数学人教版七年级上册线段中点练习题
- 格式:pdf
- 大小:30.22 KB
- 文档页数:2
2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
人教版七年级数学上册第四章《4.2直线、射线、线段》课时练习题(含答案)一、单选题1.如图,在数轴上,若点,A B 表示的数分别是-2和10,点M 到,A B 距离相等,则M 表示的数为( )A .10B .8C .6D .42.下列说法中正确的个数为( )①射线OP 和射线PO 是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC =BC ,则C 是线段AB 的中点. A .1个B .2个C .3个D .4个3.如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD =D .2CE AB =4.如图,直线l 上有A ,B ,C ,D 四点,点P 从点A 的左侧沿直线l 从左向右运动,当出现点P 与A ,B ,C ,D 四点中的至少两个点距离相等时,点P 就称为这两个点的黄金伴侣点,例:若P A =PB ,则在点P 从左向右运动的过程中,点P 成为黄金伴侣点的机会有( )A .4次B .5次C .6次D .7次5.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =6.互不重合的A 、B 、C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( ) A .点A 在B 、C 两点之间 B .点B 在A 、C 两点之间 C .点C 在A 、B 两点之间D .无法确定7.如图,在数轴上有A ,B 两点(点B 在点A 的右边),点C 是数轴上不与A ,B 两点重合的一个动点,点M 、N 分别是线段AC ,BC 的中点,如果点A 表示数a ,点B 表示数b ,求线段MN 的长度.下列关于甲、乙、丙的说法判断正确的是( ) 甲说:若点C 在线段AB 上运动时,线段MN 的长度为1()2b a -;乙说:若点C 在射线AB 上运动时,线段MN 的长度为1()2a b -;丙说:若点C 在射线BA 上运动时,线段MN 的长度为1()2a b +.A .只有甲正确B .只有乙正确C .只有丙正确D .三人均不正确8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个二、填空题9.如图所示,图中共有______条直线,______条射线,______线段.10.如图,木匠师傅经过刨平的木板上的A,B两个点,可以弹出一条笔直的墨线,能解释这一实际应用的数学基本事实是___________________.11.同一平面内三条线直线两两相交,最少有_____个交点,最多有____个交点.12.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=__cm.13.在直线AB上,AB=10,AC=16,那么AB的中点与AC的中点的距离为__________.14.平面内有n个点A、B、C、D…,其中点A、B、C在同一条直线上,过其中任意两点画直线,最多可以画_____________________条.三、解决问题15.已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+=+=cm.16.如图,点A C 、、B 依次在直线l 上,AC CB a ==,点D 也在直线l 上,且13BD AD =,若M 为BD 的中点,求线段CM 的长(用含a 的代数式表示).17.已知平面上有四个村庄,用四个点A 、B 、C 、D 表示.(1)连接AB ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E ;(4)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.18.如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =cm ,2BC =cm .(1)图中共有______条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且3EA =cm ,求BE 的长.19.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.20.(理解新知)如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,(1)线段的中点这条线段的“奇妙点”(填“是”或“不是”)(2)(初步应用)如图②,若24cmCD=,点N是线段CD的“奇妙点”,则CN=cm;(3)(解决问题)如图③,已知24cmAB=,动点P从点A出发,以2cm/s速度沿AB向点B匀速移动,点Q 从点B出发,以3cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t,请求出为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的“奇妙点”。
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
