2014-2015学年武汉外国语学校九年级中考模拟试题数学试卷(一)
- 格式:doc
- 大小:144.00 KB
- 文档页数:4
2014年中考数学训练题(一)参考答案一、选择题1.D2. A3.C4.B5.D6.D7.D8.B9.C 10.A二、填空题11. 2)2(-x x 12. 5.987×103 13. 5214. 215. 2 16.212- 三、解答题17.解:方程两边都乘以)12(-x x ,去分母得,x x 3)12(2=-解得 x =2检验:当2=x 时,0)12(≠-x x ,x=2是原方程的解∴原方程的解为2=x18. 解:把(1,1)代入函数关系式2+=kx y 中,得21+=k解得,1-=k∴函数关系式为2+-=x y∴32≤+-x∴x ≥-119. 证明:在△ABC 和△BAD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠ABAB DBA CAB DC∴△ABC ≌△BAD∴AD =BC20. (1)B 1(1,0),B 2(-1,0)(2)A 1A 2=2621. 解:(1)a =80,b =124,c =144(2)79.5—89.5(3)从2名男职工,3名女职工中随机抽取两人共有20种结果,且所有结果的可能性相等,其中刚好抽到一名男职工和一名女职工的结果有12种, ∴ P (抽到一名男职工和一名女职工)=53 22.(1)证明:作直径DF ,连BF ,则△FBD 是直角三角形,∠DBF 为直角,∵⊙O 的半径为4,BD =43,∴sin ∠F =834=DE BD =23 ∴∠C =∠F =60°(2)解:∵AE AB 2=,AC AE 21= ∴AB 2=AE ·AC ,∴△ABE ∽△ACB∴∠ABE =∠ACB∴AB =AD ,由(1)知∠C =60°∴∠BAD =120°∴∠ABD =∠ADB =30°,作DM ⊥AB 交BA 的延长线于M ,在Rt △BDM 中,∠MBD =30°,34=BD∴DM =23 同理可求得 AB =4连OA ,OE ,OC ,设OA 交BD 于G∵AB =AD∴OA ⊥BD ,且OA 平分BD ,又∠ABD =30°,AB =4∴AG =OG =2∴∠EAO =∠EOA∵E 是AC 的中点∴OE ⊥AC∴∠EAO +∠EOA =90°,∠EAO =∠EOA =45° 而∠ACO =∠CAO =45°∴OA ⊥OC ∴OC ∥BD∴四边形ABCD 的面积为BD AG ⨯⨯⨯212=342⨯=83 23. 解:(1)y =-x +40(2)①w =-x 2+52x -480②因为 w =-x 2+52x -480=196)26(2+--x所以当x =26时,w 最大,最大值为196.24. 解:(1)11)36(6- 或11)36(6+ (2)作EH ⊥AB 于H ,设BE =2t 1, 则OF =t 1 ∵正方形ABCD 的边长为62∴OB =6∴OE =6-2t 1又M 为OE 的中点∴OM =6-t 1∵∠EOA =45°,EH ⊥AB 于H , ∴12t EH BH ==,)6(21t AH -=∵AHEH t t OM OF =-=116 ∴△AHE ∽△MOF∴∠EAH =∠FMO∴∠OAE +∠OMF =45°(3)41533+- 25. 解: (1) 当C 1与x 轴有唯一交点时,△=16-16a 2=16(1+a (1-a )=0∵a >0∴a =1∴C 1的解析式为y =x 2+4x +4(2) 作CD ⊥y 轴于D ,作AQ ⊥x 轴于Q ,作EG ⊥AQ 于G , ∵AE ∥BC∴∠A EG =∠BCD∴△AEG ∽△BCD∴CDEG BD AG = , 设E (x E ,y E ) ,∴y A =a +4+4a ,y B =4a ,y C =a -4+4ay E =ax E 2+4x E +4a ,∴E E E x ax x a -=--+-14)1(4)1(2∵x E ≠1,∴x E =-2即满足条件的E 点在直线x =-2上.(3)设P(xP ,yP),Q(xQ,yQ),则y Q =-4 yP,∴xQ=-4 xP,且xP,xQ为方程x2-1=kx的两根,∴xP xQ=-1∴xP =-21,xQ=2,∴k=23。
2014年武汉中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1. 在数3,-7,5,3中,最大的数是( ) A.3 B.-7 C. 5 D. 32.在函数y=11-x 中,自变量x 的取值范围是( ) A .x ≤1 B .x ≥1 C .x <1 D .x >13.下列各式中,正确的是( )A .2)3(-=−3 B .−23=−3 C .2)3(±=±3 D .23=±34.某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A .中位数B .众数C .平均数D .方差5.下列计算正确的是( )A .a+2a 2=3a 2B .a 3•a 2=a 6C .(a 3)2=a 9D .a 3÷a 4=a -1(a ≠0)6.如图,四边形ABCD 与四边形AEFG 是位似图形,且AC :AF=2:3,则下列结论不正确的是( )A .四边形ABCD 与四边形AEFG 是相似图形B .AD 与AE 的比是2:3C .四边形ABCD 与四边形AEFG 的周长比是2:3D .四边形ABCD 与四边形AEFG 的面积比是4:97. 如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )A .B .C .D .8.2008年武汉市建设两型社会共投资48亿元,由四项建设工程组成,①园林建设投资占20%,②水环境建设投资占30%,③环卫基础建设投资占10%,④城市建设投资占40%,近几年每年总投资见折线图,根据以上信息,下列判断:(1)2008年总投资的增长率与2006年持平.(2)2008年园林建设48×20%=9.6亿.(3)若2009年,2010年总投资的增长率都与2007年相同,预计2010年共投资48×(1+242440-)2亿元; (4)若2008年园林建设投资比原计划增加10%,则2008年园林建设,水环境建设两项投资相同.其中正确的个数是( )A .4个B .3个C .2个D .1个9. 如图,已知点A 1,A 2,…,A 2011在函数y=x 2位于第二象限的图象上,点B 1,B 2,…,B 2011在函数y=x 2位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形OA 1C 1B 1、C 1A 2C 2B 2,…,C 2010A 2011C 2011B 2011都是正方形,则正方形C 2010A 2011C 2011B 2011的边长为( )A. 20112B. 20123C. 20122D. 2011310.将弧BC 沿弦BC 折叠,交直径AB 于点D ,若AD=4,DB=5,则BC 的长是( )A .37B .8C .65D .215二、填空题(共6小题,每小题3分,合计18分)11. 分解因式:2a 2-4ab+2b 2=12. 某地预估2014年全年旅游综合收入909600000元.数909600000用科学记数法表示(保 留三个有效数字)=13. 在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为 (结果用分数表示).14. (2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发 小时时,行进中的两车相距8千米.15. 如图:两个等腰直角三角形的两个直角顶点A 、C 都在y=xk 上,若D (-8,0),则k= 16. 在Rt △ABC 中,∠C=90°,cos B =53,把这个直角三角形绕顶点C 旋转后得到Rt △A ′B ′C ,其中点B ′正好落在AB 上,A ′B ′与AC 相交于点D ,那么CDD B ]=。
