材料力学1[答案解析]
- 格式:doc
- 大小:488.50 KB
- 文档页数:13
第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
一、一、填空题(每小题5分,共10分)1、如图,若弹簧在Q作用下的静位移st20=∆冲击时的最大动位移mmd60=∆为:3Q。
2、在其它条件相同的情况下,用内直径为d实心轴,若要使轴的刚度不变的外径D。
二、二、选择题(每小题5分,共10分)1、置有四种答案:(A)截面形心;(B)竖边中点A(C)横边中点B;(D)横截面的角点正确答案是:C2、足的条件有四种答案:(A);zyII=(A);zyII>(A);zyII<(A)yzλλ=。
正确答案是: D 三、1、(15P=20KN,[]σ解:ABMn=ABmaxM=危险点在A2、图示矩形截面钢梁,A 端是固定铰支座,B 端为弹簧支承。
在该梁的中点C 处受到的重解:(1)求st δ、max st σ。
将重力P 按静载方式沿铅垂方向加在梁中心C 处,点C 的挠度为st δ、静应力为max st σ,惯性矩 )(12016.004.012433m bh I ⨯==由挠度公式)2(21483K PEI Pl st +=δ得, 83339310365.112)10(104010210488.040---⨯⨯⨯⨯⨯⨯⨯=st δmm m 1001.01032.25240213==⨯⨯⨯+mm m 1001.0==根据弯曲应力公式z st W M =maxσ得,其中4Pl M =, 62bh W z =代入max st σ得,MPa bhPlst 12401.004.068.0406422max =⨯⨯⨯⨯==σ(2)动荷因数K d12160211211=⨯++=++=K std hδ(3)梁内最大冲击应力M P a st d d 1441212max =⨯=K =σσ3、(10分)图中的1、2杆材料相同,均为园截面压杆,若使两杆在大柔度时的临界应力相等,试求两杆的直径之比d 1/d 2,以及临界力之比21)/()(cr cr P P 。
并指出哪根杆的稳定性较好。
材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。
一、低碳钢试件的拉伸图分为、、、四个阶段。
(10分)二、三角架受力如图所示。
已知F=20kN,拉杆BC采用Q235圆钢,[σ钢]=140MPa,压杆AB采用横截面为正方形的松木,[σ木]=10MPa,试用强度条件选择拉杆BC的直径d和压杆AB的横截面边n=180 r/min,材料的许用四、试绘制图示外伸梁的剪力图和弯矩图,q、a均为已知。
(15分)2五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[σ]=150MPa,试校核该梁的正应力强度。
(15分)=200mm。
b=180mm,h=300mm。
求σmax和σmin。
(15分)八、图示圆杆直径d =100mm ,材料为Q235钢,E =200GPa , p =100,试求压杆的临界力F cr 。
1)答案及评分标准一、 弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
评分标准:各2.5分。
二、 d =15mm; a =34mm .评分标准:轴力5分,d结果5分,a结果5分。
三、τ=87.5MPa, 强度足够.评分标准:T 3分,公式4分,结果3分。
四、评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。
五、σmax=155.8MPa>[σ]=100 MPa ,但没超过许用应力的5%,安全.评分标准:弯矩5分,截面几何参数3分,正应力公式5分,结果2分。
六、(1)σ1=141.42 MPa,σ=0,σ3=141.42 MPa;(2)σr4=245 MPa。
评分标准:主应力5分,相当应力5分。
七、σmax=0.64 MPa,σmin=-6.04 MPa。
评分标准:内力5分,公式6分,结果4分。
1..5qaF S图M图F S图——+M图qa2qa2/2八、Fc r =53.39kN评分标准:柔度3分,公式5分,结果2分。
一、什么是强度失效、刚度失效和稳定性失效?二、如图中实线所示构件内正方形微元,受力后变形 为图中虚线的菱形,则微元的剪应变γ为 ? A 、 α B 、 α-090C 、 α2900- D 、 α2答案:D三、材料力学中的内力是指( )。
F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
参考答案:×问题解析:3图示桁架中3杆的内力为0。
()参考答案:√1.图示扭转杆固定端截面的扭矩为15kN-M。
()参考答案:√问题解析:2.等截面圆轴作匀速转动,转速n=200r/min,传递的功率为60kw,作用在轴上的外力偶矩为2864.7N.m。
()参考答案:√1.梁AB受力如图所示,截面1-1剪力和弯矩分别为FS1=-qa, M1=-qa2/2 。
()答题:对. 错. (已提交)参考答案:√问题解析:2.图示简支梁,其正确的弯矩图如图所示。