几何图形初步考点训练1.如图 C 、D 是线段AB 上两点 M 、N 分别是线段AD 、BC 的中点 下列结论:①若AD=BM 则AB=3BD ;②若AC=BD 则AM=BN ;③AC -BD=2(MC -DN );④2MN=AB -CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】D【详解】解:∵M N 分别是线段AD BC 的中点 ∴AM=MD CN=NB. ①∵AD=BM ∴AM+MD=MD+BD ∴AM=BD. ∵AM=MD AB=AM+MD+DB ∴AB=3BD. ②∵AC=BD ∴AM+MC=BN+DN.∵AM=MD CN=NB ∴MD+MC=CN+DN ∴MC+CD+MC=CD+DN+DN ∴MC=DN ∴AM=BN.③AC -BD=AM+MC -BN -DN=(MC -DN)+(AM -BN)=(MC -DN)+(MD -CN)=2(MC -DN); ④AB -CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN. 综上可知 ①②③④均正确 故答案为:D2.已知 点C 在直线 AB 上 AC =a BC =b 且 a ≠b 点 M 是线段 AB 的中点 则线段 MC 的长为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .+2a b 或||2a b -∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =BC -AC =b -a . BOD ∠ 下列结论:①180DOG BOE ∠+∠=︒; ②45AOE DOF ∠-∠=︒; ③180EOD COG ∠+∠=︒; ④90AOE DOF ∠+∠=︒ 其中正确的个数有( )A .1个B .2个C .3个D .4个.如图直线AB 与CD 相交于点60 一直角三角尺的直角顶点与点重合 OE 平分AOC ∠ 现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转 同时直线CD 也以每秒9的速度绕点O 顺时针旋转 设运动时间为t 秒(040t ≤≤) 当CD 平分EOF ∠时 t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【详解】解:分两种情况:①如图OC 平分EOF ∠时 45AOE ∠=︒即930345t t +︒-=︒ 解得 2.5t =;②如图OD 平分EOF ∠时 45DOE ∠=︒即918030345t t -︒+︒-=︒ 解得32.5t =.综上所述 当CD 平分EOF ∠时 t 的值为2.5或32.5. 故选:D .5.在锐角AOB ∠内部由O 点引出3种射线 第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份 所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595 B .406C .35D .666∠的大小为()射线OD将∠BOE分成了角度数之比为2:1的两个角则COFA.45︒B.60︒C.72︒或45︒D.40︒或60︒故选:C.7.如图点O是钟面的中心射线OC正好落在3:00时针的位置.当时钟从2:00走到3:00 则经过___________分钟时针分针与OC所在的三条射线中其中一条射线是另外两条射线所夹角的角平分线.240EOF=100° OE平分∠AOP现将三角形EOF以每秒6°的速度绕点O逆时针旋转至三角形E′OF′ 同时直线PQ也以每秒9°的速度绕点O顺时针旋转至P′Q′ 设运动时间为m秒(0≤m≤20)当直线P′Q′平分∠E′OF′时则∠COP′=___.【详解】AOP∠=1 2AOP=∠AB OC⊥90AOC∴∠=︒EOF△以每秒6︒的速度绕点①如图1中当OP(69)Q OE m EOQ ''∠=︒+︒⨯-∠ 14m914COP '=︒⨯(AOC -∠-(9040-︒-50︒-︒76=︒故答案为:32︒或我们知道在9点整时 经过__________分钟后 时钟的时针与分针的夹角为105°.30此时∠AOC=0.5x∠BOD=6x此时∠AOC=0.5x∠BOD=360°-6x【答案】38°【详解】如下图设∠MCD=x° ∠MAD=y°∵AM 、CM 平分∠BAD 和∠BCD ∴∠BAF=y° ∠MCF=x° ∵∠B=34° ∠D=42°∴在△ABF 中 ∠BFA=180°-34°-y°=146°-y° 在△CED 中 ∠CED=180°-42°-x°=138°-x°∴∠CFM=∠AFB=146°-y° ∠AEM=∠CED=138°-x° ∴在△AME 中 y°+∠M+138°-x°=180° 在△FMC 中 x°+146°-y°+∠M=180° 约掉x 、y 得 ∠M=38° 故答案为:38°11.如图所示:已知5cm AB = 10cm BC = 现有P 点和Q 点分别从A B 两点出发相向运动 P 点速度为2cm/s Q 点速度为3cm/s 当Q 到达A 点后掉头向C 点运动 Q 点在向C 的运动过程中经过B 点时 速度变为4cm/s P Q 两点中有一点到达C 点时 全部停止运动 那么经过____s 后PQ 的距离为0.5cm .4753由题意得:5-2t -3t=0.5 解得:t=0.9s5⎛⎫5⎛⎫1010⎛⎫点D 从点B 出发 以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC = 若点M 为直线OA 上一点 且AM BM OM -= 则ABOM的值为_______.由AM-BM=OM得m-a-(m-b)=m 即:m=b-a;由AM-BM=OM得m-a-(b-m)=m 即:m=a+b;4+-a b a a由AM-BM=OM得a-m-(b-m)=-m 即:m=b-a=-5a;13.已知:如图1 30AOB ∠=︒ 34BOC AOC ∠=∠.(1)求AOC ∠的度数;(2)如图2 若射线OP 从OA 开始绕点O 以每秒旋转10︒的速度逆时针旋转 同时射线OQ 从OB 开始绕点O 以每秒旋转6︒的速度逆时针旋转;其中射线OP 到达OC 后立即改变运动方向 以相同速度绕O 点顺时针旋转 当射线OQ 到达OC 时 射线OP OQ 同时停止运动.设旋转的时间为t 秒 当10POQ ∠=︒时 试求t 的值;(3)如图3 若射线OP 从OA 开始绕O 点逆时针旋转一周 作OM 平分AOP ∠ ON 平分COP ∠ 试求在运动过程中 MON ∠的度数是多少?