2014-2015学年湖北省武汉市部分学校联考九年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)(2014秋•硚口区期中)若x1,x2是方程x2﹣6x+8的两根,则x1+x2的值是()A.8 B.﹣8 C.﹣6 D.62.(3分)(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2010秋•洛江区期末)如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是()A.30°B.60°C.90°D.120°4.(3分)(2016春•钦州校级月考)下列各式正确的是()A.B.3C.3D.5.(3分)(2014秋•德城区期末)关于x的一元二次方程x2+m=2x,没有实数根,则实数m 的取值范围是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣16.(3分)(2014秋•硚口区期中)一根水平放置的圆柱形输水管横截面如图所示,其中有水部分水面宽8米,最深处水深2米,则输水管的半径是()A.4米B.5米C.6米D.8米7.(3分)(2014秋•蔡甸区校级月考)如图,P为∠AOB边OA上一点,∠AOB=30°,OP=10cm,以P为圆心,5cm为半径的圆与直线OB的位置关系是()A.相离 B.相交 C.相切 D.无法确定8.(3分)(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1969.(3分)(2014秋•硚口区期中)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a<0B.c>0C.b2﹣4ac>0D.当x<2时,函数值y随x增大而增大;当x>2时,函数值y随x增大而减小10.(3分)(2014秋•硚口区期中)如图,PA,PB分别切⊙O于A、B,圆周角∠AMB=60°,EF切⊙O于C,交PA,PB于E,F,△PEF的外心在PE上,PA=3,则AE的长为()A.3﹣B.4﹣2C.1 D.2﹣3二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)(2014秋•蔡甸区校级月考)点M(3,a﹣1)与点N(b,4)关于原点对称,则a+b=.12.(3分)(2014秋•河西区期末)抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则此抛物线的对称轴是.13.(3分)(2015•湖北模拟)如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.14.(3分)(2014秋•武昌区期中)如图,等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A逆时针旋转60°得△ACE,那么线段DE的长为.15.(3分)(2014秋•蔡甸区校级月考)如图,平面直角坐标系中,A(﹣3,0),B(0,4).把△AOB按如图标记的方式连续做旋转变换,这样得到的第2015个三角形中,O点的对应点的坐标为.16.(3分)(2015•泗洪县校级模拟)如图,矩形纸片ABCD,AD=8,AB=10,点F在AB 上,分别以AF、FB为边裁出的两个小正方形纸片面积和S的取值范围是.三、解答题(共9小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(6分)(2011•聊城)解方程:x(x﹣2)+x﹣2=0.18.(6分)(2014秋•蔡甸区校级月考)已知:y=x2﹣2x﹣3,①写成y=﹣(x﹣h)2+k的形式;②求出图象与x轴的交点;③直接写出原抛物线沿x轴翻折后图象的解析式为.19.(6分)(2013秋•道里区期末)如图,在⊙O中,,点D、E分别在半径OA和OB上,AD=BE.求证:CD=CE.20.(7分)(2014•武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.21.(7分)(2014秋•硚口区期中)如图,矩形OABC和▱ABEF,B(3,4).(1)画出矩形OABC绕点O逆时针旋转90°后的矩形OA1B1C1,并写出B1的坐标为,点B运动到点B1所经过的路径的长为;(2)若点E的坐标为(5,2),则点F的坐标为,请画一条直线l平分矩形OABC 与▱ABEF组成图形的面积(保留必要的画图痕迹).22.(8分)(2014秋•滨州校级期末)如图,⊙O的直径AB为10,弦BC为6,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE(1)求AC、AD的长;(2)试判断直线PC与圆⊙O的位置关系,并说明理由;(3)直接写出CD的长为.23.(10分)(2015春•潜江校级月考)武汉某公司策划部进行调查后发现:如果单独投资A 种产品,则所获利润y a(万元)与投资金额x(万元)之间的关系图象如图1所示;如果单独投资B种产品,则所获利润y b(万元)与投资金额x(万元)之间的关系图象如图2所示.(1)请分别求出y a、y b之间的函数表达式;(2)若公司计划A、B两种产品共投资10万元,请你帮助该公司设计一个能获得最大利润的投资方案,并求出此方案所获得的最大利润.24.(10分)(2014秋•蔡甸区校级月考)如图①在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,(1)把Rt△DBC绕点D顺时针旋转45°,点C的对应点为E,点B的对应点为F,请画出△EDF,连接AE,BE,并求∠AEB的度数.(2)如图②,把Rt△DBC绕点D顺时针旋转α度(0<α<90°),点C的对应点为E,点B的对应点为F,连接CE,CD,求出∠AEC的度数,并写出线段AE、BE与CE之间的数量关系,不证明.(3)如图②,在(2)的条件下,连接CD交AE于点G,若BC=2,α=60°,则CG=.(直接写出结果,不用证明)25.(12分)(2014秋•硚口区期中)如图1,在平面直角坐标系中,抛物线C1:y=ax2﹣a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C2,设抛物线C2与直线y=x交于C、D两点,求线段CD的长;(3)在图1中将抛物线C1绕点B旋转180°后得到抛物线C3,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线l与抛物线C3只有一个公共点,求直线l的解析式.2014-2015学年湖北省武汉市部分学校联考九年级(上)月考数学试卷(12月份)参考答案一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.D;2.B;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.D;二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.-6;12.直线x=1;13.60π;14.2;15.(8059.2,2.4);16.50≤S≤68;三、解答题(共9小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.;18.y=-x2+2x+3;19.;20.;21.(-4,3);π;(5,-2);22.7;23.;24.1+;25.;。