()参考答案:×问题解析:3.图示受力梁的支座约束力、剪力图、弯矩图均正确。
()参考答案:√1.图示杆件的内力有轴力和扭矩。
()答题:对. 错. (已提交)参考答案:×问题解析:2.图示杆件的内力有轴力和弯矩。
()答题:对. 错. (已提交)参考答案:×问题解析:1.静定轴向拉(压)杆横截面上的应力与杆件材料的力学性能有关。
()参考答案:×问题解析:2.已知变截面圆杆受力如图所示,d=38mm,D=65mm,AB段和BC段横截面的应力是相同的。
()参考答案:×问题解析:3.边长为200mm的正方形杆件受力如图示,杆件横截面上最大压应力为 7.5MPa。
()参考答案:√1.拉压杆的最大切应力发生在与轴线成450的斜截面上,且。
()参考答案:√1.边长为200mm的正方形杆件受力如图示(同题2图),材料可认为符合胡克定律,其弹性模量E=10GPa,杆件总变形为1.05mm。
()参考答案:√问题解析:2.轴向拉(压)杆,受力和变形关系满足胡克定律,即。
()参考答案:×问题解析:3.变截面直杆受力如图所示,可用公式求杆的总伸长量。
参考答案:×1.图示的杆系结构中,按强度条件计算,最危险的杆件是4杆。
()参考答案:×1.图示两端固定的等截面直杆,其横截面面积为A,该杆受轴力FP作用。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
一、判断题(正确打“√”,错误打“X ”,本题满分为10分)1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( )2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
( )3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。
( )4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。
( )5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。
( )6、单元体上最大切应力作用面上必无正应力。
( )7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。
( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。
( )9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。
( )10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。
( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N=σ的条件是( )。
A 、应力小于比例极限;B 、外力的合力沿杆轴线;C 、应力小于弹性极限;D 、应力小于屈服极限。
2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 )(m ax )(m ax b a σσ 为( )。
A 、1/4;B 、1/16;C 、1/64;D 、16。
3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是 。
A 、有应力一定有应变,有应变不一定有应力; B、有应力不一定有应变,有应变不一定有应力; C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。
4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。
A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( b )6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的( c ) 强度、刚度均足够;B 、强度不够,刚度足够; 强度足够,刚度不够;D 、强度、刚度均不够。
一、单选题(共30 道试题,共60 分。
)1. 厚壁玻璃杯倒入开水发生破裂时,裂纹起始于()A. 内壁B. 外壁C. 壁厚的中间D. 整个壁厚正确答案:B 满分:2 分2.图示结构中,AB杆将发生的变形为()A. 弯曲变形B. 拉压变形C. 弯曲与压缩的组合变形D. 弯曲与拉伸的组合变形正确答案:D 满分:2 分3. 关于单元体的定义,下列提法中正确的是()A. 单元体的三维尺寸必须是微小的B. 单元体是平行六面体C. 单元体必须是正方体D. 单元体必须有一对横截面正确答案:A 满分:2 分4. 梁在某一段内作用有向下的分布力时,则在该段内M图是一条 ( )A. 上凸曲线;B. 下凸曲线;C. 带有拐点的曲线;D. 斜直线正确答案:A 满分:2 分5. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。
A. 工作应力减小,持久极限提高B. 工作应力增大,持久极限降低;C. 工作应力增大,持久极限提高;D. 工作应力减小,持久极限降低。