(请直接写出结果)由OP OQ 的运动可知 ∠AOP =10°t ∠BOQ =6°tOP OQ相遇前如图(3)∠BOC=∠COP+∠BOQ+∠POQ即90°=10°t-120°+6°t+10°③∠CON=180°前如图3(3)∵OM 平分∠AOP ON 平分∠COP(1)如图1 当∠C OD 在∠AOB 的内部时 若∠AOD =95° 求∠BOC 的度数;(2)如图2 当射线OC 在∠AOB 的内部 OD 在∠AOB 的外部时 试探索∠AOD 与∠BOC 的数量关系 并说明理由;(3)如图3 当∠COD 在∠AOB 的外部时 分别在∠AOC 内部和∠BOD 内部画射线OE OF 使∠AOE =23∠AOC ∠DOF =13∠BOD 求∠EOF 的度数.【答案】(1)85°(2)AOD ∠与BOC ∠互补 理由见解析(3)当060BOC <∠<︒或120180BOC <∠<时 80EOF ∠=︒;当60120BOC ︒<∠<︒时40EOF ∠=︒;当60BOC ∠=︒或120BOC ∠=︒时 40EOF ∠=︒或80EOF ∠=︒【解析】(1)解:∵120AOB ∠=︒ 95AOD ∠=︒ ∴25BOD AOB AOD ∠=∠-∠=︒ ∵60COD ∠=︒ ∴85BOC BOD COD ∠=∠+∠=︒; (2)AOD ∠与BOC ∠互补;理由如下:∵120AOD AOB BOD BOD ∠=∠+∠=︒+∠ 60BOC COD BOD BOD ∠=∠-∠=︒-∠ ∴12060AOD BOC BOD BOD ∠+∠=︒+∠+︒-∠180=︒ ∴AOD ∠与BOC ∠互补.120AOC n ∠=︒+︒ 60BOD n ∠=︒+︒则180AOC ∠=︒ 120AOD AOB ∠=∠=︒ 120BOD ∠=︒240AOC n ∠=︒-︒ 60BOD n ∠=︒+︒则180BOD ∠=︒ 120AOC AOD DOC ∠=∠+∠=︒111尺的直角顶点放在点O处直角边OM在射线OB上另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15︒的速度按顺时针方向旋转.当它完成旋转一周时停止设旋转的时间为t秒.∠的度数是___________ 图1中与它互补的角是___________.(1)BOC(2)三角尺旋转的度数可表示为___________(用含t的代数式表示):当t=___________⊥.时MO OC【操作二】:如图2将一把直尺的一端点也放在点O处另一端点E在射线OC上.如图3 在三角尺绕着点O以每秒15︒的速度按顺时针方向旋转的同时直尺也绕着点O以每秒5︒的速度按顺时针方向旋转当一方完成旋转一周时停止另一方也停止旋转设旋转的时间为t秒.(3)当t为何值时OM OE⊥并说明理由?(4)试探索:在三角尺与直尺旋转的过程中当623t≤≤是否存在某个时刻使得COM∠与COE∠中其中一个角是另一个角的两倍?若存在请求出所有满足题意的t的值;若不存在请说明理由.∵OM OE⊥∵OM OE⊥265252。
人教版初一数学上册线段练习1.如图,点A、B、C在一直线上,则图中共有射线()。
A。
1条 B。
2条 C。
4条 D。
6条答案:B。
解析:由于三点在一条直线上,所以只能有两条射线。
2.下列各直线的表示法中,正确的是()。
A。
直线AB B。
直线ABC C。
直线ab D。
直线Ab答案:A。
解析:直线的表示法应该用大写字母表示,所以选项A正确。
3.下列说法正确的是()。
A。
过一点P只能作一条直线B。
直线AB和直线BA表示同一条直线C。
射线AB和射线BA表示同一条射线D。
射线a比直线b短答案:B。
解析:直线没有起点和终点,所以直线AB和直线BA表示同一条直线。
4.手电筒射出去的光线,给我们的形象是()。
A。
直线 B。
射线 C。
线段 D。
折线答案:B。
解析:手电筒射出去的光线是从一个点出发,沿着一定方向无限延伸的,所以是射线。
5.下列说法中正确的个数为()。
1) 过两点有且只有一条直线;2) 连接两点的线段叫两点间的距离;3) 两点之间所有连线中,线段最短;4) 射线比直线小一半。
A。
1个 B。
2个 C。
3个 D。
4个答案:B。
解析:只有(1)和(2)正确,所以选项B正确。
6.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()。
A。
B。
C。
D.答案:C。
解析:只有C图中的两条直线相交。
7.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()。
A。
1条 B。
2条 C。
3条 D。
4条答案:B。
解析:只有AB、BC两条线段。
8.XXX所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()。
A。
A→C→D→B B。
A→C→F→B C。
A→C→E→F→B D。
A→C→M→B答案:A。
解析:根据三角形两边之和大于第三边的原理,AC+CD+DB的值最小,所以A→C→D→B最短。
9.要在墙上固定一根木条,XXX说只需要两根钉子,这其中用到的数学道理是()。
A。
两点之间,线段最短B。
人教版7年级数学考试题测试题人教版初中数学第四章几何图形初步4. 2直线、射线、线段一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个2.已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm3.如图,C、D、E分别为线段AD,CE,DB的中点,那么图中与线段AC相等的线段有A.2条B.3条C.4条D.5条4.下列说法中错误的是A.A、B两点间的距离为5kmB.A、B两点间的距离是线段AB的长度C.A、B两点间的距离就是线段ABD.线段AB的中点M到A、B的距离相等5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条二、填空题:请将答案填在题中横线上.6.要在墙上钉一根木条,使它不能转动,则至少需要2个钉子,主要依据是__________.7.直线、射线、线段没有粗细之分.