2014~2015学年度武汉市部分学校九年级调研测试数 学 模 拟 试 卷2015.1.18说明:本试卷分第I 卷和第II 卷.第I 卷为选择题,第II 卷为非选择题,全卷满分120分,考试时间为120分钟.第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程24581x x +=化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是( )A 、5,81B 、5,-81C 、-5,81D 、5x ,-81 2.抛物线3)2(2+-=x y 的顶点坐标是( )A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3) 3.下列图形中,为中心对称图形的是( )4.有两个事件,事件A :某射击运动员射击一次,命中靶心;事件B :掷一枚硬币,正面朝上,则( )A 、事件A 和事件B 都是随机事件 B 、事件A 和事件B 都是必然事件C 、事件A 是随机事件,事件B 是必然事件D 、事件A 是必然事件,事件B 是随机事件5.如图,⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离OE 为3cm ,则⊙O 的半径是( ) A 、3cm B 、4cm C 、5cm D 、10cm6.某地区的消费品零售总额持续增长,10月份为1.2亿元,11月份达到2.8亿元,如果从9月份到11月份每月增长的百分率相同,则9月份的消费品零售总额为( )A 、22.8 1.22.81 1.2-⎛⎫⨯- ⎪⎝⎭亿元B 、22.8 1.22.81 2.8-⎛⎫⨯- ⎪⎝⎭亿元C 、22.8 1.22.81 2.8-⎛⎫÷+ ⎪⎝⎭亿元 D 、22.8 1.22.81 1.2-⎛⎫÷+ ⎪⎝⎭亿元7.如图,E 是正方形ABCD 中CD 边上任意一点,把△ADE 绕A 顺时针方向旋转一个角度后得到△ABE ′,则旋转的角度可能是( )A 、90°B 、45°C 、135°D 、270°8.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( )(A )1∶2∶3 (B )3∶2∶1(C )3∶2∶1 (D )1∶2∶3 9.如图,AB 是半圆O 的直径,C 、D 、E 是半圆的四等份点,CH ⊥AB 于H ,连接BD 、EC 相交于F 点,连接AC 、EH ,下列结论①CE=2CH ;②∠ACH=∠CEH ;③∠CFD=2∠ACH ,其中正确的结论是( ) A 、①②③ B 、只有①② C 、只有①③ D 、只有③10.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,其对称轴为x=1,有如下结论:①abc <0;②a-b+c>0;③b 2>4ac ;④3a-2b+c<0,则正确的结论是( )A .①②③B .①③④C .②③④D .①②③④第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)11.用配方法解()1262+-=-x x ,此方程配方形式为 .12.将函数142+-=x x y 的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1 个单位长度,得到函数解析式是 .13.已知圆锥的底面半径为1,全面积为4π,则圆锥的侧面展开图的圆心角为 .14.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计第41次摸球是白球的概率大约是 .15.已知如图,是腰长为4的等腰直角三角形ABC ,要求在其内部作出一个半圆,直径在△ABC 的边上,且半圆的弧与△ABC 的其他两边相切,则该半圆的半径是 (结果保留根号). 16.如图,已知△ABC ,外心为O ,BC=10,∠BAC=60°,分别以AB ,AC 为要腰向形外作等腰直角三角形△ABD 与△ACE ,连接BE ,CD 交于点P ,则OP 的最小值是PED CBA三、解答题(共8小题,共72分)17.(本题6分).已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根21,x x 。
2014—2015学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2015.1.28亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第1卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共6页,三大题,满分120分。
考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不得答在....“.试卷..”.上.。
4.答第Ⅱ卷(非选择题)时,用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在第......I.、.Ⅱ.卷的试卷上无效。
.....预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑:1.方程5x2-4x-1 =0的二次项系数和一次项系数分别为A.5和4 B.5和-4 C.5和-1 D.5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则A.能够事先确定抽取的扑克牌的花色;B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大;D.抽到红桃的可能性更大3.抛物线y=x2向下平移一个单位得到抛物线A.y=(x+1)2B.y=(x-1)2C.y=x2+1 D.y=x2-14.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次.B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次.C.抛掷2n次硬币,恰好有n次“正面朝上”.D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5.5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为A.正方形B.菱形C.矩形D.直角梯形6.在平面直角坐标系中,点A( -4,1)关于原点的对称点的坐标为A.(4,1) B.(4,-1) C.( -4, -1) D.(-1, 4)7.圆的直径为13 cm,,如果圆心与直线的距离是d,则.A.当 d =8 cm,时,直线与圆相交.B.当d=4.5 cm时,直线与圆相离.C.当 d =6.5 fm时,直线与圆相切.D.当d=13 cm时,直线与圆相切.8.用配方法解方程x2 +10x +9 =0,下列变形正确的是A.(x+5)2=16. B.(x+10)2=91. C.(x-5)2=34. D.(x+10)2=1099.如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B( -1,2)两点,若点C在该抛物线上,则C点的坐标可能是A.(-2,0).B.(0.5,6.5).C.