CO2的p-v-T的关系的测定方法,学会用实验测量气体状态及状态变化规律的方法和技巧.4.学会活塞式压力计,恒温器等部分热工仪器的正确使用方法.二,实验内容1.测定CO2的p-v-T关系.在p-v坐标图中绘出低于临界温度(t=20℃),临界温度(t=℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,分析差异原因.2.测定CO2在低于临界温度时(t=20℃和t=25℃)饱和温度与饱和压力之间的对应关系,并与图中绘出的ts - ps曲线比较.3.观测临界状态(1)临界乳光.(2)临界状态附近汽液两相模糊的现象.(3)汽液整体相变现象.(4)测定CO2的临界参数tc,pc,vc,并将实验所得的vc 值与理想气体状态方程和范德瓦尔方程的理论值相比较,简述其差异原因.三,实验设备及原理1.整个实验装置由压力台,恒温器和实验台本体及其防护罩三大部分组成,如图10-1所示.图10-1 CO2实验台系统图2.实验台本体如图10-2所示,其中1—高压容器;2—玻璃杯;3—压力油;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃管;9—CO2空间;10—温度计.3.对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p,v,T有:F(p, v, T)=0或t=f(p, v) (10-1)本实验就是根据式(10-1),采用定温方法来测定CO2的p-v关系,从而找出CO2的p-v-T关系.4.实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管.CO2被压缩,其压力和容积通过压台上的活塞杆的进,退来调节,温度由恒温器供给的水套里的水温来调节.5.实验工质二氧化碳的压力由装在压力台上的压力表读出(如果提高精度可由加在活塞转盘上的平衡砝码读出,并考虑水银柱高度的修正).温度由插在恒温水套中的温度计读出.比体积首先由承压玻璃管内二氧化碳柱的高度来度量,然后再根据承压玻璃管内径均匀,截面积不变等条件换算得出.四,实验步骤1.按图装好实验设备,并开启实验台本体上的日光灯.2.使用恒温器调定温度(1)将蒸镏水注入恒温器内,注至离盖3-5cm为止,检查并接通电路,开动电动泵,使水循环对流.(2)旋转电接点温度计顶端的帽形磁铁调动凸轮示标,使凸标上端面与所要确定的温度一致,要将帽形磁铁用横向螺钉锁紧,以防转动.(3)视水温情况,开关加热器,当水温未达到要调定的温度时,恒温器指标灯是亮的,当指标灯时亮时暗闪动时,说明温度已达到所需恒温.(4)观察玻璃水套上两支温度计,若其读数相同且与恒温器上的温度计及电接点温度计标定的温度一致时(或基本一致)则可(近似)认为承压玻璃管内CO2的温度处于所标定的温度.(5)当需要改变试验温度时,重复(2)-(4)即可.3. 加压前的准备:因为压力台的油缸容量比主容器容量小,需要多次从油杯里抽油,再向主容器充油,才能在压力表上显示压力读数.压力台抽油,充油的操作过程非常重要,若操作失误,不但加不上压力还会损坏实验设备,所以务必认真掌握其步骤如下:(1)关闭压力表及进入本体油路的两个阀门,开启压力台上油杯的进油阀.图10-2 实验台本体(2)摇退压力台上的活塞螺杆,直至螺杆全部退出,这时压力台油缸中抽满了油.(3)先关闭油杯前期门,然后开启压力表和进入本体油路的两阀门.(4)摇进活塞螺杆,经本体充油,如此交复,直至压力表上有压力读数为止.(5)再次检查油杯阀门是否关好,压力表及本体油路阀门是否开启,即可进行实验.4.做实验的原始记录及注意事项(1)设备数据记录:仪器:仪表的名称,型号,规格,量程,精度.(2)常规数据记录:室温,大气压,实验环境情况等.(3)测定承压玻璃管内CO2的质面比常数K值.