正确答案:D 满分:2 分6. 在以下措施中()将会降低构件的持久极限A. 增加构件表面光洁度B. 增加构件表面硬度C. 加大构件的几何尺寸D. 减缓构件的应力集中正确答案:C 满分:2 分7. 材料的持久极限与试件的()无关A. 材料;B. 变形形式;C. 循环特征;D. 最大应力。
正确答案:D 满分:2 分8. 梁在集中力作用的截面处,它的内力图为()A. Q图有突变, M图光滑连续;B. Q图有突变,M图有转折;C. M图有突变,Q图光滑连续;D. M图有突变,Q图有转折。
正确答案:B 满分:2 分9.空心圆轴的外径为D,内径为d,α= d / D。
其抗扭截面系数为()A B CDA.AB. BC. CD. D正确答案:D 满分:2 分10. 在对称循环的交变应力作用下,构件的疲劳强度条件为公式:;若按非对称循环的构件的疲劳强度条件进行了疲劳强度条件校核,则()A. 是偏于安全的;B. 是偏于不安全的;C. 是等价的,即非对称循环的构件的疲劳强度条件式也可以用来校核对称循环下的构件疲劳强度D. 不能说明问题,必须按对称循环情况重新校核正确答案:C 满分:2 分11. 关于单元体的定义,下列提法中正确的是()A. 单元体的三维尺寸必须是微小的;B. 单元体是平行六面体;C. 单元体必须是正方体;D. 单元体必须有一对横截面。
材料⼒学实验训练题1答案解析(机测部分100题)⼀、填空题1. 对于铸铁试样,拉伸破坏发⽣在横截⾯上,是由最⼤拉应⼒造成的。
压缩破坏发⽣在约50-55度斜截⾯上,是由最⼤切应⼒造成的。
扭转破坏发⽣在45度螺旋⾯上,是由最⼤拉应⼒造成的。
2. 下屈服点sl s 是屈服阶段中,不计初始瞬时效应时的最⼩应⼒。
3. 灰⼝铸铁在拉伸时,从很低的应⼒开始就不是直线,且没有屈服阶段、强化阶段和局部变形阶段,因此,在⼯程计算中,通常取总应变为0.1% 时应⼒—应变曲线的割线斜率来确定其弹性模量,称为割线弹性模量。
4. 在对试样施加轴向拉⼒,使之达到强化阶段,然后卸载⾄零,再加载时,试样在线弹性范围内所能承受的最⼤载荷将增⼤。
这⼀现象称为材料的冷作硬化。
5. 在长期⾼温条件下,受恒定载荷作⽤时材料发⽣蠕变和松驰现象。
6.低碳钢抗拉能⼒⼤于抗剪能⼒。
7.铸铁钢抗拉能⼒⼩于_抗剪能⼒。
8.铸铁压缩受最⼤切应⼒破坏。
9. 压缩实验时,试件两端⾯涂油的⽬的是减少摩擦;低碳钢压缩后成⿎形的原因:两端⾯有摩擦。
10. 颈缩阶段中应⼒应变曲线下降的原因此应⼒为名义应⼒,真实应⼒是增加的。
11.已知某低碳钢材料的屈服极限为s σ,单向受拉,在⼒F 作⽤下,横截⾯上的轴向线应变为1ε,正应⼒为σ,且s σσ>;当拉⼒F 卸去后,横截⾯上轴向线应变为2ε。
问此低碳钢的弹性模量E 是多少?( 21εεσ- )12.在材料的拉伸试验中,对于没有明显的屈服阶段的材料,以产⽣0.2%塑性变形时对应的应⼒作为屈服极限。
13.试列举出三种应⼒或应变测试⽅法:机测法、电测法、光测法。
14.塑性材料试样拉伸时,颈缩处断⼝呈环状,⾸先中间部分拉断破坏,然后四周部分剪切破坏。
15.等直杆受轴向拉伸,材料为低碳钢,弹性模量E=200GPa,杆的横截⾯⾯积为A=5cm2,杆长l =1m。
加拉⼒F=150kN后,测得 l = 4mm,则卸载后杆的残余应变为 0.0025。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=,N2=注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==σ2=2228504P kN S d π= =∴σmax =1-3:试计算图a 所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。
解:下端螺孔截面:σ1=19020.065*0.045P S ==上端单螺孔截面:σ2=2PS =上端双螺孔截面:σ3= 3PS=∴σmax=1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=σBC=22FS= MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS1=h*t=40*=180mm2S2=(H-d)*t=(65-30)*=∴σmax=2FS=1-6:一长为30cm的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形.(2)AB杆的总变形.解: (1)σAC=-20MPa,σCD=0,σDB=-20MPa;△l AC=NLEA=ACLEAσ=△l CD=CDL EAσ=0△L DB=DBL EA σ=(2) ∴AB l∆=1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127AC AC CB CB P MPa S P MPa S σσ====AC AC AC L NL EA EA σε===*104,CB CB CB L NL EA EA σε===*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:Nll EAl l ε∆=∆= ∴NEA ε=62.54*10N EA N ε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d) 解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9) 一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