(3,2).D.(2,2).10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D,若⊙O的半径等于1,则OC的长不可能为A.2-B.-1. C.2.D.+1.第9题图第10题图第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为________________.12.方程x2-x-=0的判别式的值等于________________.13.抛物线y=-x2 +4x-1的顶点坐标为_________________.14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为________________________________.15.半径为3的圆内接正方形的边心距等于________________.16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为________.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)解方程:x2 +2x-3=0不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19.(本题8分)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB= 56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.如图,E是正方形ABCD申CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
苏科版2014-2015学年第一学期期末模拟试卷(1)初三数学含答案(满分:130分时间:120分钟)一、选择题(每小题3分,共24分)1.(2014.常德)某班体育委员记录了7名女生1分钟仰卧起坐的个数分别为28、38、38、35、35、38、48,这组数据的中位数和众数分别是( )A.35、38 B.38、35 C.38、38 D.35、352.(2013.天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5个x,(2)班成绩的方差为15个2.由此可知( )A.(1)班比(2)班成绩稳定B.(2)班比(1)班成绩稳定C.两班的成绩一样稳定D.无法确定哪个班的成绩更稳定3.(2013.宁夏)一元二次方程x(x-2)=2-x的根是( )A.-1 B.0C.1和2 D.-1和24.(2014.天津)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )A.3:2 B.3:1 C.1:1 D.1:2第4题第5题第6题5.(2013.嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( )A.B.8 C.D.6.家用电冰箱在使用过程中能有效地散热是节电的有效途径之一.将一台家用电冰箱置于厨房的墙角,如图是它的俯视图,∠DAO=22°,冰箱的后背AD=110 cm,AD平行于前沿BC,且与BC的距离为60 cm,则从墙角O到前沿BC的距离约为(精确到1 cm) ( ) A.97 cm B.98 cm C.99 cm D.100 cm7.(2013.内江)同时抛掷A、B两个质地均匀的小正方体(每个面上分别标有数字1、2、3、4、5、6),将两个正方体朝上的数字分别记为x、y,并以此确定点P(x,y),那么点P 落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.168.(2013.白银)如图,⊙P的圆心在定角∠α(0°<α<180°)的平分线上运动,且⊙P与∠α的两边相切,则图中阴影部分的面积S关于⊙P的半径r(r>0)变化的函数图像大致是( )二、填空题(每小题3分,共30分)9.(2014.贺州)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11、13、15、19、x.若这五个数的平均数为16,则x=_______.10.已知一组数据中有n个数,方差为s2.若将每个数据都乘2,则得到的一组新数据的方差是_______.11.(2013.郴州)已知关于x的一元二次方程x2+bx+b=0有两个相等的实数根,则b的值是_______.12.(2014.黑龙江)在直径为10 cm的⊙O中,弦AB=5 cm,则弦AB所对的圆周角是_______.13.如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,若PA的长为2,则△PEF的周长为_______.第13题第14题14.(2014.遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图是矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,则FH=_______里.15.将抛物线y=ax2+bx+c先向右平移3个单位长度,再向下平移2个单位长度,所得的抛物线对应的函数表达式是y=x2-3x+5,则a+b+c=_______.16.如图是二次函数y=ax2+bx+c的图像的一部分,图像经过点A(-3,0),对称轴为直线x=-1.下列四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中,正确的是_______(填序号).第16题第17题17.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D .如果AD =,那么△ABC 的周长为_______.18.有七张正面分别标有数字-3、-2、-1、0、1、2、3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a -1)x +a(a -3)=0有两个不相等的实数根,且以x 为自变量的二次函数y =x 2-(a 2+1)x -a +2的图像不经过点(1,0)的概率是_______. 三、解答题(共76分)19.(4分)(2014.安顺)计算:)114sin304cos30tan603-⎛⎫︒++︒-︒ ⎪⎝⎭.20.(4分)(2014.鄂州)已知一元二次方程mx 2-2mx +m -2=0. (1)若方程有两个实数根,求m 的取值范围;(2)设方程的两个实数根为x 1、x 2,且12x x -=1,求m 的值.21.(5分)如图,在△ABC 中,AD ⊥BC ,垂足为D ,EC ⊥AB ,垂足为E ,连接DE .求证:∠BDE =∠BAC .22.(6分)(2014.凉山)州教育局为了了解我州八年级学生参加社会实践活动的情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅不完整的统计图(如图).请根据图中提供的信息,回答下列问题:(1)a =_______%,并写出该扇形所对圆心角的度数为_______,请补全条形统计图; (2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,那么“活动时间不少于7天”的学生人数大约是多少?23.(6分)(2014.桂林)电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份的统计数据,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元/辆,售价为2800元/辆,则该经销商1至3月份共盈利多少元?24.