由于充进承压管内的CO2质量不便测量,而玻璃管内径或截面积A又不易测准,因而实验中是采用间接办法来确定CO2的比体积,认为CO2比体积v与其高度是一种线性关系,具体如下:a)已知CO2溶液在20℃,10MPa时的比体积v(20℃,10MPa)=kgb)如前操作,实测本CO2在20℃,10MPa时的CO2液柱高度h(m)(注意玻璃水套上刻度的标记方法).c)由a)可知:∵v(20℃, 10 MPa)mhA= = kgm/∴)/(3mkgKhAm==故任意温度,压力下CO2的比体积为)/(/3kgmKhAmhv==式中: 0hhh =h —任意温度,压力下的水银柱高度h0 —承压玻璃管内径顶端刻度(4)实验中应注意以下几点:a)做各条定温线时,实验压力p≤10MPa实验温度t≤50 (℃).b)一般,取h时压力间隔可取但在接近饱的状态时和临界状态时,压力间隔应取为MPa.c)在实验中读取水银柱液面高度的读数时要注意使视线与水银柱半圆型液面的中部相齐.5.测定低于临界温度t=20℃时的定温线(1)将恒温器调到t=20℃并保持恒温.(2)压力记录从开始,当玻璃管内水银升起来后,应缓慢地摇进活塞螺杆,保证定温条件,否则来不及平衡,读数不准.(3)按照适当的压力间隔取h值直至压力p=10MPa.(4)注意加压后,CO2的变化,特别是注意饱和压力与饱和温度的对应关系,液化,汽化等现象,要将测得的实验数据观察到的现象一并填入表1.(5)测定t=25℃,t=27℃下饱和温度与饱和压力的对应关系.6.测定临界等温线和临界参数,临界现象观察(1)仿照5的方法测出临界等温线,并在该曲线的零点处找出临界压力pc和临界比体积vc,将数据填入表1.(2)临界现象观察a)临界乳光现象保持临界温度不变,摇进活塞杆使压力升至附近处,然后突然摇退活塞杆(注意勿使实验台本体晃动)降压,在此瞬间玻璃管内将出现圆锥状的乳白色的闪光现象,这就是临界乳光现象,这是由于CO2分子受重力场作用沿高度分布不均和光的散射所造成的,可以反复几次,来观察这一现象.b)整体相变现象由于在临界点时,汽化潜热为零,饱的汽线和饱和液线合于一点,所以此时汽液的相互转变不是象临界温度以下时那样表现为一个渐变的过程,而是当压力稍有变化,汽,液即以突变的形式相互转化.c)汽,液两相模糊不清现象处于临界点时CO2是气态还是液态的如果说它是气体,那么这个气体是接近于液态的气态;如果说它是液体,那么这个液体又是接近气态的液体.下面就用实验来证明这个结论.因为这时是处于临界温度下,如果按等温线过程进行来使CO2压缩或膨胀,那么管内是什么也看不到的.现在我们按绝热过程来进行.首先在压力等于附近,突然降压,CO2状态点由等温线沿绝热线降到液区,管内CO2出现了明显的液面,这就说明,如果这时管内的CO2是气体的话,那么这种气体离液区很接近,可以说是接近液态的气体;当我们在膨胀之后,突然压缩CO2时,这个液面又立即消失了,这就告诉我们这时CO2液体离气区也是非常近的,可以说是接近气态的液体,即此时的CO2既接近气态又接近液态,处于临界点附近.可以这样说:临界状态下饱和汽,液分不清.这就是临界点附近饱和汽液模糊不清的现象.7.测定高于临界温度t=50℃时的等温线,要将数据填入表1.表1 CO2等温实验原始记录t=20℃ t=℃(临界) t=50℃p(MPa) hKhv=现象p(MPa) hKhv=现象p(MPa) hKhv=现象5…10做出各条等温线所需时间分钟分钟分钟五,绘制等温曲线并比较1.按表1的数据,仿照图10-3在p-v 图上绘出三条等温线.2.将实验测得的等温线与图10-3所示的标准等温线比较;并分析之间的差异及原因.3.将实验测得的饱和温度与饱和压力的对应值与图10-4绘出的ts-ps曲线相比较.4.将实验测定的临界比体积vc与理论计算值一并填入表2并分析其间的差异及原因.图10-3表2 临界比体积vc[m3/kg]标准值实验值cccpRTv=cccpRTv83=图10-4 CO2饱和温度与饱和压力关系曲线六,实验报告1.简述实验原理及过程.2.各种数据的原始记录.3.实验结果整理后的图表.4.分析比较等温曲线的实验值与标准值之间的差异及原因,分析比较临界比体积的实验值与标准值及理论计算之间的差异及原因.5.实验收获及改进意见.。
教学实验 2004二氧化碳临界状态观测及P-V-T关系测定实验指导书哈尔滨市鸿润教学试验设备厂电话:0二氧化碳临界状态观测及p-v-t关系测定实验指导书一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。