直线__________端点,向两边无限延伸;射线只有一个端点,向一边无限延伸;线段有两个端点,所以线段可以__________.8.如图.(1)AB=AC+__________=AD+__________=__________+CD+__________;(2)AC=__________–CD=AB–__________–__________;(3)AD+BC=AB+__________.(4)若AC=BD,则__________=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,图中有几条射线?其中可表示的是哪几条?10.已知A、M、N、B为一直线上顺次4个点,若AM∶MN=5∶2,NB–AM=12,AB=24,求BM的长.11.往返于A、B两地的客车,途中要停靠C、D两个车站,如图所示.(1)需要设定几种不同的票价?(2)需要准备多少种车票?附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
数轴上两点间距离 专题训练〖规律归纳〗数轴上点A 表示的数是a ,点B 表示的数是b ,则: ①到点A 与点B 的距离相等(即线段AB 的中点)的点表示的数是a+b 2;②若能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为:大数减小数; ③若不能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为|a −b |或|b −a | 例1.【思考】数轴上,点C 是线段AB 的中点,请填写下列表格: 【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的 ; 【表达】若数轴上A 、B 两点表示的数分别为m 、n ,则线段AB 的中点表示的数是 ;【应用】如图,数轴上点A 、C 、B 表示的数分别为﹣2x 、13x ﹣4、1,且点C 是线段AB 的中点,求x 的值.练习:如图,点A ,B 在数轴上表示的数分别为﹣2与+6,动点P 从点A 出发,沿A →B 以每秒2个 单位长度的速度向终点B 运动,同时,动点Q 从点B 出发,沿B →A 以每秒4个单位长度的速度向 终点A 运动,当一个点到达时,另一点也随之停止运动. (1)当Q 为AB 的中点时,求线段PQ 的长; (2)当Q 为PB 的中点时,求点P 表示的数.例2.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为﹣5,b ,4.某同学将 刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻 度5.4cm .(1)在图1的数轴上, AC = 个长度单位;数轴上的一个长度单位对应刻度尺上的 cm ; (2)求数轴上点B 所对应的数b ;(3)在图1的数轴上,点Q 是线段AB 上一点,满足AQ =2QB ,求点Q 所表示的数.练习:在数轴上,点A 代表的数是﹣12,点B 代表的数是2,AB 代表点A 与点B 之间的距离. (1)①AB = ;②若点P 为数轴上点A 与B 之间的一个点,且AP =6,则BP = ; ③若点P 为数轴上一点,且BP =2,则AP = .(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是35,求C 点表示的数.(3)若P 从点A 出发,Q 从原点出发,M 从点B 出发,且P 、Q 、M 同时向数轴负方向运动,P 点的运动速度是每秒6个单位长度,Q 点的运动速度是每秒8个单位长度,M 点的运动速度是每秒2个单位长度,当P 、Q 、M 同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?A 点表示的数B 点表示的数C 点表示的数2 6 ﹣1﹣5 ﹣31例3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?练习:如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?〖尝试反馈〗1.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.2.如图,已知数轴上点A,O,B对应的数分别为﹣2,0,6,点P是数轴上的一个动点.(1)设点P对应的数为x.①若点P到点A和点B的距离相等,则x的值是;②若点P在点A的左侧,则PA=,PB=(用含x的式子表示);(2)若点P以每秒1个单位长度的速度从点O向右运动,同时点A以每秒3个单位长度的速度向左运动,点B以每秒12个单位长度的速度向右运动,在运动过程中,点M和点N分别是AP 和OB的中点,设运动时间为t.求MN的长(用含t的式子表示);3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.5.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q 是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?6.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.7.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.8.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.参考答案例1.(1)4,﹣3,﹣1;(2)和的一半;(3)n+m 2;(4)由题意得,−2x+12=13x −4,解得:x =278.练习:(1)PQ =2﹣0=2,(2)设点Q 移动的时间为t 秒,则移动后点Q 所表示的数为6﹣4t ,移动后点P 所表示的数为﹣2+2t , 当Q 为PB 的中点时,有−2+2t+62=6−4t ,解得,t =45,此时.