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号1、2、3、4.小明先随机摸出一个小球,小强再随机摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,则他们制定的游戏规则公平吗?请说明理由.25.(8分)(2014.天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA =∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由;(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.26.(9分)如图,抛物线y2x+x轴的两个交点分别为点A、B,与y 轴相交于点C.(1)求A、B、C三点的坐标;(2)求证:△ABC是直角三角形;(3)若坐标平面内有一点M,使得以M、A、B、C为顶点的四边形是平行四边形,求点M的坐标(直接写出点M的坐标,不必写出求解过程).27.(9分)如图(1),正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上的一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,猜测∠FCN的度数,并说明理由;(3)如图(2),将图①中的正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E 是线段BC上的一个动点(不与端点B、C重合),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上,试判断当点E由点B向点C运动时,∠FCN的度数是否总保持不变.若不变,请用含a、b的代数式表示tan∠FCN的值;若发生改变,请举例说明.28.(10分)(2013.绵阳)如图,二次函数y=ax2+bx+c的图像的顶点C的坐标为(0,-2),交x轴于A、B两点,已知A(-1,0),直线l:x=m(m>1)与x轴交于点D.(1)求二次函数的表达式和点B的坐标;(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.29.(10分)(2014.宿迁)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为顶点,求出该定点坐标.参考答案一、1.C 2.B 3.D 4.D 5.D 6.B 7.A 8.C二、9.22 10.4s211.4或0 12.30°或150°13.4 14.212015.1116.①④17.6+18.3 7三、19.4 20.(1)m的取值范围为m>0 (2)m=8 21.略22.(1) 10 36°图略(2)在这次抽样调查中,众数和中位数分别是5天、6天(3)80023.(1)20% (2)273000(元)24.(1)12(2)不公平25.(1) CD与⊙O相切(2)626.(1)A(-1,0),B(3,0),C(0) (2)略(3)M1(4),M2(-4),M3(227.(1)略(2)∠FCN=45°(3)保持不变tan∠FCN=b a28.(1)B(1,0),y=2x2-2 (2)点P的坐标为(m,12m)或(m,2m-2)(3)不存在29.(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC.由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4).(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x D)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.(3)如答图3,连接AD、BC.由圆周角定理得:∠ADO=∠CBO,∠DAO=∠BCO,∴△AOD∽△COB,∴=,设A(x1,0),B(x2,0),∵已知抛物线y=x2+bx+c(c<0),∵OC=﹣c,x1x2=c,∴=,∴OD==1,∴无论b,c取何值,点D均为定点,该定点坐标D(0,1).。
2014-2015学年度武汉市部分学校九年级调研测试语文试卷第Ⅰ卷(选择题共30分)一、(共12分,每小题3分)1.下列各组词语中加点字的书写或注音有误的一组是()A.流苏狡黯(xiá)殉(xùn)职自出心裁B.淘冶慰藉(jiè)鄙薄(báo)拈轻怕重C.桑梓牡蛎(lì)亢(kàng)奋飞黄腾达D.奠定轩榭(xiè)拮(jié)据流连忘返2.依次填入下面横线处的词语,恰当的一组是()一个值得关注的事实是,新闻事件的冲突双方对出现的过失相互____而对出售的生活____品应该如何召回与赔付却_____。
A.推倭必需含糊其辞B.推倭必需含混不清C.推托必须含糊其辞D.推托必须含混不清3.下列各项中,有语病的一项是()A.湖畔大学坐落于杭州西湖鹆鹄湾附近,由马云等八位企业家共同发起创办。
B.武汉市三环西主线高架的贯通是汉口居民走西大门出城的又一条快速通道。
C.中国已经向美国政府提供一份逃亡美国的贪官名单,要求对方协助追缉逃犯。
D.“国家卫生城市”称号是一个城市综合实力、文明程度和健康水平的集中体现。
4.为下面语句排序,最合理的一项是()①如果我们用一颗有求的心面对所有事情,那么无疑是打开了一个烦恼的盒子。
②我们总是找种种借口去发脾气,来表达自己的自私与狭隘。
③我们的烦恼更多是来自于自己的自私和狭隘。
④学会满足,学会放弃,烦恼就会远离我们。
⑤生活里,我们往往不经意就被烦恼包围。
A.①②③④⑤B.①⑤④②③C.⑤②④③①D.⑤③②①④二、(9分)阅读下面的短文,完成5?7题。
“公天悲剧”与“雾霾政治学”李公明“公地悲剧”是英国经济学家劳埃德最先提出的一个比喻,它描绘了中世纪英国的一个村庄,那里的“绿地”是公共财产,所有的村民都可以在上面放牧他们的牲畜。
进入这块公地的自由是该村庄珍视的一种价值。
只要每个人对公地的使用对其他所有人来说没有减少土地的效用,这种分享就会运作良好。
2013-2014学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2014.5. 说明:本试卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为非选择题,全卷满分120分,考试用时120分钟。
第Ⅰ卷(选择题共30分)注意事项:1、答题前,考生务必将自己的姓名、准考证号码填写在答题卡指定的位置;2、每小题选出答案后,用2B铅笔在答题卡上将对应的答案涂黑,如需改动,再用橡皮擦干净后,再选涂其他答案,答在试卷上无效;3、考试结束,监考人员将本卷与答题卡一并收回。
一、选择题:(共10小题,每小题3分,共30分)下列各题中各有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在-2、2、0、-1这四个数中,最小的一个数是A.-2 B.2 C.0 D.-12x的取值范围是A.x>-1 B.x≥1 C.x<-1 D.x≤-13.如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD.若CD=2,则端点C的坐标为A.(2,2) B.(2,4) C.(3,2) D.(4,2)4.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,45. 下列计算正确的是A.222)(baba+=+ B. 22(2)4a a-=- C.527()a a= D.32aaa=⋅6.下列运算正确的是A.-6×(-3)= -18 B.-5-68=-63C.-150+250=400 D.8÷(-16)=-0.57.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A B C D8.2014年4月1日起至30日,武汉全民阅读月之武汉图书馆“24小时自助图书馆宣传推广”活动顺利开展。