二.实验原理在准平衡状态下,气体的绝对压力P、比容V和绝对温度T之间存在某种确定关系,即状态方程(,,)0F P V T理想气体的状态方程具有最简单的形式:PV=RT实际气体的状态方程比较复杂,目前尚不能将各种气体的状态方程用一个统一的形式表示出来,虽然已经有了许多在某种条件下能较好反映P、V、T之间关系的实际气体的状态方程。
因此,具体测定某种气体的P、V、T关系,并将实测结果表示在坐标图上形成状态图,乃是一种重要而有效的研究气体工质热力性质的方法。
在平面的状态图上只能表达两个参数之间的函数关系,故具体测定时有必要保持某一个状态参数为定值,本实验就是在保持绝对温度T不变的条件下进行的。
三、实验内容1、测定CO2的p-v-t关系。
在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。
2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的ts -ps曲线比较。
3、观测临界状态(1)临界状态附近气液两相模糊的现象。
(2)气液整体相变现象。
(3)测定CO2的pc、vc、tc等临界参数,并将实验所得的vc值与理想气体状态方程和范德瓦尔方程的理论值相比教,简述其差异原因。
四、实验设备整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。
教学实验 2004二氧化碳临界状态观测及P-V-T关系测定实验指导书哈尔滨市鸿润教学试验设备厂电话:0二氧化碳临界状态观测及p-v-t关系测定实验指导书一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。
二.实验原理在准平衡状态下,气体的绝对压力P、比容V和绝对温度T之间存在某种确定关系,即状态方程(,,)0F P V T理想气体的状态方程具有最简单的形式:PV=RT实际气体的状态方程比较复杂,目前尚不能将各种气体的状态方程用一个统一的形式表示出来,虽然已经有了许多在某种条件下能较好反映P、V、T之间关系的实际气体的状态方程。
因此,具体测定某种气体的P、V、T关系,并将实测结果表示在坐标图上形成状态图,乃是一种重要而有效的研究气体工质热力性质的方法。
在平面的状态图上只能表达两个参数之间的函数关系,故具体测定时有必要保持某一个状态参数为定值,本实验就是在保持绝对温度T不变的条件下进行的。
三、实验内容1、测定CO2的p-v-t关系。
在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。
2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的ts -ps曲线比较。
3、观测临界状态(1)临界状态附近气液两相模糊的现象。
(2)气液整体相变现象。
(3)测定CO2的pc、vc、tc等临界参数,并将实验所得的vc值与理想气体状态方程和范德瓦尔方程的理论值相比教,简述其差异原因。
四、实验设备整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。
专业:姓名:实验报告学号:日期:地址:课程名称: 化工专业实验指导老师:成绩: ________________实验名称: CO 2 临界状态观察及 PVT 关系测试实验种类:热力学实验同组学生姓名:一、实验目的和要求 二、实验内容和原理 三、主要仪器设施四、操作方法和实验步骤 五、实验数据记录和办理六、实验结果与剖析七、议论、心得一、实验目的1.认识 CO 2临界状态的观察方法,增添对临界状态观点的感性认识;2.掌握 CO 2的 P-V-T 关系的测定方法。
学会用实验测定实质气体状态变化规律的方法和技巧; 3.加深对流体的凝固、汽化、饱和状态等热力学基本观点的理解; 4.掌握相关仪器的正确使用方法。
二、实验原理对简单可压缩热力系统,当工质处于均衡状态时,其状态参数P 、V 、 T 之间有:f(P 、 V 、 T)=0 或 T=f(P 、 V)( 1)本实验就是依据( 1),采纳定温方法来测定 CO 的 P-V 之间的关系,进而找出CO 的 P-V-T 的关系。
22装实验中由压力台送来的压力油进入高压容器和玻璃杯上半部迫使水银进入早先装了2CO 气体的承压玻璃管, CO 2 被压缩。
压力经过压力台上的活塞杆的进、退来调理;温度由供应水夹套的超级恒温水浴调理 订 控制。