点P 为﹣2+2×45=﹣25.例2:(1)9;0.6.(2)点B 所对应的数b 为﹣2;(3)设点Q 所表示的数是x ,依题意有 x ﹣(﹣5)=2(﹣2﹣x ),解得x =﹣3.故点Q 所表示的数是﹣3. 练习:(1)①14.②BP =AB ﹣AP =14﹣6=8.③P 在数轴上点A 与B 之间时,AP =AB ﹣BP =14﹣2=12;当P 不在数轴上点A 与B 之间时,因为AB =14,所以P 只能在B 右侧,此时BP =2,AP =AB+BP =14+2=16.(2)假设C 为x ,当C 在A 左侧时,AC =﹣12﹣x ,BC =2﹣x ,AC+BC =35,解得x =−452; 当C 在B 右侧时,AC =x ﹣(﹣12),BC =x ﹣2,AC+BC =35,解得x =252.(3)设经过时间T 秒,则P 点坐标为﹣12﹣6T ,Q 点坐标为﹣8T ,M 点坐标为2﹣2T .当Q 在P 和M 的正中间,即Q 为PM 的中点时,2(﹣8T )=(﹣12﹣6T )+(2﹣2T ),解得T =54s .当P 在Q 和M 的正中间,即P 为QM 的中点时,2(﹣12﹣6T )=(﹣8T )+(2﹣2T ),解得T =﹣13<0,不合题意,舍掉.当PQ 重合时,即M 到P 、Q 距离相等时,此时MP =MQ , ∴﹣12﹣6T =﹣8T ,∴T =6s .因此,当T =54秒时,此时,M =﹣12,Q =﹣10,P =﹣392. 当T =6秒时,此时,M =﹣10,Q =﹣48,P =﹣48. 例3:(1)如图所示:(2)CD =3.5﹣1=2.5,BC =1﹣(﹣2)=3;(3)MN =|a ﹣b|;(4)①依题意有2t ﹣t =3,解得t =3.故t 为3秒时P ,Q 两点重合;②依题意有2t ﹣t =3﹣1,解得t =2;或2t ﹣t =3+1,解得t =4.故t 为2秒或4秒时P ,Q 两点之间的距离为1.故答案为:2.5,3;|a ﹣b|. 练习:(1)∵AB =6,BC =2,∴点A 对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)∵动点P 、Q 分别同时从A 、C 出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动, ∴点P 对应的数是﹣5+2t ,点Q 对应的数是3+t ;(3)①当点P 与点Q 在原点两侧时,若OP =OQ ,则5﹣2t =3+t ,解得:t =23;②当点P 与点Q 在同侧时,若OP =OQ ,则﹣5+2t =3+t ,解得:t =8,当t 为23或8时,OP =OQ . 〖尝试反馈〗1.(1)6,4.(2)5t ,3t .(3)由题意:(5﹣3)t =6,∴t =3. (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5,解得t =12或112, 2.(1)①−2+62=2,②根据数轴上两点之间距离的计算公式得:﹣2﹣x ,6﹣x ;(2)①移动后,点A 表示的数为﹣2﹣3t ,点B 表示的数为6+12t ,点P 表示的数为t , ∵点M 是AP 的中点,∴点M 在数轴上所表示的数为−2−3t+t2=−1−t ;∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+12t+02=3+6t ;∴MN =3+6t ﹣(﹣1﹣t )=4+7t .3.(1)根据题意得2t+t =28,解得t =283,∴AM =563>10,∴M 在O 右侧,且OM =563﹣10=263,∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在O 左边,则10﹣2t =7﹣t ,解得t =3.若点P 在O 右边,则2t ﹣10=7﹣t ,解得t =173. (3)∵N 是AP 的中点,∴AN =PN =12AP =t ,∴CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t , 2CN ﹣PC =2(28﹣t )﹣(28﹣2t )=28.4.(1)C 点对应的数为﹣5+4×6=19,(2)点D 对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.5.(1)点N所对应的数是1;(2)点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.6.(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.综上所述 m=8或﹣40.7.(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=23,符合题意.综上所述,t的值为23或4.8.(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=185,答:经过185或10秒,点P、点Q到点C的距离相等.。
人教版七年级数学上册第四章4.24.2 直线、射线、线段中考试题汇编含精讲解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或67.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是厘米(精确到0.1厘米).15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= .20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= .21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= ;②a3﹣a2= ;③a n﹣a n﹣1= .(n≥2,用含n的代数式表示).23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= .