试求C点的水平位移和铅垂位移。
材料力学习题答案12.1 试求图各杆1-1、2-2、3-3 截面上的轴力,并作轴力图。
解:(a) ()1140302050F kN -=+-=,()22302010F kN -=-=,()3320F kN -=- (b) 11F F -=,220F F F -=-=,33F F -= (c) 110F -=,224F F -=,3343F F F F -=-= 轴力图如题2. 1 图( a) 、( b ) 、( c) 所示。
2.2 作用于图示零件上的拉力F=38kN ,试问零件内最大拉应力发生在哪个截面上? 并求其值。
解 截面1-1 的面积为()()21502220560A mm =-⨯=截面2-2 的面积为()()()2215155022840A mm =+-=因为1-1截面和2-2 截面的轴力大小都为F ,1-1截面面积比2-2 截面面积小,故最大拉应力在截面1-1上,其数值为:()3max11381067.9560N F F MPa A A σ⨯====2.9 冷镦机的曲柄滑块机构如图所示。
镦压工件时连杆接近水平位置,承受的镦压力F=1100kN 。
连杆截面是矩形截面,高度与宽度之比为 1.4h b=。
材料为45钢,许用应力[]58MPa σ=,试确定截面尺寸h 及b 。
解 连杆内的轴力等于镦压力F ,所以连杆内正应力为F Aσ=。
根据强度条件,应有[]F F A bh σσ==≤,将 1.4hb=代入上式,解得()()0.1164116.4b m mm ≥≤== 由 1.4h b=,得()162.9h mm ≥所以,截面尺寸应为()116.4b mm ≥,()162.9h mm ≥。
2.12 在图示简易吊车中,BC 为钢杆,AB 为木杆。
木杆AB 的横截面面积21100A cm =,许用应力[]17MPa σ=;钢杆BC的横截面面积216A cm =,许用拉应力[]2160MPa σ=。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
材料力学---2绪论一、是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。
()1.2 内力只能是力。
()1.3 若物体各点均无位移,则该物体必定无变形。
()1.4 截面法是分析应力的基本方法。
()二、选择题1.5 构件的强度是指(),刚度是指(),稳定性是指()。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的()在各点处相同。
A. 应力B. 应变C. 材料的弹性常数D. 位移1.7 下列结论中正确的是()A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1.衡。
设杆CD 截面面积为(A) q gA ρ=(B) (C) (D) 2. (A) (C) 3. 在A 和B 和点B (A) 0o ; (C) 45o ; 4. 为A (A)[]2A σ; (C) []A σ;5. (A) (C)6. 三杆结构如图所示。
今欲使杆一种措施?(A) 加大杆3的横截面面积; (B) 减小杆3的横截面面积; (C) (D) 增大α角。
7. 图示超静定结构中,梁AB 示杆1的伸长和杆2(A) 12sin 2sin l l αβ∆=∆; (B) 12cos 2cos l l αβ∆=∆; (C) 12sin 2sin l l βα∆=∆; (D) 12cos 2cos l l βα∆=∆。
8. 图示结构,AC 为刚性杆,杆(A) 两杆轴力均减小; (B) 两杆轴力均增大;(C) 杆1轴力减小,杆2(D) 杆1轴力增大,杆29. 结构由于温度变化,则:(A) (B) (C) (D) 静定结构中将引起应力和变形,超静定结构中将引起应力。
材料力学
请在以下五组题目中任选一组作答,满分100分。
第一组:
计算题(每小题25分,共100分)
1. 梁的受力情况如下图,材料的a。
若截面为圆柱形,试设计此圆截面直径。
10
m
q/
kN
4
m
2. 求图示单元体的: (1)图示斜截面上的应力; (2)主方向和主应力,画出主单元体;
(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。
60x
解:
(1)、斜截面上的正应力和切应力:MPa MPa o 95.34,5.6403030=-=--τσ (2)、主方向及主应力:最大主应力在第一象限中,对应的角度为0067.70=α,则主应力为:MPa MPa 0.71),(0.12131-==σσ
(3)、主切应力作用面的法线方向:0/
