利用Quartus II软件和原理图输入法设计八位加法器

  • 格式:doc
  • 大小:385.50 KB
  • 文档页数:18

下载文档原格式

  / 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

Quartus II是最高级和复杂的,用于system-on-a-programmable-chip (SOPC)的设计环境。Quartus II提供完善的timing closure 和LogicLock 基于块的设计流程。QuartusII design是唯一一个包括以timing closure 和基于块的设计流为基本特征的programmable logic device (PLD)的软件。Quartus II 设计软件改进了性能、提升了功能性、解决了潜在的设计延迟等,在工业领域率先提供FPGA与mask-programmed devices开发的统一工作流程。

本文介绍了微机上的QuartusⅡ软件系统的使用,并用该软件分别设计半加器,全加器,并编译连接设计一个8位加法器的过程。

关键词:8位加法器;EDA(电子设计自动化);QuartusⅡ(可编程逻辑软件)

目录

第1章概述 (1)

1.1EDA的概念 (1)

1.2硬件描述语言概述 (2)

第2章QUARTUS II (4)

2.1QUARTUSII概述 (4)

2.2QUARTUSII建立工程项目 (4)

2.3QUARTUSII建立原理图输入文件 (6)

2.4QUARTUSII层次化项目设计 (9)

第3章8位加法器设计 (12)

3.18位加法器分析 (12)

3.2设计过程 (12)

参考文献 (15)

结论 (16)

第1章概述

1.1 EDA的概念

EDA是电子设计自动化(Electronic Design Automation)的缩写,从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

由于它是一门刚刚发展起来的新技术,涉及面广,内容丰富,理解各异,所以目前尚无一个确切的定义。但从EDA技术的几个主要方面的内容来看,可以理解为EDA技术就是以计算机为工具,设计者在EDA软件平台上,以硬件描述语言为系统逻辑描述的主要表达方式完成设计文件,然后由计算机自动地完成逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化,逻辑布局布线、逻辑仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度[1]。

利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。

EDA技术是伴随着计算机、集成电路、电子系统的设计发展起来的,至今已有30多年的历程。大致可以分为三个发展阶段。20世纪70年代的CAD(计算机辅助设计)阶段:这一阶段的主要特征是利用计算机辅助进行电路原理图编辑,PCB 布同布线,使得设计师从传统高度重复繁杂的绘图劳动中解脱出来。20世纪80年代的QAE(计算机辅助工程设计)阶段:这一阶段的主要特征是以逻辑摸拟、定时分析、故障仿真、自动布局布线为核心,重点解决电路设计的功能检测等问题,使设计能在产品制作之前预知产品的功能与性能[2]。20世纪90年代是EDA(电子设计自动化)阶段:这一阶段的主要特征是以高级描述语言,系统级仿真和综合技术为特点,采用“自顶向下”的设计理念,将设计前期的许多高层次设计由EDA工具来完成[3]。

1.1.1 EDA的发展

从目前的EDA技术来看,中国EDA市场已渐趋成熟,不过大部分设计工程师面向的是PC主板和小型ASIC领域,仅有小部分的设计人员工发复杂的片上系

统器件。为了与台湾和美国的设计工程师形成更有力的竞争,中国的设计队伍有必要购入一些最新的EDA技术。

在信息通信领域,要优先发展高速宽带信息网、深亚微米集成电路、新型元器件、计算机及软件技术、第三代移动通信技术、信息管理、信息安全技术,积极开拓以数字技术、网络技术为基础的新一代信息产品,发展新兴产业,培育新的经济增长点。要大力推进制造业信息化,积极开展计算机辅助设计(CAD)、计算机辅助工程(CAE)、计算机辅助工艺(CAPP)、计算机机辅助制造(CAM)、产品数据管理(PDM)、制造资源计划(MRPII)及企业资源管理(ERP)等。有条件的企业可开展“网络制造”,便于合作设计、合作制造,参与国内和国际竞争。开展“数控化”工程和“数字化”工程。自动化仪表的技术发展趋势的测试技术、控制技术与计算机技术、通信技术进一步融合,形成测量、控制、通信与计算机(M3C)结构。在ASIC和PLD设计方面,向超高速、高密度、低功耗、低电压方向发展。

1.1.2 EDA的应用

电子EDA技术发展迅猛,逐渐在教学、科研、产品设计与制造等各方面都发挥着巨大的作用。利用电路仿真工具进行电路设计与仿真;利用虚拟仪器进行产品调试;将FPGA器件的开发应用到仪器设备中。在产品设计与制造方面:从高性能的微处理器、数字信号处理器一直到彩电、音响和电子玩具电路等,EDA技术不单是应用于前期的计算机模拟仿真、产品调试,而且也在后期的制作、电子设备的研制与生产、电路板的焊接、器件的制作过程等有重要作用。可以说电子EDA技术已经成为电子工业领域不可缺少的技术支持[4]。

1.2 硬件描述语言概述

硬件描述语言(HDL-Hardware Description Language)是一种用于设计硬件电子系统的计算机语言,它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式,与传统的门级描述方式相比,它更适合大规模系统的设计。例如一个32位的加法器,利用图形输入软件需要输入500至1000个门,而利用VHDL 语言只需要书写一行A=B+C即可,而且VHDL语言可读性强,易于修改和发现错误。早期的硬件描述语言,如ABEL-HDL、AHDL,是由不同的EDA厂商开发的,互相不兼容,而且不支持多层次设计,层次间翻译工作要由人工完成。为了克服以上缺陷,1985年美国国防部正式推出了VHDL(Very High Speed IC Hardware Description Language)语言,1987年IEEE采纳VHDL为硬件描述语言标准(IEEE STD-1076)。