三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.参考答案与试题解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B考点:线段的性质:两点之间线段最短.分析:根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.解答:解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.点评:此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖考点:线段的性质:两点之间线段最短;坐标与图形性质.专题:新定义.分析:根据点的坐标的特征,|AB|、|x1﹣x2|、|y1﹣y2|三者正好构成直角三角形,然后利用两点之间线段最短解答.解答:解:当两点不与坐标轴平行时,∵|AB|、|x1﹣x2|、|y1﹣y2|的长度是以|AB|为斜边的直角三角形,∴|AB|<‖AB‖.当两点与坐标轴平行时,∴|AB|=‖AB‖.故选:C.点评:本题考查两点之间线段最短的性质,坐标与图形性质,理解平面直角坐标系的特征,判断出三角形的三边关系是解题的关键.5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm考点:两点间的距离.分析:由AB=10cm,BC=4cm,可求出AC=AB﹣BC=6cm,再由点D是AC的中点,则可求得AD 的长.解答:解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=3cm,答:AD的长为3cm.故选:B.点评:本题考查了两点间的距离,利用线段差及中点性质是解题的关键.6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.7.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|考点:两点间的距离;数轴.分析:根据题意作出图象,根据AC:CB=1:3,可得|c|=,又根据|a|=|b|,即可得出|c|=|b|.解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.故选A.点评:本题考查了两点间的距离,属于基础题,根据AC:CB=1:3结合图形得出|c|=是解答本题的关键.8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置考点:直线、射线、线段.专题:压轴题.分析:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,然后对四个答案进行比较即可.解答:解:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,A、当旅游车停在朝阳岩时,总路程为5+13=18;B、当旅游车停在柳子庙时,总路程为5+8=13;C、当旅游车停在迴龙塔时,总路程为13+8=21;D、当旅游车停在朝阳岩和迴龙塔这段路程的中间时,总路程大于13.故路程最短的是旅游车停在柳子庙时,故选:B.点评:本题考查了直线、射线及线段的有关知识,用特殊值的方法比较容易说出来.9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm考点:两点间的距离.分析:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC的长.解答:解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=AC=3cm.故MC的长为3cm.故选B.点评:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条考点:直线、射线、线段.分析:写出所有的线段,然后再计算条数.解答:解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.点评:记住线段是直线上两点及其之间的部分是解题的关键.12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm考点:比较线段的长短.专题:计算题.分析:由已知条件可知,DC=DB﹣CB,又因为D是AC的中点,则DC=AD,故AC=2DC.解答:解:∵D是AC的中点,∴AC=2DC,∵CB=4cm,DB=7cm∴CD=BD﹣CB=3cm∴AC=6cm故选:B.点评:结合图形解题直观形象,从图中很容易能看出各线段之间的关系.利用中点性质转化线段之间的倍数关系是解题的关键.13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处考点:比较线段的长短.专题:应用题.分析:设A处学生走的路程,表示出B处学生走的路程,然后列式计算所有同学走的路程之和.解答:解:设A处的同学走x米,那么B处的同学走(1000﹣x)米,所有同学走的路程总和:L=30x+20(1000﹣x)=10x+20000此时0≤x≤1000,要使L最小,必须x=0,此时L最小值为20000;所以选A点处.故选A.点评:此题主要考查一次函数在实际生活中的意义,学生在学这一部分时一定要联系实际,不能死学.二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是 2.3(或2.4)厘米(精确到0.1厘米).考点:比较线段的长短.分析:根据对线段长度的估算,可得答案.解答:解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).点评:本题考查了比较线段的长短,对线段的估算是解题关键.15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为 6 .考点:直线、射线、线段.专题:压轴题;规律型.