线实验中工质二氧化碳的压力由装在压力台上的压力表读出, 温度由插在恒温水套中的温度计读出,比容第一由承压玻璃管内 2CO 柱的高度来胸怀, 尔后再依据承压玻璃管内径平均, 截面积不变等条件换算得。
承压玻璃罐内 CO 的质量面积比常数 k 值的丈量方法:2因为充进承压玻璃管内的CO 质量不便丈量,而玻璃管内径或面积(A )又不易测准,因此实验中是采2用间接手法来确立 CO 的比容。
以为 CO 的比容 V 与其高度是一种线性关系,详细以下:22a)已知 CO 液体在 20℃, 100atm 时的比容 V (20 C,100atm)3/ kg2b) 实测本试验台 CO 2在 20℃, 100atm 时的 CO 2 液柱高度h* ( m )。
实验一CO2临界状态观测及p-v-t关系测定
一、实验目的
1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。
2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。
3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。
4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。
二、实验内容
1、测定CO2的p-v-t关系。
在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。
2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,并与图四中的t s-p s曲线比较。
3、观测临界状态
(1)临界状态附近气液两相模糊的现象。
(2)气液整体相变现象。
(3)测定CO2的p c、v c、t c等临界参数,并将实验所得的v c值与理想气体状态方程和范德瓦尔方程的理论值相比较,简述其差异原因。
三、实验设备及原理
整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。
图一试验台系统图
图二试验台本体
试验台本体如图二所示。
其中1—高压容器;2—玻璃杯;3—压力机;4—水银;5—密封填料;6—填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2空间;10—温度计。
、
对简单可压缩热力系统,当工质处于平衡状态时,其状态参数p、v、t之间有:
F(p,v,t)=0
或t=f(p,v) (1)
本实验就是根据式(1),采用定温方法来测定CO2的p-v-t关系,从而找出CO2的p-v-t关系。
实验中,压力台油缸送来的压力由压力油传入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2气体的承压玻璃管容器,CO2被压缩,其压力通过压力台上的活塞杆的进、退来调节。
温度由恒温器供给的水套里的水温来调节。
实验工质二氧化碳的压力值,由装在压力台上的压力表读出。
温度由插在恒温水套中的温度计读出。
比容首先由承压玻璃管内二氧化碳柱的高度来测量,而后再根据承压玻璃管内径截面不变等条件来换算得出。
四、实验步骤
1、按图一装好实验设备,并开启实验本体上的日光灯(目的是易于观察)。
2、恒温器准备及温度调节:
(1)、把水注入恒温器内,至离盖30~50mm 。
检查并接通电路,启动水泵,使水循环对流。
(2)、把温度调节仪波段开关拨向调节,调节温度旋钮设置所要调定的温度,再将温度调节仪波段开关拨向显示。
(3)、视水温情况,开、关加热器,当水温未达到要调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭闪动时,说明温度已达到所需要恒温。
(4)、观察温度,其读数的温度点温度设定的温度一致时(或基本一致),则可(近似)认为承压玻璃管内的CO 2的温度处于设定的温度。
(5)、当所需要改变实验温度时,重复(2)~(4)即可。
注:当初使水温高于实验设定温度时,应加冰进行调节。
3、加压前的准备:
因为压力台的油缸容量比容器容量小,需要多次从油杯里抽油,再向主容器管充油,才能在压力表显示压力读数。