学习如春起之苗,不见其增,日有所长,整座江城洋溢着春日里朗朗的读书声。
武汉2014-2015学年度第一学期期中考试九年级数学试卷一、选择题(每题3分,共30分)1.将一元二次方程2316x x -=化成一般形式后,二次项系数和一次项系数分别为( ) A .3,-6 B .3,6 C .3,-1 D .3 x 2,-6x 2.用配方法解方程2210x x --=时,配方后得的方程为( )A . 2+10x =()B .210x -=()C .2+12x =()D .212x -=()3.下列电视台的台标,是中心对称图形的是( )A .B .C .D .4.如图,点A 、B 、C 在⊙O 上,A ∠=50°,则BOC ∠的度数为( ) A .40° B .50° C .80° D .100° 5.如图,将ABC ∆绕顶点C 旋转得到A B C ''∆,且点B 刚好落在A B ''上, 若∠A=25°,∠BCA ′=45°,则∠A ′BA 等于( )A .30°B .35°C .40°D .45°位,再向下平移26.把抛物线1212-=x y 先向右平移1个单个单位,得到的抛物线的解 析式为( )A .3)1(212-+=x y B .3)1(212--=x y C .1)1(212++=x y D .1)1(212+-=x y7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .x (x+1)=28 B .x (x ﹣1)=28 C .x (x+1)=28 D . x (x ﹣1)=288.二次函数y=ax ²+bx+c 图象上部分点的坐标满足下表:A'CB B'(第5题图)(第4题图)则该函数图象的顶点坐标为( )A.(-3,-3)B. (-1,-3)C.(-2,-2)D.(0,-6) 9.如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠ACB的平分线交圆O 于D ,则CD 长为( )A .9 B.27 C.28 D.7 一象限,且过点(0,10.如图,二次函数2(0)y ax bx c a =++≠的图象的顶点在第1)和(-1,0),下列结论:①0ab <,②24b a >,③其中正确结02a b c <++<,④01b <<,⑤当1x >-时,0y >.论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.一元二次方程02=-x x 的解为 .12.已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB 的长为.13.关于x 的一元二次方程2(1)230a x x --+=有实数根,则整数a 的最大值是. 14.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家. 他曾经设计过一种圆规.如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计), 一根没有弹性的木棒的两端A 、B 能在滑槽内自由滑动,将笔插入位于木棒中点P 处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=10cm ,则画出的圆的半径为 cm.15.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变(第14题图)(第9题图)换:①△(a ,b )=(-a ,b ); ②O (a ,b )=(-a ,-b );③Ω(a ,b )=(a ,-b );按照以上变换有:△(O (1,2))=(1,-2),那么O (Ω(3,4))等于 .16.如图,正方形ABCD 中,已知AB=3,点E,F 分别在BC 、CD 上,且∠BAE=30°,∠DAF=15°,则△AEF 的面积为 . 三、解答题:(共9小题,共72分) 17.(本题满分6分)解方程:2310x x +-= 18.(本题满分6分)如果关于x 的一元二次方程24+0x x a +=的两个不相等实数根x 1,x 2满足12122250x x x x ---=,求a 的值.19.(本题满分6分)如图,弦AB 和CD 相交于⊙O 内一点E ,AE=CE.求证:BE=DE.20.(本题满分7分)如图是一张长8cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是18cm 2的一个无盖长方体纸盒,求剪去的正方形边长.21. (本题满分7分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(3,4)、B(1,1)、C(4,2).(1)画出△ABC 绕点B 逆时针旋转90°后得到的△A 1BC 1,其中A 、C分别和A 1、C 1对应.轴上,画出平移(2)平移△ABC ,使得A 点落在x 轴上,B 点落在y 后的△A 2B 2C 2,其中A 、B 、C 分别和A 2、B 2、C 2对应.(第20题图)(第19题图)OCB Ayx(第21题图)(3)填空:在(2)的条件下,设△ABC ,△A 2B 2C 2的外接圆的圆心分别为M 、M 2,则MM 2= . 22.(本题满分8分)如图,在半径为5的扇形AOB 中,∠=90AOB ,点C 是弧AB 上的一个点,且BC=2,OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E . (1)求线段OD 、DE 的长; (2)求线段OE 的长. 23. (本题满分10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. 设该种品牌玩具的销售单价为x 元(x > 40)时,获得利润为w 元. (1)直接写出w 与x 之间的函数关系式;(不要求写出自变量的取值范围) (2)若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元.(3)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24.(本题满分10分)(1)如图1, △ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,求证:△ACD ≌△BCE. (2) 如图2,将图1中△DCE 绕点C 逆时针旋转n °(0<n <45),使∠BED=90°,又作△DCE 中DE 边上的高CM ,请完成图2,并判断线段CM ,AE ,BE 之间的数量关系,并说明理由. (3)如图3,在正方形ABCD 中,CD=5,若点P 满足PD=1,且∠BPD=90°,请直接写出点A 到BP 的距离.B(第22题图)(图1)(图2)(图3)25.(本题满分12分)B(3,0)两点,如图,抛物线32-+=bx ax y 交x 轴于点A (-1,0),交y 轴于点C.(1)求抛物线的解析式.