分析:根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可.解答:解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.点评:本题考查的是直线、射线、线段,是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入15即可求出n的值.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= 5或11 cm.考点:两点间的距离.专题:分类讨论.分析:点C可能在线段AB上,也可能在AB的延长线上.因此分类讨论计算.解答:解:根据题意,点C可能在线段AB上,也可能在AB的延长线上.若点C在线段AB上,则AC=AB﹣BC=8﹣3=5(cm);若点C在AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为:5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是两点之间线段最短.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= 3 .考点:两点间的距离.专题:应用题.分析:由题意可知,线段AB=6,C为AB中点,所以,AC=BC,即AC=3;解答:解:如图,线段AB=6,C为AB中点,∴AC=BC,∴AC=3.故答案为:3.点评:本题考查了两点间的距离,牢记两点间的中点到两端点的距离相等.20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= 2 .考点:两点间的距离.分析:根据AB=12,AC=8,求出BC的长,再根据点D是线段BC的中点,得出CD=BD即可得出答案.解答:解:∵AB=12,AC=8,∴BC=4,∵点C是线段AB上的点,点D是线段BC的中点,∴CD=BD=2,故答案为:2.点评:此题主要考查了两点距离求法,根据已知求出BC=4是解决问题的关键.21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073 个点.考点:直线、射线、线段.专题:规律型.分析:根据题意分析,找出规律解题即可.解答:解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣1﹣1=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣3﹣1=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.故答案为:16073.点评:此题为规律型题.解题的关键是找对规律.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= 1 ;②a3﹣a2= 2 ;③a n﹣a n﹣1= n﹣1 .(n≥2,用含n的代数式表示).考点:直线、射线、线段.专题:规律型.分析:n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:①a2==1;②∵a3=3,a2=1∴a3﹣a2=3﹣1=2;③a n﹣a n﹣1=﹣(n﹣1)(n﹣2)=(n﹣1)(n﹣n+2)=n﹣1.点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法.23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= 1 .考点:比较线段的长短.专题:计算题.分析:根据中点把线段分成两条相等的线段解答.解答:解:根据题意,BC=AB=1.点评:本题根据线段的中点的定义求解.三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.考点:两点间的距离;勾股定理.专题:计算题;压轴题;数形结合.分析:(1)根据已知条件求出A、B两点的坐标,再根据公式计算即可解答.(2)根据公式直接代入数据计算即可解答.解答:解:(1)根据题意得:A(0,4),B(﹣2,0)…(分)在Rt△AOB中,根据勾股定理:…(3分)(2)过M点作x轴的垂线MF,过N作y轴的垂线NE,MF,NE交于点D…(4分)根据题意:MD=4﹣(﹣1)=5,ND=3﹣(﹣2)=5…(5分)则:MN=…(6分)点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线OE 上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?考点:直线、射线、线段.专题:规律型.分析:先由具体数字入手,找出规律,再利用规律解题.解答:解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.点评:本题体现了由“特殊到一般再到特殊”的思维过程,有利于培养同学们的探究意识.26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.考点:比较线段的长短.专题:应用题.分析:(1)分n为偶数时,n为奇数时两种情况讨论P应设的位置.(2)根据绝对值的几何意义,找到1和617正中间的点,即可求出|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.解答:解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.点评:本题需要运用分类讨论思想,主要考查了学生的观察、实验和猜想、归纳能力,掌握从特殊到一般猜想的方法.。
第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=.8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。