压力台抽油、充油的操作过程非常重要,若操作失误,不但加不上压力,还会损坏试验设备。
所以,务必认真掌握,其步骤如下:
(1)关压力表及其进入本体油路的两个阀门,开启压力台油杯上的进油阀。
(2)摇退压力台上的活塞螺杆,直至螺杆全部退出。
这时,压力台油缸中抽满了油。
(3)先关闭油杯阀门,然后开启压力表和进入本体油路的两个阀门。
(4)摇进活塞螺杆,使本体充油。
如此重复几次,直至压力表上有压力读数为止。
(5)再次检查油杯阀门是否关好,压力表及本体油路阀门是否开启。
若均已调定后,即可进行实验。
4、作好实验的原始记录: (1)设备数据记录:
仪器、仪表名称、型号、规格、量程等。
(2)常规数据记录:
室温、大气压、实验环境情况等。
(3)测定承压玻璃管内CO 2质量不便测量,而玻璃管内径或截面积(A )又不易测准,因而实验中采用间接办法来确定CO 2的比容,认为CO 2的比容ν与其高度是一种线性关系。
具体方法如下: a )已知CO 2液体在20℃,9.8MPa 时的比容ν(20℃,9.8Mpa )=0.00117M 3·㎏。
b )实际测定实验台在20℃,9.8Mpa 时的CO 2液柱高度Δh 0(m )。
(注意玻璃管水套上刻度的标记方法)
c )∵ν(20℃,9.8Mpa )=kg
m m A
h /00117.030=∆ ∴)/(00117.020m kg K h A m
=∆=
其中:K ——即为玻璃管内CO 2的质面比常数。
所以,任意温度、压力下CO 2的比容为:
K h
A m h ∆=
∆=
/ν(m3/kg )
式中,Δh=h-h0
h——任意温度、压力下水银柱高度。
h0——承压玻璃管内径顶端刻度。
5、测定低于临界温度t=20℃时的等温线。
(1)将恒温器调定在t=20℃,并保持恒温。
(2)压力从4.41Mpa开始,当玻璃管内水银柱升起来后,应足够缓慢地摇进活塞螺杆,以保证等温条件。
否则,将来不及平衡,使读数不准。
(3)按照适当的压力间隔取h值,直至压力p=9.8MPa。
(4)注意加压后CO2的变化,特别是注意饱和压力和饱和温度之间的对应关系以及液化、汽化等现象。
要将测得的实验数据及观察到的现象一并填入表1。
(5)测定t=25℃、27℃时其饱和温度和饱和压力的对应关系。
6、测定临界参数,并观察临界现象。
(1)按上述方法和步骤测出临界等温线,并在该曲线的拐点处找出临界压力p c和临界比容 c,并将数据填入表1。
(2)观察临界现象。
a)整体相变现象
由于在临界点时,汽化潜热等于零,饱和汽线和饱和液线合于一点,所以这时汽液的相互转变不是象临界温度以下时那样逐渐积累,需要一定的时间,表现为渐变过程,而这时当压力稍在变化时,汽、液是以突变的形式相互转化。
b)汽、液两相模糊不清的现象
处于临界点的CO2具有共同参数(p,v,t),因而不能区别此时CO2是气态还是液态。
如果说它是气体,那么,这个气体是接近液态的气体;如果说它是液体,那么,这个液体又是接近气态的液体。
下面就来用实验证明这个结论。
因为这时处于临界温度下,如果按等温线过程进行,使CO2压缩或膨胀,那么,管内是什么也看不到的。
现在,我们按绝热过程来进行。
首先在压力等于7.64Mpa附近,突然降压CO2状态点由等温线沿绝热线降到液区,管内CO2出现明显的液面。
这就是说,如果这时管内的CO2是气体的话,那么,这种气体离液区很接近,可以说是接近液态的气体;当我们在膨胀之后,突然压缩CO2时,这个液面又立即消失了。
这就告诉我们,这时CO2液体离气区也是非常接近的,可以说是接近气态的液体。
既然,此时的CO2既接近气态,又接近液态,所以能处于临界点附近。
可以这样说:临界状态究竟如何,就是饱和汽、液分不清。
这就是临界点附近,饱和汽、液模糊不清的现象。
7、测定高于临界温度t=50℃时的定温线。
将数据填入原始记录表1。
五、实验结果处理和分析
1、按表1的数据,如图三在p-v坐标系中画出三条等温线。
2、将实验测得得等温线与图三所示的标准等温线比较,并分析它们之间的差异及原因。
3、将实验测得的饱和温度与压力的对应值与图四给出的t s-p s曲线相比较。
CO2等温实验原始记录表1
图三标准曲线
4、将实验测定的临界比容 c与理论计算值一并填入表2,并分析它们之间的差异及其原因。
临界比容V c[m3/Kg] 表2。