20/167.115,67.25==αα 主切应力为:/
2/104.96ααττ-=-=MPa
此两截面上的正应力为:)(0.25/
2/1MPa ==αασσ,主单元体如图3-2所示。
x
图3-1
MPa
0.25MPa
4.96MPa
0.250
67.25MPa
0.25MPa
04.96MPa
0.25O
图3-2
3. 图中所示传动轴的转速n=400rpm ,主动轮2输入功率P2=60kW,从动轮1,3,4和5的输出功率分别为P1=18kW,P3=12kW,P4=22kW,P5=8kW 。
试绘制该轴的扭矩图。
4. 用积分法求图所示梁的挠曲线方程和转角方程,并求最大挠度和转角。
各梁EI均为常数。
第二组:
计算题(每小题25分,共100分)
1. 简支梁受力如图所示。
采用普通热轧工字型钢,且已知= 160MPa。
试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。
(已知选工字钢No.32a: W = 69
2.2 cm3,Iz = 11075.5 cm4)
解:
1.F RA = F RB = 180kN(↑)
kN·m
kN·m
kN
m3
由题设条件知:
W = 692.2 cm2,Iz = 11075.5 cm4
cm
E截面:
MPa
MPa
2. A+、B-截面:
MPa
MPa
3.C-、D+截面:
MPa
MPa
∴选No.32a工字钢安全。
2.绘制下图所示各梁的剪力图和弯矩图,并求出剪力和弯矩绝对值的最大值。
设
F、q、已知。
3. 梁的受力及横截面尺寸如下图所示。
试求:
1.绘出梁的剪力图和弯图;
2.确定梁内横截面上的最大拉应力和最大压应力;
3.确定梁内横截面上的最大切应力;
4.画出横截面上的切应力流。
4. 图示梁及柱的材料均为Q235钢,E = 200GPa,= 240MPa,均布载荷q = 24kN/m,竖杆为两根63×63×5等边角钢(连结成一整体)。
试确定梁及柱的工作安全因数。
第三组:
计算题(每小题25分,共100分)
1. 作图所示的各梁的剪力图和弯矩图。
2. 求下列图示各刚架的弯矩、剪力及轴力图。
3. 用积分法计算图示梁的变形时,需分几段建立方程?并写出其位移边界条件。
4. 图示压杆两端为球铰约束,截面如图所示,为200mm×125mm×18mm的不等边角钢。
杆长l = 5m,材料为Q235钢,其弹性模量E = 205GPa。
试求压杆的临界载荷。
图
第四组:
计算题(每小题25分,共100分)
1. 图示结构中AC为刚性梁,BD为斜撑杆,载荷F可沿梁AC水平移动。
试问:为使斜杆的重量最小,斜撑杆与梁之间的夹角 应取何值?
2. 如图所示,一半圆拱由刚性块AB和BC及拉杆AC组成,受的均布载荷q=作用。
若半圆拱半径12 m
90 kN/m
σ=,试设计
R=,拉杆的许用应力[]150 MPa
拉杆的直径d。
3. 如图所示结构中,悬臂梁AC 为No.10工字钢,惯性矩z I =2454
cm , A 端铰支于空心钢管AB 上。
钢管的内径和外径分别为30mm 和40mm ,B 端也是铰支。
当重为500N 的重物从h=5mm 处自由落于A 端时,试校核杆AB 的稳定性。
规定稳定安全系数n=2.5。
已知钢梁和钢管的模量为:E=210GPa 。
4. 如图所示,重量 kN Q 2=的冰块以 s m v /1=的速度冲击长为m L 3=,直径mm d
200=的木桩顶部。
已知木材弹性模量GPa E W 11=,求木桩内的最大
正应力。
第五组:
计算题(每小题25分,共100分)
1. 试求千斤顶丝杠的工作安全因数。
已知最大承载kN F 120=,有效直径
mm d 521=。
长度mm l 600=,材料为A3钢,GPa E 210=,MPa p 200=σ,
MPa s 235=σ,MPa a 304=,MPa b 12.1=。
可以认为丝杠的下端固定,上端为自由。
2. 图示铸铁梁m a 6.0=。
材料许用拉应力[]MPa t
35=σ,许用压应力[]MPa c 140=σ,求q 的最大允许值。
已知 mm y c 8.126=, 46431cm I Z
=
3. 如图所示,一实心圆杆1在其外表面紧套空心圆管2。
设杆的拉压刚度分别为11E A 和22E A 。
此组合杆承受轴向拉力F ,试求其长度的改变量。
(假设圆杆和
圆管之间不发生相对滑动)
4. 设有一实心钢杆,在其外表面紧套一铜管。
材料的弹性模量和线膨胀系数分别为1E ,2E 和1l α,2l α,且2l α>1l α。
两者的横截面面积均为A 。
如果两者紧套
的程度不会发生相互滑动,试证明当组合管升温T ∆后,其长度改变为()112212l l E E l T
l E E αα+∆∆=+。
要求:
1. 独立完成,作答时要写明题型、题号;
2. 作答方式:手写作答或电脑录入,使用A4格式白纸;
3. 提交方式:以下两种方式任选其一,
1) 手写作答的同学可以将作业以图片形式打包压缩上传;
2)提交电子文档的同学可以将作业以word文档格式上传;
4.上传文件命名为“中心-学号-姓名-科目.rar”或“中心-学号-姓名-科
目.doc”;
5.文件容量大小:不得超过20MB。