(2)在第一象限内抛物线上,找一点M 使△OCM 的面积是△OAM的面积的23倍,求点M 的坐标. (3)在抛物线上,找一点N 使∠NCA=2∠ACB ,求点N 的坐标 2014-2015学年第一学期九年级数学期中考试参考答案一、选择题(30分)二、填空题(18分)11、1,021==x x 12、8 13、0 14、5 15、(-3,4) 16、9-三、解答题(72分)17、解:∵a =1,b =3,c =-1 ……3分 Δ=1342=-ac b >0 ……4分 ∴2133242±-=-±-=a ac b b x ……5分 ∴21331+-=x ,21332+-=x ……6分18、解:.由题意得a x x x x =-=+2121,4 ……2分∵x 1x 2-2x 1-2x 2-5=0 ∴a+8-5=0,∴a=-3 ……5分此时Δ=2842=-ac b >0, 原方程有两个不相等实数根 ∴a=-3 ……6分19、 证明: 在ΔADE 与ΔCBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE AE CBE ADE CEB AED ……4分(中间条件2分)∴ΔADE ≌ΔCBE (SAS ) ……5分 ∴BE =DE ……6分20、(本题7分)解:设剪去的正方形边长为xcm,由题意得, (8-2x )(5-2x)=18 ....3分 整理得0111322=+-x x . 解得211,121==x x (5)分y∵x <25,∴x=1 ......6分 答:剪去的正方形边长为1cm .......7分 21、⑴如图所示,11BC A ∆即为所求 ……3分 ⑵如图所示,222C B A ∆即为所求 ……6分 ⑶172=MM ……7分 22、(1)OD=62,……2分 DE 是∆ABC 的中位线,DE=225.……4分 (2)证∠DOE=45°,作DF ⊥OE,垂足为点F, ……6分 求得OF=32,EF=22∴OE=32+22……8分 23、解:(1)W=10x 2+1300x -30000…………3分(2)-10x 2+1300x -30000=10000 解之得:x 1=50 x 2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润 …………5分 (3)根据题意得10001054044x x -≥⎧⎨≥⎩解之得:44≤x≤46 …………6分 w=-10x 2+1300x -30000=-10(x -65)2+12250 …………7分∵a=-10﹤0,对称轴x = 65 ∴当44≤x≤46时,y 随x 增大而增大.∴当x = 46时,W 最大值=8640(元) …………9分 答:商场销售该品牌玩具获得的最大利润为8640元。
2014年武汉市初中毕业生学业考试数学试卷(样卷第Ⅰ卷(选择题,共30分一、选择题(共10小题,每小题3分,共30分下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.在0,1,-1,-2这四个数中,最小的一个数是( A .2.5 B .-2.5 C .0 D .3 2.函数12+=x y 中自变量x 的取值范围是(A .x ≥21 B .x ≥21- C .x <21 D .x <21- 3.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0,则E 点的坐标为( A .(2,0 B .(23,23C .(2,2D .(2,2 4则这20户家庭该月用电量的众数和中位数分别是(A .180,160B .160,180C .160,160D .180,180 5.下列计算正确的是( A .(((5322a a a -=-+- B .(((632a a a -=-⋅-C .(623a a-=- D .(((336a a a -=-÷-6.下列计算错误的是(A .102515=+-B .228=C .13334=-D .1165-=--7.如图,由四个棱长为1的立方块组成的几何体的左视图是(A .B .C .D .8.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级.将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(A .2.25B .2.5C .2.95D .342.5%3分2分1分30%4分成绩频数扇形统计图成绩频数条形统计图分数9.如下左图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为( A .2645cm B .285cm C .2165cm D .2325cm10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为(A .12秒.B .16秒.C .20秒.D .24秒.第Ⅱ卷(非选择题,共90分二、填空题(共6小题,每小题3分,共18分11.分解因式:m mn mn 962++= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 .13.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 .14.如图,一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升与时间x (单位:分钟之间的函数关系如图所示.关停进水管后,经过分钟, 容器中的水恰好放完.15.如图,半径为5的⊙P 与轴交于点M (0,-4,N (0,-10,函数(0ky x x=<的图像过点P , 则k = . 16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作□CDEB ,当AD = 时,□CDEB 为菱形.三、解答题(共9小题,共72分下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.解方程:xx 332=-.18.直线b x y +=2经过点(3,5,求关于x 的不等式b x +2≥0的解集.第16题图 BA 第13题图/分19.如图,AC 和BD 相交于点E ,AB ∥CD ,BE =DE .求证:AB =CD .20.在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1,B (1,1,C (1,7.线段DE 的端点坐标是D (7,-1,E (-1,-7.(1试说明如何平移线段AC ,使其与线段ED 重合; (2将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标; (3画出(2中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.21.高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图.(1该校近四年保送生人数的极差是 . 请将拆线统计图补充完整.(2该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树形图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.22.(本题满分8分如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . (1如图①,若∠BPC =60°,求证:AP AC 3=;(2如图②,若2524sin =∠BPC ,求PAB ∠tanA B CDE 第22题图①第22题图②23.某市政府大力扶持大学生创业。
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2014-2015学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014秋•武汉校级月考)抛物线y=2(x+3)2﹣5的顶点坐标是()A.(﹣3,﹣5)B.(﹣3,5)C.(3,﹣5)D.(3,5)2.(3分)(2014秋•武汉校级月考)方程4x2﹣x+2=3中二次项系数、一次项系数、常数项分别是()A.4、﹣1、﹣1 B.4、﹣1、2 C.4、﹣1、3 D.4、﹣1、53.(3分)(2014秋•东西湖区校级月考)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.(3分)(2014秋•武汉校级月考)若x1,x2是方程2x2+3x+1=0的两个根,则x1+x2的值是()A.﹣3 B.C.D.5.(3分)(2014秋•武汉校级月考)将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,且点B的对应点D恰好落在BC边上,若∠B=70°,则∠CAE的度数是()A.70°B.50°C.40°D.30°6.(3分)(2014秋•武汉校级月考)将抛物线y=﹣x2+2x﹣5配成y=a(x﹣h)2+k的形式为()A.y=﹣(x+3)2﹣6 B.y=﹣(x+3)2﹣8 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x﹣3)2+47.(3分)(2012•潘集区模拟)如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对8.(3分)(2014秋•东西湖区校级月考)一个QQ群里共有x个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程()A.x(x﹣1)=1980 B.x(x﹣1)=1980 C.x(x+1)=1980 D.x(x+1)=19809.(3分)(2014秋•武汉校级月考)已知抛物线y=x2+x﹣2与直线y=5x﹣m没有公共点,则m的取值范围是()A.m<6 B.m>6 C.m≤6 D.m≥210.(3分)(2014秋•武汉校级月考)如图,在△ABC中,∠A<90°,∠C=30°,AB=4,BC=6,E为AB的中点,P为AC边上一动点,将△ABC绕点B逆时针旋转a角(0°<a≤360°)得到△A1B1C1,点P的对应点为P1,连EP1,在旋转过程中,线段EP1的长度的最小值是()A.﹣1 B.1 C.D.2二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014秋•武汉校级月考)将抛物线y=2(x﹣1)2+5先向右平移2个单位,再向下平移3个单位后得到的抛物线的解析式为.12.(3分)(2014秋•福州校级期中)已知方程ax2+bx+c=0的两个根为1和﹣5,则抛物线y=ax2+bx+c的对称轴为直线.13.(3分)(2011•宁德)如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CD交AB于F,连接AD,当旋转角α度数为,△ADF是等腰三角形.14.(3分)(2014秋•武汉校级月考)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,车速不变,设慢车行驶t小时,两车相距S千米,S与t的关系如图所示,则慢车行驶小时后,快车恰好到达乙地.15.(3分)(2014秋•武汉校级月考)如图,抛物线y=ax2+bx+c分别交坐标轴于A(﹣2,0)、B(6,0)、C(0,4),则0≤ax2+bx+c<4的解集是.16.(3分)(2014秋•武汉校级月考)如图,正方形ABCD的边长为2,M为AD的中点,N在边CD上且∠NMB=∠MBC,MN的延长线与BC的延长线交于点G,则GN的长是.三、解答题(共9小题,满分72分)17.(6分)(2012•洪山区校级模拟)解方程:x2﹣4x﹣3=0.18.(6分)(2014秋•武汉校级月考)如图,点C、E、B、F在同一直线上,AC∥DF,∠A=∠D,CE=BF.求证:AB=DE.19.(6分)(2014秋•新洲区期中)已知抛物线y=x2﹣4x+5.求抛物线的开口方向、对称轴和顶点坐标.20.(7分)(2014秋•武汉校级月考)如图,长40m,宽22m的矩形场地中间有横竖三条等宽的道路,三条道路的总面积为160m2,那么道路的宽为多少米?21.(7分)(2014秋•东西湖区校级月考)如图所示,△ABC的三个顶点都在边长为1的小正方形组成的网格的格点上,以点O为原点建立平面直角坐标系,回答下列问题:(1)将△ABC先向上平移5个单位,再向右平移1个单位得到△A1B1C1,画出△A1B1C1,并直接写出A1的坐标;(2)将△A1B1C1绕点(0,﹣1)顺时针旋转90°得到△A2B2C2,画出△A2B2C2;(3)观察图形发现,△A2B2C2是由△ABC绕点顺时针旋转度得到的.22.(8分)(2014秋•武汉校级月考)已知抛物线Y=x2﹣(m+1)x+m2与x轴有两个交点,回答下列问题:(1)求m的取值范围;(2)若两个交点的横坐标的平方和等于16,求m的值.23.(10分)(2014秋•武汉校级月考)在一次羽毛球比赛中,甲运动员在离地面米的P处发球,球的运动轨迹PAN可看作是一条抛物线的一部分.当球运动到最高点A处时,其高度为3米、离甲运动员站立地点O的水平距离为5米.球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题:(1)求抛物线的解析式(不要求写出自变量的取值范围);(2)求羽毛球落地点N离球网的水平距离;(3)乙运动员在球场上M(m,0)处接球.乙原地起跳可接球的最大高度为2.4米,若乙因接球高度不够而失球,求m的取值范围.24.(10分)(2014秋•武汉校级月考)将正方形ABCD和正方形BEFG如图1摆放,连DF.(1)如图2,将图1中的正方形BEFG绕点B顺时针旋转90°,连DF,CG相交于点M,则=,∠DMC=;(2)结合图2,请证明(1)中的结论;(3)将图2中的正方形BEFG绕点B逆时针旋转β角(0°<β<90°)连DF,CG相交于点M,请画出图形,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.25.(12分)(2014秋•武汉校级月考)已知抛物线y=mx2+2mx+n交x轴于A、B两点,交y轴于C(0,3),顶点为D,且AB=4.(1)求抛物线的解析式;(2)点P为对称轴右侧抛物线上一点,点S在x轴上,当△DPS为等腰直角三角形时,求点P的坐标;(3)将抛物线沿对称轴向下平移,使顶点落在x轴上,设点D关于x轴的对称点为M,过M的直线交抛物线于E、F(点E在对称轴左侧),连DE,DF,且S△DEF=20.求E、F的坐标.2014-2015学年湖北省武汉市部分学校九年级(上)月考数学试卷(10月份)参考答案一、选择题(共10小题,每小题3分,满分30分)1.A;2.A;3.D;4.D;5.C;6.C;7.C;8.B;9.B;10.B;二、填空题(共6小题,每小题3分,满分18分)11.y=2(x-3)2+2;12.x=-2;13.40°或20°;14.7.2;15.-2≤x<0或4<x≤6;16.;三、解答题(共9小题,满分72分)17.;18.;19.;20.;21.(-3,4);(2,-5);90;22.;23.;24.;45°;25.;。